On CAT Options and Bonds

Hanspeter Schmidli

University of Cologne

Advanced Modeling in Finance and Insurance Linz, 24th of September 2008

Introduction

- Why are Catastrophes Dangerous?
- CAT Products
- CAT Products from the Investor's Point of View

2 Models

- Models for the CAT Futures
- Models for the PCS Option
- A Model Based on Individual Indices
- Pricing and Hedging the PCS Option
 - Pricing the PCS Option
 - Hedging the PCS Option

Introduction	
•0000000 00000000000000000000000000000	

Nodels

Why are Catastrophes Dangerous?

Catastrophic Claims: In Mil. USD

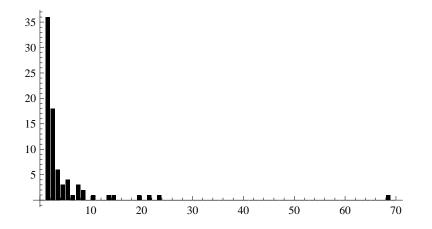
Event	Date	Claim
Hurricane Katrina	25.08.05	68 515
Hurricane Andrew	23.08.92	23 654
Terrorist attacks in US	11.09.01	21 999
Northridge Earthquake	17.01.94	19 593
Hurricane Ivan	02.09.04	14115
Hurricane Wilma	19.10.05	13 339
Hurricane Rita	20.09.05	10 704
Hurricane Charley	11.08.04	8 840
Typhoon Mireille	27.09.91	8 599
Hurricane Hugo	15.09.89	7 650
Storm Daria	25.01.90	7 413
Storm Lothar	25.12.99	7 223

Introduction	
0000000	
000000000000000000000000000000000000000	
00	

Models

Why are Catastrophes Dangerous?

Catastrophic Claims (80 Events)

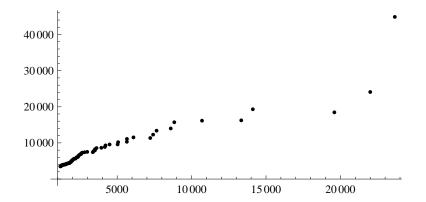


Hanspeter Schmidli

University of Cologne

Introduction	Models	Pricing and Hedging
0000000 00000000000000 00	0000 000 000	000000000000000000000000000000000000000
Why are Catastrophes Dangerous?		

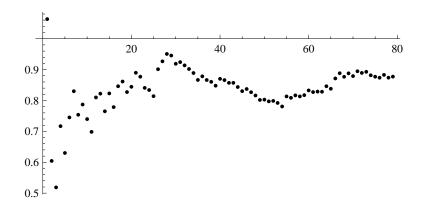
Empirical Mean Residual Life



Hanspeter Schmidli

Introduction	Models	Pricing and Hedging
000●0000	0000	000000000000000
000000000000000000000000000	000	00000000
Why are Catastrophes Dangerous?	000	

The Hill Plot



Hanspeter Schmidli

Introduction 0000●000 00000000000000 00	Models 0000 000 000	Pricing and Hedging 00000000000000000000000000000000000
Why are Catastrophes Dangerous?		

The Index of Regular Variation

Estimation of the index of regular variation $\alpha = 1.14027$.

Variance does not exist!

Mean value of the estimated distribution: 8 441 Mil

Empirical mean 4653 Mil. (-45%)

Hanspeter Schmidli

On CAT Options and Bonds

University of Cologne

Introduction	Models	Pricing and Hedging
00000000 0000000000000 00	0000 000 000	000000000000000 00000000
Why are Catastrophes Dangerous?		

New Record

Mean value of a new record: 556 968. (8.1 times Hurricane Katrina, 23.5 times Hurricane Andrew)

Reinsurance? Risk is too large for the insurance industry.

Financial market could bear risk without problems.

Need for new financial products that take over the rôle of reinsurance.

Introd	uction
0000	0000
0000	00000000000
00	

Models 0000 000

Why are Catastrophes Dangerous?

Largest Possible Claim — Financial Market

Largest possible claim

Daily standard deviation

Hanspeter Schmidli

University of Cologne

Introduction	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	000000000000000 00000000
Why are Catastrophes Dangerous?		

The Use of CAT Products

Insurers use the CAT product as a substitute for reinsurance.

Insurance claims are supposed to be nearly independent of the financial market. Kobe earthquake? 9/11?

Counterparty risk is reduced because the credit risk is spread amongst investors.

