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The Model

The Classical Risk Model

Lundberg (1903) intruduced the model

St =
Nt∑
i=1

Yi ,

X 0
t = x + ct − St .

x : Initial capital.

c : Rate of the linear income, premium rate.

{Nt}: Poisson process with rate λ.

{Yi}: iid sequence, distribution function G (y), G (0) = 0.

{Nt} and {Yi} are independent.
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The Model

Proportional Reinsurance

The insurer can buy proportional reinsurance, i.e. the insurer pays
bY , the reinsurer pays (1− b)Y of a claim of size Y .

There is a premium at rate c − c(b) the insurer has to pay. We
assume

c(b) continuous.

c(b) increasing.

c(1) = c .

c(0) < 0.
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The Model

Proportional Reinsurance

The insurer can at any time choose the retention level bt ∈ [0, 1].
Then the surplus process becomes

X b
t = x +

∫ t

0
c(bs) ds −

Nt∑
i=1

bTi−Yi .
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The Model

Investment

The insurer can invest the surplus into a risky asset (Black-Scholes
model)

Zt = exp{(m − 1
2σ

2)t + σWt} .

{Wt} and {St} are independent.
Choosing a strategy {At} the surplus process becomes

dXA
t = (c + Atm) dt + σAt dWt − dSt , XA

0 = x
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The Model

Proportional Reinsurance and Investment

If the insurer can buy reinsurance and invest the surplus process
fulfils

dXA,b
t = (c(bt) + Atm) dt + σAt dWt − bt−dSt , XA,b

0 = x
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Large Claims

Heavy-Tailed Claims

We say a distribution function F is heavy-tailed (F ∈ H) if

MF (r) :=

∫ ∞

0
erx dF (x) = ∞

for all r > 0.

We say a distribution function F is long-tailed (F ∈ L) if

lim
x→∞

1− F (x + y)

1− F (x)
= 1

for all y ∈ IR.
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Large Claims

Subexponential Distributions

A distribution function F (x) with F (0) = 0 is called
subexponential (F ∈ S) if

lim
x→∞

1− F ∗n(x)

1− F (x)
= n

for some (and therefore all) n ≥ 2.
The definition can be interpreted as

IIP
[ n∑

i=1

Xi > x
]
∼ IIP[max{X1, . . . ,Xn} > x ] .
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Large Claims

The Class S∗

A distribution function F (x) is in S∗ if it has finite mean µF and

lim
x→∞

∫ x

0

(1− F (x − y))(1− F (y))

1− F (x)
dy = 2µF .
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Large Claims

Regularly Varying Tail

A distribution function F (x) has a regularly varying tail with index
−α (F ∈ R−α) if

lim
x→∞

1− F (tx)

1− F (x)
= t−α .

R−α ⊂ S∗ ⊂ S ⊂ L ⊂ H .

Moreover, the log-normal and the heavy-tailed Weibull
distributions belong to S∗. Thus S∗ contains all heavy-tailed
distribution functions of interest.
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The Optimisation Problem

The Optimisation Problem

τAb := inf{t ≥ 0 : XAb
t < 0}: time of ruin

ψAb(x) := IIP[τAb <∞]: ruin probability

Goal: Minimisation of the ruin probability
ψ(x) = inf

A,b
ψAb(x) .

The problem is connected to the Hamilton-Jacobi-Bellman (HJB)
equation

inf
b∈[0,1]

c(b)ψ′(x) + λIIE[ψ(x − bY )− ψ(x)] = 0 .
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The Optimisation Problem

Verification Theorem

Theorem (Hipp and Plum, S.)

Suppose there is an increasing (and twice continuously
differentiable) function f (x) such that 1− f (x)/f (∞) solves HJB.
Then f (x) is bounded and f (x) = f (∞)(1− ψ(x)). Moreover,

(A(Xt), b(Xt))

is an optimal strategy, where A(x), b(x) are the arguments where
the minimum in the HJB is taken.

Hanspeter Schmidli University of Cologne

Controlled Risk Processes and Large Claims



Introduction The Optimisation Problem Asymptotic Properties

The Optimisation Problem

Sketch of Proof

Proof.