Investors can use CAT products for diversification.

Introduction	Models	Pricing and Hedging
00000000 •0000000000000 00	0000 000 000	00000000000000000000000000000000000000
CAT Products		

The ISO Index

The underlying index for the CAT future is the ISO (Insurance Service Office, a statistical agent) index.

About 100 American insurance companies report property loss data to the ISO. ISO then selects for each of the used indices a pool of at least ten of these companies on the basis of size, diversity of business, and quality of reported data. The ISO index is then

 $I_t = \frac{\text{reported incurred losses}}{\text{earned premiums}}$.

The pool is known at the beginning of the trading period.

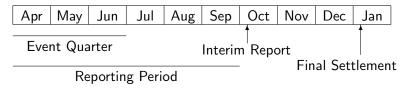
Introduction 0000000 0000000000000	Models 0000 000	Pricing and Hedging 00000000000000000000000000000000000
00 CAT Products	000	

The CAT Futures

$$F_{\mathcal{T}_1} = \min\left\{\frac{I_{\mathcal{T}_1}}{\Pi}, 2\right\} \times 25\,000\$$$

Π: Premium volume

I: ISO index



Hurricane Andrew:
$$I = 1.7 \Pi$$
.

Hanspeter Schmidli

Introduction	Models	Pricing and Hedging
00000000 0000000000000 00	0000 000 000	000000000000000 00000000
CAT Products		

The CAT Futures

No success because poorly designed. Reasons:

- Index only announced twice
- Information asymmetry
- Lack of realistic models
- Moral hazard problem
- Index may not match losses (slow reporting)
- The insurer cannot define a layer for which the protection holds.

	Pricing and Hedging
0000000 0000	000000000000000000000000000000000000000
0000000000000000000000000000000000000	0000000
CAT Products	

The PCS Indices

A PCS index is an estimate of (insurance) losses in 100 Mio\$ occuring from catastrophes in a certain region in a certain period. There are 9 indices:

- National
- Eastern
- Northeastern
- Southeastern
- Midwestern
- Western
- California
- Florida
- Texas

Hanspeter Schmidli On CAT Options and Bonds

Introduction	Models	Pricing and Hedging
00000000 00000000000000 00	0000 000 000	000000000000000 00000000
CAT Products		

The PCS Option

A PCS option is a spread traded on a PCS index

$$F_{T_2} = \min\{\max\{L_{T_2} - A, 0\}, K - A\}$$

= max{ $L_{T_2} - A, 0$ } - max{ $L_{T_2} - K, 0$ }.

 L_{T_2} is PCS's estimate at time T_2 of the losses from catastrophes occurring in $(0, T_1]$ in a certain region. The occurrence period $(0, T_1]$ is 3,6 or 12 months. The development period $(T_1, T_2]$ is 6 or 12 months.

Introduction ○○○○○○○○ ○○○○○●○○○○○○○○○○ ○○	Models 0000 000 000	Pricing and Hedging 000000000000000 00000000
CAT Products		

The value of a basis point is \$200.

When a catastrophe occurs, PCS makes a first estimate and then continues to reestimate the claim.

The option expires after a development period of at least six months following the occurrence period.

The index is announced daily which simplifies trading.

Moreover, there is no information asymmetry.

Introduction ○○○○○○○ ○○○○○○●○○○○○○○○ ○○	Models 0000 000 000	Pricing and Hedging 00000000000000000000000000000000000
CAT Products		

How Does the PCS Option Work

An insurer chooses first the layer. Then he estimates the market share and its loss experience compared to the whole market. From that the strike values and the number of spreads is calculated.

In this way one gets the desired reinsurance if the estimates coincide with the incurred liabilities.

Introduction	Models
0000000	0000
0000000000000	

CAT Products

How Does the PCS Option Work

Example

An insurer wants to hedge catastrophes.

The layer should be 6 Mio in excess of 4 Mio, i.e. with strike values 4 Mio and 10 Mio.

He estimates the market share to 0.2%.

He estimates his exposure to 80% of the industry in average.

Introduction 00000000 00000000000000000000000000	Models 0000 000 000	Pricing and Hedging 000000000000000 00000000
CAT Products		

How Does the PCS Option Work

Example (cont)

Lower strike:

$$4 imes rac{1}{0.002} imes rac{1}{0.8} = 2500 = 25 \mathrm{pt}$$
 .

Upper strike:

$$10 imes rac{1}{0.002} imes rac{1}{0.8} = 6250 = 62.5 \mathrm{pt}$$
 .