Case with investment:
The process

f (XA
t∧τ )−

∫ t∧τ

0

{σ2

2
A2

s f
′′(XA

s ) + (c + mAs)f
′(XA

s )

+ λIIE[f (XA
s − Y )− f (XA

s )]
}

ds

is a local martingale. Using the HJB it follows that f (XA
t∧τ ) is a

supermartingale.
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The Optimisation Problem

Sketch of Proof

Proof (continued).

Thus f (x) ≥ IIE[f (XA
t∧τ )]. Choosing a strategy for which ruin is not

certain shows that f (x) is bounded. Thus

f (x) ≥ f (∞)IIP[τ = ∞] = f (∞)(1− ψA(x)) .

Choosing the optimal strategy gives that f (X ∗
τ∧t) is a bounded

martingale. Thus

f (x) = IIE[f (X ∗
τ )] = f (∞)(1− ψ∗(x)) .
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The Optimisation Problem

Existence of a Solution

Theorem (S.)

Suppose G (x) is continuous. Then ψ(x) solves the HJB.

Theorem (Hipp and Plum, S.)

Suppose G (x) is absolutely continuous with a bounded density.
Then ψ(x) is twice continuously differentiable and solves the HJB.

Proof.

Contraction arguments.

Hanspeter Schmidli University of Cologne

Controlled Risk Processes and Large Claims



Introduction The Optimisation Problem Asymptotic Properties

Optimal Reinsuance

Claim Sizes with a Regularly Varying Tail

Theorem

Suppose that the tail of the claim size distribution is regularly
varying with index α. Then

lim
x→∞

ψ(x)∫∞
x (1− G (z)) dz

= inf
b∈(0,1]

λbα

(c(b)− λµb)+
.

If there is a unique value b∗ for which the infimum is taken we also

have convergence of the strategy limx→∞ b(x) = b∗.
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Optimal Reinsuance

Proof.

Choose bt = b constant such that c(b) > λµb.

lim
x→∞

ψb(x)∫∞
x (1− G (z)) dz

= lim
x→∞

ψb(x)bα∫∞
x (1− G (z/b)) dz

=
λbα

c(b)− λµb

Thus

lim sup
x→∞

ψ(x)∫∞
x (1− G (z)) dz

≤ inf
b∈(0,1]

λbα

(c(b)− λµb)+
.
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Optimal Reinsuance

Proof (continued).

Let g(x) = −ψ′(x)/(1− G (x)). Then for b = b(x)

λ
[∫ x

0
g(z)

(1− G (z))(1− G ((x − z)/b))

1− G (x)
dz

+ δ(0)
1− G (x/b)

1− G (x)

]
− c(b)g(x) = 0 .

g0 = lim infx→∞ g(x) > 0.

Take a sequence {xn} such that g(xn) → g0.
Take a subsequence such that b(xn) → b0.
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Optimal Reinsuance

Proof (continued).

∫ xn/2

0
g(z)(1− G (z))

1− G ((xn − z)/b(xn))

1− G (xn)
dz

≤ −C

∫ xn/2

0
ψ′(z) dz .

∫ xn/2

0
g(z)(1− G (z))

1− G ((xn − z)/b(xn))

1− G (xn)
dz → bα

0ψ(0) .
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Optimal Reinsuance

Proof (continued).

The second part of the integral is∫ xn/2

0
g(xn − z)

1− G (xn − z)

1− G (xn)
[1− G (z/b(xn))] dz .

≥ g0 − ε ≥ 1

lim inf bounded from below by g0b0µ.

λbα
0 + λµb0g0 − c(b0)g0 ≤ 0 .

This shows that c(b0)− λµb0 > 0.

g0 ≥
λbα

0

c(b0)− λµb0
.
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Optimal Reinsuance

Proof (continued).

Thus

lim inf
x→∞

−ψ′(x)

1− G (x)
≥ λbα

0

c(b0)− λµb0
.

Integration yields

lim inf
x→∞

ψ(x)∫∞
x (1− G (z)) dz

≥ λbα
0

c(b0)− λµb0
.
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Optimal Reinsuance

Proof (continued).