Strikes are only available at 5 pt intervals, thus 25/65 are chosen as strike prices (10.4 Mio upper strike value).

Hanspeter Schmidli

Introduction ○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○	Models 0000 000 000	Pricing and Hedgi 00000000000 00000000
CAT Products		

How Does the PCS Option Work

Example (cont)

The number of spreads needed is

 $\frac{6\;000\;000}{200(65-25)}=750\;.$

Hanspeter Schmidli

Introduction	Models	Pricing and Hedging
0000000 00000000000000 00	0000 000 000	000000000000000 00000000
CAT Products		

The Act-of-God Bond

A bond with coupons, usually at a high rate.

The coupons and/or principal are at risk, i.e. if a well-specified event occurs the coupon(s)/principal will not be paid (back).

Possible variant, principal will be paid back with a delay.

For the insurer, the coupons (and the principal) serve as a sort of reinsurance payment.

Introduction ○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○	Models 0000 000 000	Pricing and Hedging 000000000000000 00000000
CAT Products		

The Act-of-God Bond: An Example

Riskless interest rate:	2%
Coupon rate:	4%
Probability of the event:	5%

Price of the Act-of-God bond:

$$rac{1}{1.02}(0.95 imes 104 + 0.05 imes 0) = 96.86$$
 .

Price of a riskless bond with coupon rate 4%:

 $\frac{1}{1.02}$ 104 = 101.96.

Hanspeter Schmidli

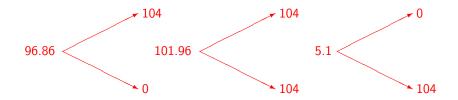
Introduction	
00000000 00000000000000000000000000000	

Aodels

Pricing and Hedging

CAT Products

The Act-of-God Bond: An Example



Hanspeter Schmidli

University of Cologne

Introduction ○○○○○○○○ ○○○○○○○○○○○○○○○ ○○	Models 0000 000 000	Pricing and Hedging 000000000000000 00000000
CAT Durling		

The Act-of-God Bond: An Example

Suppose the principal is (in case of the event) paid back in ten years, but the coupon is not valid. The price becomes then

$$0.95 rac{1}{1.02} 104 + 0.05 rac{1}{(1.02)^{10}} 100 = 100.96$$
 .

That is the insurer gets a reinsurance of 4 and an interest-free loan of 100 in the case of the event. The price of this agreement is 1.

Introduction ○○○○○○○○ ○○○○○○○○○○○○○○○○○ ○○	Models 0000 000 000	Pricing and Hedging 000000000000000 00000000
CAT Products		

Examples of Act-of-God Bonds

- USAA hurricane bonds issued in 1997 secured losses due to a Class-3 or stronger hurricane on the Gulf or East coast. If losses exceed 1 billion \$ the coupon rate starts to be reduced, at 1.5 billion \$ the coupons are completely lost.
- Winterthur Hailstorm bonds issued in 1997. Coupon lost if a (hail) storm damaged more than 6000 cars in the portfolio of Winterthur. There was also a conversion option.
- Swiss Re California Earthquake bonds: Based on PCS index.
- Swiss Re Tokyo region Earthquake bonds: Triggering event is a certain strength on the Richter scale.

Introduction	Models	Pricing and Hedging
0000000 0000000000000 •0	0000 000 000	00000000000000000000000000000000000000
Investor's Point of View		

Assumptions

We assume that insurance market and financial market are independent. Kobe earthquake? 9/11?

There is no credit risk.

Markets are liquid and efficient.

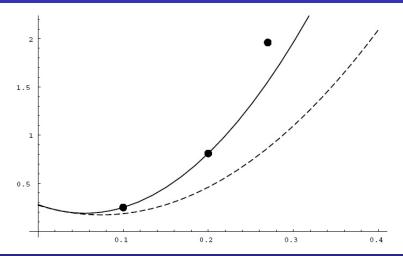
Problem: Products are risky and therefore low rated. Many investment funds or pension schemes are not allowed to invest in products lower than *A* rated.

0000000	0000
00000000000000	000
00	000

Pricing and Hedging

Investor's Point of View

Improvement of the Efficient Frontier



Hanspeter Schmidli

University of Cologne

Introduction 0000000 0000000000000 00	Models ●000 ○00 ○00	Pricing and Hedging 00000000000000000000000000000000000
Models for the CAT Futures		

Cummins and Geman (1993)

First model described in the literature.

$$I_t = \int_0^t S_s \, \mathrm{d}s$$

where

 $\mathrm{d}S_t = \mu S_t \, \mathrm{d}t + \sigma S_t \, \mathrm{d}W_t + k \, \mathrm{d}N_t$

 $\{W_t\}$: is a standard Brownian motion. $\{N_t\}$ is a Poisson process. Application of techniques from pricing Asian options. Model is far from reality, but was used in practise.

	Models	Pricing and Hedging
00000000 00000000000000 00	○●○○ ○○○ ○○○	000000000000000 00000000
Models for the CAT Futures		

Model based on actuarial modelling. Catastrophes occurring according to a Poisson process, losses iid gamma distributed,

$$I_t = \sum_{i=1}^{N_{t \wedge T_1}} Z_i$$

Exponential utility approach.

Reporting lags: $\{Z_i\}$ should be stochastically decreasing.

Gamma assumption, heavy-tailed distribution?

 γ small approximates heavy tails. OK because index is capped. Aase chooses for γ a natural number.

00000000 000000000000000000000000000000

Models for the CAT Futures

Embrechts and Meister (1995)

Catastrophes (reported claims) doubly stochastic Poisson process iid claim sizes.

 $I_t = \sum_{i=1}^{N_{t\wedge T_1}} Z_i$

Exponential utility approach.

 I_{T_2} determines change of measure: Pricing exclusively by investors? I_{T_2} aggregate loss seen by representative agent?

Introduction 0000000 0000000000000 00	Models 000● 000 000	Pricing and Hedging 00000000000000000000000000000000000
Models for the CAT Futures		

Christensen and S. (2000)

Reporting lags explicitly taken into account

$$I_t = \sum_{i=1}^{N_{t \wedge T_1}} \sum_{j=1}^{M_i} Y_{ij} \mathbb{1}_{E_{ij} + \tau_i \leq t}$$

 $\{N_t\}$ number of catastrophes,

 $\{M_i\}$ iid, number of individual claims,

 $\{Y_{ij}\}$ iid, claim size

 $\{E_{ij}\}$ iid, reporting lag.

 $\{\tau_i\}$ time of *i*-th catastrophe.

Exponential utility function is chosen (based on I_{∞}). Heavy tails can be approximated.

ntroduction	
000000000000000000000000000000000000000	
00	

Models

Models for the PCS Option

Cummins and Geman (1993) / Aase (1994)

The same models as for the CAT-futures can be used.

Re-estimation?

Hanspeter Schmidli On CAT Options and Bonds

Introduction
000000000000000000000000000000000000000
00

Models ○○○○ ○●○

Models for the PCS Option

Schradin and Timpel (1996)

$P_t = P_0 \exp\{X_t\}$

 $t \in (0, T_1]$: $\{X_t\}$ increasing compound Poisson process, $t \in (T_1, T_2]$: $\{X_t\}$ is a Brownian motion.

Index behaves differently in the two periods.

Motivation: in HARA utility framework pricing by Esscher measure.

Exponential Lévy process?

Introduction 00000000 00000000000000 00	Models ○○○○ ○○○	Pricing and Hedging 00000000000000000000000000000000000
Models for the PCS Option		

Christensen (1999)

Similar model, $t \in (T_1, T_2]$: $\{X_t\}$ compound Poisson process with normally distributed increments.

Motivated by re-estimation procedure.

Main problems of model by Schradin and Timpel not solved.

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 ●00	000000000000000000000000000000000000000
A Model Based on Individual Indices		

The Model

We model the PCS index as

$$P_t = \sum_{i=1}^{N_{T_1 \wedge t}} P_t^i.$$

 $\{N_t\}$ is an inhomogeneous Poisson process counting the numbers of catastrophes.

The index of the *i*-th catastrophe, occurring at time τ_i is

$$\mathcal{P}^i_{ au_i+t} = Y_i \exp\left\{\int_0^t \sigma(s) \,\mathrm{d} W^i_s - rac{1}{2}\int_0^t \sigma(s)^2 \,\mathrm{d} s
ight\}.$$

 Y_i are the first estimates, $\{W_t^i\}$ are independent Brownian motions.

Hanspeter Schmidli

Introduction 00000000 00000000000000 00	Models ○○○○ ○○○ ○●○	Pricing and Hedging ocoococococococo ococococococococococo
A Model Based on Individual Indices		
The Model		

```
The first estimates \{Y_i\} are iid.
\int_0^\infty \sigma(s)^2 \, \mathrm{d}s < \infty.
```

Note that $\{P_{\tau_i+t}^i\}$ is a martingale, i.e. estimates are unbiased.