From

λ
[∫ x

0
g(z)

(1− G (z))(1− G ((x − z)/b0))

1− G (x)
dz

+ δ(0)
1− G (x/b0)

1− G (x)

]
− c(b0)g(x) ≥ 0 .

we conclude that g(x) is bounded.

Let g1 = lim supx→∞ g(x) and choose a sequence {xn} such that
g(xn) → g1.

In the limit we get λbα
0 + λµb0g1 − c(b0)g1 ≥ 0.

Hanspeter Schmidli University of Cologne

Controlled Risk Processes and Large Claims



Introduction The Optimisation Problem Asymptotic Properties

Optimal Reinsuance

Proof (continued).

g1 ≤
λbα

0

c(b0)− λµb0
.

Thus g(x) → g0 converges.

Choose a sequence {xn} such that b(xn) → b1.

λbα
1 + λµb1g0 − c(b1)g0 = 0 .

g0 =
λbα

1

c(b1)− λµb1
.

If b∗ = b0 is unique then b1 = b∗.
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Optimal Reinsuance

Claim Sizes with a Rapidly Varying Tail

Proposition

Suppose that

lim
x→∞

∫ x

0

(1− G (z))(1− G (x − z))

1− G (x)
dx = 2µ

and that the distribution tail 1− G (x) is of rapid variation. Let
b0 = inf{b : c(b) > λµb}. Then for any b > b0

lim
x→∞

ψ(x)∫∞
x (1− G (z/b)) dz

= 0 .

For the strategy we obtain that lim supx→∞ b(x) = b0.
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Optimal Reinsuance

Comparision Rapid and Regular Variation

Remark

Regularly varying tails are more dangerous. But one chooses more
reinsurance for rapidly varying tails. Strange?
Reinsurance makes tail considerably smaller for rapid variation
whereas the premium is more important in the regular varying case.
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Optimal Reinsuance

Proof.

Let b > b0.
Choose b0 < b1 < b such that c(b1) > λµb1.
Note that

lim
x→∞

∫∞
x 1− G (z/b1) dz∫∞
x 1− G (z/b) dz

= 0 .

Thus we can assume that c(b) > λµb.

Hanspeter Schmidli University of Cologne

Controlled Risk Processes and Large Claims



Introduction The Optimisation Problem Asymptotic Properties

Optimal Reinsuance

Proof (continued).

Let g(x) = −ψ′(x)/(1− G (x/b)).

λ
[∫ x

0
g(z)

(1− G (z/b))(1− G ((x − z)/b1))

1− G (x/b)
dz

+ δ(0)
1− G (x/b1)

1− G (x/b)

]
− c(b1)g(x) ≥ 0 .

We start showing that g(x) is bounded.
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Optimal Reinsuance

Proof (continued).

Otherwise there is a sequence {xn} such that
g(xn) = sup0≤x≤xn

g(x).∫ xn/2

0

g(z)

g(xn)

(1− G (z/b))(1− G ((xn − z)/b1))

1− G (xn/b)
dz

≤ ε

∫ xn/2

0

(1− G (z/b))(1− G ((xn − z)/b))

1− G (xn/b)
dz

= εb

∫ xn/(2b)

0

(1− G (z))(1− G (xn/b − z))

1− G (xn/b)
dz .

∫ xn/2

0

g(z)

g(xn)

(1− G (z/b))(1− G ((xn − z)/b1))

1− G (xn/b)
dz → 0 .
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Optimal Reinsuance

Proof (continued).

The other part of the integral is∫ xn/2

0

g(xn − z)

g(xn)

(1− G ((xn − z)/b))(1− G (z/b1))

1− G (xn/b)
dz

≤
∫ xn/2

0

(1− G ((xn − z)/b))(1− G (z/b))

1− G (xn/b)
dz

→ bµ .

We find λµb − c(b) ≥ 0.

Thus g(x) must be bounded.
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Optimal Reinsuance

Proof (continued).

Let g0 = lim supx→∞ g(x).
In the limit we get (λµb − c(b))g0 ≥ 0.

Thus g0 = 0. Integration over (x ,∞) gives the result.

Suppose b(xn) → b1 > b0. b2 = (2b0 + b1)/3, b3 = (b0 + 2b1)/3.
g(x) = −ψ′(x)/(1− G (x/b2)) → 0. But

lim
n→∞

δ(0)
1− G (xn/b(xn))

1− G (xn/b2)
≥ lim

n→∞
δ(0)

1− G (xn/b3)

1− G (xn/b2)
= ∞ .

Thus lim sup b(x) ≤ b0.
lim sup b(x) < b0 would imply ψ(x) = 1.
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Optimal Investment

The HJB Equation

We suppose now that ψ(x) solves HJB.
Taking the infimum, i.e. inserting

A(x) = − mψ′(x)

σ2ψ′′(x)
.

yields

−m2ψ′(x)2

2σ2ψ′′(x)
+ cψ′(x)

+ λ
[∫ x

0
ψ(x − y) dG (y) + 1− G (x)− ψ(x)

]
= 0
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Optimal Investment

The HJB Equation

Integration by parts yields

−m2ψ′(x)2

2σ2ψ′′(x)
+ cψ′(x) + λδ(0)(1− G (x))

− λ

∫ x

0
ψ′(x − y)(1− G (y)) dy = 0

δ(0) = 1− ψ(0) ∈ (0, 1).

Hanspeter Schmidli University of Cologne

Controlled Risk Processes and Large Claims



Introduction The Optimisation Problem Asymptotic Properties

Optimal Investment

Regularly Varying Tail

Let

κ =
2λσ2

m2

Theorem (Gaier and Grandits)

Suppose G ∈ R−α with α > 1. Then

lim
x→∞

ψ(x)

1− G (x)
= κ

α+ 1

α
.

Complicated proof.
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Optimal Investment

Subexponential Claim Sizes

One could now expect that

ψ(x) ∼ C (1− G (x))

for some C > 0 and all subexponential claims.

This is ’almost’ true.
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Optimal Investment

Asymptotics: Strong Conditions

If G (x) is absolutely continuous we define the hazard rate

`(x) =
G ′(x)

1− G (x)

Suppose G ∈ S∗ and limx→∞ `(x) = 0.

Let g(x) = −ψ′(x)/(1− G (x)). (stupid choice?)
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Optimal Investment

Asymptotics: Strong Conditions

HJB divided by 1− G (x)

− m2

2σ2

g(x)

`(x)− g ′(x)

g(x)

− cg(x) + λδ(0)

+ λ

∫ x

0
g(x − y)

(1− G (x − y))(1− G (y))

1− G (x)
dy = 0

It follows that limx→∞ g(x) = 0.
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Optimal Investment

Asymptotics: Strong Conditions

Integral ∫ x/2

0
g(x − y)

(1− G (x − y))(1− G (y))

1− G (x)
dy → 0

∫ x−x0

x/2
g(x − y)

(1− G (x − y))(1− G (y))

1− G (x)
dy small

∫ x

x−x0

g(x − y)
(1− G (x − y))(1− G (y))

1− G (x)
dy

→
∫ x0

0
g(y)(1− G (y)) dy = ψ(0)− ψ(x0)
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Optimal Investment

Asymptotics: Strong Conditions

∫ x

0
g(x − y)

(1− G (x − y))(1− G (y))

1− G (x)
dy → ψ(0)

lim
x→∞

ψ′(x)2

ψ′′(x)(1− G (x))
=

2σ2λ

m2
= κ
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Optimal Investment

Asymptotics: S∗

Integration yields

ψ(x) ∼ κ

∫ ∞

x

1∫ y

0

1

1− G (z)
dz

dy

By tail equivalence the result holds for all G ∈ S∗.