The final estimate P_{∞} can be seen as the accumulated claims from the catastrophes.

Introduction 00000000 0000000000000000000000 00 Models

Pricing and Hedging

A Model Based on Individual Indices

Biagini, Bregman and Meyer-Brandis

A similar model is considered by Biagini et al. They model the index as $N_{to T}$

$$\sum_{k=1}^{I_t\wedge T_1} Y_k A_{t-T_k}^k ,$$

where $\{A_t^k\}$ are independent martingales.

Introduction 00000000 000000000000000000000000000	Models 0000 000 000	Pricing and Hedging •oooooooooooooooooooooooooooooooooooo
Pricing the PCS Option		

Cumins and Geman

For the index

$$P_t = \int_0^t S_s \, \mathrm{d}s$$

the pricing problem is the same as pricing Asian Options. Thus

$$\pi_t = \operatorname{I\!E}_{\mathbb{Q}} \left[\operatorname{e}^{-r(T_2 - t)} \left(\int_0^{T_2} S_s \, \mathrm{d}s - A \right)_+ \, \Big| \, \mathcal{F}_t \right] \,.$$

Cummins and Geman use the equivalent martingale measure. Problem: neither S_t nor P_t are traded indices!

Hanspeter Schmidli

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	00000000000000000000000000000000000000
Pricing the PCS Option		

Cumins and Geman

٠

Yor has, using results of Kingman on Bessel processes, calculated the Laplace transform

$$\int_0^\infty \operatorname{I\!E}_{\mathbb{Q}} \left[\operatorname{e}^{-rT_2} \left(\int_0^{T_2} S_s \, \mathrm{d}s - A \right)_+ \right] \operatorname{e}^{-\beta A} \mathrm{d}A \, .$$

Inversion gives the price at time zero.

At time t, the price can be obtained by using the strike price

$$\left(A - \int_0^t S_s \,\mathrm{d}s\right) \,\Big/ \,S_t \;.$$

If the strike price becomes negative, the pricing problem is simple.

Pricing the PCS Option	Introduction 00000000 000000000000000000000000000	Models 0000 000 000	Pricing and Hedging 00000000000000000000000000000000000
	Pricing the PCS Option		

Aase

In an exponential utility approach the index

$$P_t = \sum_{i=1}^{N_{t \wedge T_1}} Z_i$$

behaves under the pricing measure in the same way but with changed parameters. Thus the price is

$$\pi_t = \operatorname{I\!E}_{\mathbb{Q}}\left[\operatorname{e}^{-r(T_2 - t)} \left(\sum_{i=1}^{N_{T_1}} Z_i - A \right)_+ \mid \mathcal{F}_t \right] \,.$$

Hanspeter Schmidli

0000000 000000000000000000000000000000	

Models 0000 000 Pricing and Hedging

Pricing the PCS Option

Schradin and Timpel; Christensen

They use the Esscher transform for pricing. Let us first consider the interval $[0, T_1]$. Under the physical measure

 $\mathbb{E}_{\mathbb{I}^{\mathbf{P}}}[P_0 \exp\{X_t\} e^{-rt}] = \exp\{(\beta - r)t\} .$

It is therefore natural to consider the index

 $P_t \mathrm{e}^{-\beta t}$.

Let

 $M(z) = \operatorname{I\!E}_{\operatorname{I\!P}}[\exp\{zX_1\}]$

denote the moment generating function.

Introduction 00000000 000000000000000000000000000	Models 0000 000 000	Pricing and Hedging oooo●oooooooo ooooooooooooooooooooooo
Pricing the PCS Option		

Schradin and Timpel; Christensen

Changing the measure with $L_t = \exp\{hX_t\}/M(h)^t$ the process remains an exponential Lévy process but with moment generating function

$$M(z;h)=\frac{M(z+h)}{M(h)}.$$

In order that $P_t e^{-(\beta+r)t}$ is a martingale we choose h^* such that

$$M(1; h^*) = rac{M(1+h^*)}{M(h^*)} = \mathrm{e}^{eta + r} \; .$$

Hanspeter Schmidli

000

000000000000000000000000000000000000000
00

Models 0000 000 Pricing and Hedging

Pricing the PCS Option

Schradin and Timpel; Christensen

The pricing measure is now determined through

 $\mathbb{Q}[A] = \operatorname{I\!E}_{\operatorname{I\!P}}[\exp\{hX_t\}/M(h)^t \mathbb{1}_A]$

on \mathcal{F}_t for $t \leq T_1$.