Some sort of smothed version of the tail.
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Optimal Investment

Asymptotics: Regularly Varying Tail

1− G (x) ∈ R−α∫ y

0

1

1− G (z)
dz ∈ Rα+1∫ ∞

x

1∫ y

0

1

1− G (z)
dz

dy ∈ R−α

lim
x→∞

ψ(x)

1− G (x)
= κ

α+ 1

α
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Optimal Investment

Asymptotics: MDA(exp{−e−x})

Suppose that G (y) ∈ MDA(exp{−e−x}). Then G (x) has the
representation

1− G (x) = c(x) exp
{
−

∫ x

0
a(z) dz

}
,

c(x) → 1, a(x) > 0 absolutely continuous such that the density of
1/a(x) tends to zero. Because G (y) ∈ S∗, a(x) tends to zero.
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Optimal Investment

Asymptotics: MDA(exp{−e−x})

Tail equivalent to

1− G̃ (x) = exp
{
−

∫ x

0
a(z) dz

}
,

lim
x→∞

− G̃ ′′(x)(1− G̃ (x))

G̃ ′(x)2
= 1 .

From L’Hospital’s rule we conclude that

lim
x→∞

ψ(x)

1− G (x)
= κ .
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Optimal Investment

ψ(x) ∼ C (1− G (x))?

Suppose G (y) ∈ S and that ψ(x) ∼ C (1− G (x)) for some C > 0.
Then

lim sup
x→∞

−ψ′(x)

1− G (x)
≤ lim

x→∞

ψ(x − 1)− ψ(x)

1− G (x)
= 0 .

Analogously as before∫ x

0

ψ(x − y)

1− G (x)
dG (y) → C .

Thus

lim
x→∞

ψ′(x)2

ψ′′(x)(1− G (x))
=

2σ2λ

m2
= κ .
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Optimal Investment

ψ(x) ∼ C (1− G (x))?

We conclude that either 1− G (x) ∈ R−α or
G (y) ∈ MDA(exp{−e−x}). Thus C = κ(α+ 1)/α or C = κ.
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Optimal Investment

Asymptotics of A(x)

Integration of

lim
x→∞

ψ′(x)2

ψ′′(x)(1− G (x))
=

2σ2λ

m2
= κ

yields

A(x) = −m

σ2

ψ′(x)

ψ′′(x)
∼ m

σ2

∫ x

0

1− G (x)

1− G (z)
dz

In particular, A(x) →∞.
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Optimal Investment

Asymptotics of A(x)

If G ∈ R−α, α ≥ 1, µG <∞ then

lim
x→∞

A(x)

x
=

m

(α+ 1)σ2
.

The strategy A(x) = mx/((α+ 1)σ2) yields an asymptotically
optimal ruin probability.
Proof is analogously.
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Optimal Investment

Asymptotics of A(x)

If G (y) ∈ S∗ ∩MDA(exp{−e−x}) then

A(x) ∼ m

σ2

∫ x

0
exp

{
−

∫ x

y
a(z) dz

}
dy ∼ m

σ2a(x)
.

In particular, A(x)/x → 0.

Also here, the strategy At = m/(σ2a(Xt)) yields asymptotically the
optimal ruin probability.
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Optimal Investment and Reinsurance

Investment and Reinsurance

It is possible to reinsure the whole portfolio and then to speculate
on the market.
Thus the ruin probability is basically the ruin probability of a
Brownian motion with drift.
In particular, ψ(x) is decreasing exponentially fast.

We assume that no exponential moments exist, i.e. IIE[erY ] = ∞
for all r > 0.
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Optimal Investment and Reinsurance

The Adjustment Coefficient

Let b∗ = 0. For a constant strategy A > −c(0)/m the adjustment
coefficient is

R(A, 0) =
2(mA + c(0))

σ2A2
.

R(A, 0) becomes maximal for A∗ = −2c(0)/m, thus
R = R(A∗, 0) = −m2/(2σ2c(0)).

We find ψ(x) < ψA∗0(x) = e−Rx .
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The HJB Equation

Let f (x) = ψ(x)eRx and g(x) = −ψ′(x)eRx = Rf (x)− f ′(x). The
HJB equation can be written as

− m2

2σ2

g(x)2

Rg(x)− g ′(x)
− c(b(x))g(x)

+ λ

∫ x

0
g(x − y)[1− G (y/b(x))]eRy dy

+ λδ(0)[1− G (x/b(x))]eRx = 0 .
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Asymptotics

Replacing b(x) by 0

− m2

2σ2

g(x)2

Rg(x)− g ′(x)
− c(0)g(x) ≥ 0 .

This is equivalent to

0 ≤ − m2

2σ2

Rg(x)

Rg(x)− g ′(x)
− Rc(0) = − m2

2σ2

g ′(x)

Rg(x)− g ′(x)
.

We see that g ′(x) ≤ 0, that is g(x) is decreasing. But then also
f ′(x) ≤ 0, that is f (x) is decreasing.
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Asymptotics

We have proved

Proposition

The functions ψ(x)eRx and −ψ′(x)eRx are decreasing. In
particular, there is a constant ζ ∈ [0, ψ(0)) such that

lim
x→∞

ψ(x)eRx = ζ .
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Asymptotics of b(x)

Suppose b(x) ≥ b > 0.

λ

∫ x

0
g(x − y)[1− G (y/b(x))]eRy dy

≥ λ

∫ x

0
g(x − y)[1− G (y/b)]eRy dy

≥ λ

∫ x

0
[1− G (y/b)]eRy dy g(x) .
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Asymptotics of b(x)

Thus

λ

∫ x

0
g(x − y)[1− G (y/b(x))]eRy dy

+ λδ(0)[1− G (x/b(x))]eRx − c(b(x))g(x)

≥ g(x)
[
λ

∫ x

0
[1− G (y/b)]eRy dy − c

]
.

For x large enough this is larger than −c(0)g(x).
Thus b(x) < b for x large enough.

We have proved that
lim

x→∞
b(x) = 0 .
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Asymptotics of A(x)

The definition of R gives(
c(0) +

m2

2σ2R

)
g(x) = 0 .

Adding this to the HJB equation

− m2

2σ2R

g ′(x)g(x)

Rg(x)− g ′(x)
− (c(b(x))− c(0))g(x)

+ λ

∫ x

0
g(x − y)[1− G (y/b(x))]eRy dy

+ λδ(0)[1− G (x/b(x))]eRx = 0 .

The only negative part is

−(c(b(x))− c(0))g(x) .

c(b(x))− c(0) → 0.
Thus also the positive parts have, divided by g(x), to tend to 0.

g ′(x)

Rg(x)− g ′(x)
→ 0 .

Thus

lim
x→∞

A(x) = lim
x→∞

m

σ2

g(x)

Rg(x)− g ′(x)
= A∗ .
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Is R the Correct Exponent?

We know that b(x) → 0. Choose b0 such that c(b0) < 0. There is
x0, such that b(x) < b0 for all x ≥ x0.

Consider the following risk process:

bt =

{
b(Xt) , if x < x0,

0 , if x ≥ x0.

c(x) =

{
c(b(Xt)) , if x < x0,

c(b0) , if x ≥ x0.

The investment At is chosen in an optimal way, in particular,
A(x) = −2c(b0)/m for x ≥ x0.

Then ψ̂(x) < ψ(x).
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Is R the Correct Exponent?

If x ≥ x0, ruin occurs by passing the capital x0. Thus

ψ(x) > ψ̂(x) = ψ̂(x0) exp
{ 2m2

2σ2c(b0)
(x − x0)

}
for x ≥ x0.
This means

lim
x→∞

− logψ(x)

x
≤ − 2m2

2σ2c(b0)
.

This holds for all b0, thus

lim
x→∞

− logψ(x)

x
≤ − 2m2

2σ2c(0)
= R .
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Positive Limit

Proposition

Suppose that there exists K > 0 such that c(b)− c(0) ≤ Kb.
Suppose, moreover, that there are constants α > 0 and 0 < γ < 1

2
such that

1− G (y) ≥ α exp{−xγ} .

Then ζ = limx→∞ ψ(x)eRx > 0.
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Full Reinsurance

Proposition

1 If

lim sup
b↓0

c(b)− c(0)

b
> λIIE[Y ] ,

then b(x) > 0 for all x.

2 If

lim sup
b↓0

c(b)− c(0)

b
< λIIE[Y ] ,

then b(x) = 0 for all x large enough.
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