For $(T_1, T_2]$ the change of measure is constructed similarly.

Gerber and Shiu have shown that this corresponds to a power utility function for the investor.

Pricing the PCS Option
00000000 00000000000000000000000000000
Introduction

Models 0000 000 Pricing and Hedging

Individual Indices: Radon-Nikodym Derivative

We want the market to see the same model. Therefore we use the Radon-Nikodym derivative

$$\frac{\mathrm{d}\mathbb{P}^*}{\mathrm{d}\mathbb{P}} = \exp\left\{\left(\sum_{k=1}^{N_t} \beta(Y_i) + \int_0^\infty \gamma(s) \,\mathrm{d}W_s^i\right) - \int_0^t \lambda(s)\mathbb{E}[\Gamma \exp\{\beta(Y)\} - 1] \,\mathrm{d}s\right\}.$$

Hanspeter Schmidli

University of Cologne

Introduction
000000000000000000000000000000000000000
00

Pricing and Hedging

Individual Indices: Radon-Nikodym Derivative

$$\beta(y)$$
 is a function, such that $\mathbb{E}[\exp\{\beta(Y_i)\}] < \infty$.
 $\gamma(s) \ge 0$ such that $\Gamma = \exp\{\frac{1}{2}\int_0^\infty \gamma(t)^2 dt\} < \infty$.

There is a side condition

$$\mathsf{\Pi} = \operatorname{I\!E}^*[\mathcal{L}_\infty] = \operatorname{I\!E}^*\left[\sum_{i=1}^{N_{\mathcal{T}_1}} \mathcal{L}^i_\infty\right],$$

where Π is the aggregate premium for catastrophic losses in the occurrence period.

Introduction
000000000000000000000000000000000000000
00

Viodels 0000 Pricing and Hedging

Pricing the PCS Option

Individual Indices: Distribution under ${\rm I\!P}^*$

Under the measure \mathbb{P}^* the claim number process $\{N_t\}$ is a (inhomogeneous) Poisson process with rate

 $\tilde{\lambda}(t) = \Gamma \mathbb{E}[\exp\{\beta(Y)\}]\lambda(t)$.

The first estimates Y_i have distribution function

$$\mathrm{d}\tilde{F}_{Y}(y) = \frac{\mathrm{e}^{\beta(y)} \mathrm{d}F_{Y}(y)}{\mathrm{IE}[\exp\{\beta(Y)\}]},$$

Introduction	Models	
0000000 0000000000000 00	0000 000 000	
Pricing the PCS Option		

Pricing and Hedging

Individual Indices: Distribution under ${\rm I\!P}^*$

and the process $\{W^i_t\}$ becomes an Itô process satisfying

$$W_t^i = \widetilde{W}_t^i + \int_0^t \gamma(s) \,\mathrm{d}t \,,$$

where $\{\widetilde{W}^i\}$ are independent standard Brownian motions under \mathbb{IP}^* , independent of $\{Y_i\}$ and $\{N_t\}$.

Introduction 00000000 000000000000000000000000000	Models 0000 000 000	Pricing ar oooooo oooooo
Pricing the PCS Option		

Individual Indices: Distribution under ${\rm I\!P}^*$

We get

$$\int_0^t \sigma(s) \, \mathrm{d} W_s^i = \int_0^t \sigma(s) \gamma(s) \, \mathrm{d} s + \int_0^t \sigma(s) \, \mathrm{d} \tilde{W}_s^i \, .$$

The market adds a drift to the re-estimates.

Hanspeter Schmidli

nd Hedging

Introduction
000000000000000000000000000000000000000

Models 0000 000 Pricing and Hedging

Pricing the PCS Option

Individual Indices: Pricing the PCS Option

Monte-Carlo simulations

- Variance reduction methods
- Importance sampling

• Actuarial approximations

- Normal approximation
- Lognormal approximation
- Translated Gamma approximation
- Edgeworth approximations
- Saddle point approximations

Introduction 0000000 00000000000000000	Models 0000 000	Pricing and Hedging 00000000000000000000000000000000000
Pricing the PCS Option		

Biagini et al. — Pricing

Biagini et al. also use an exponential martingale for changing the measure.

They calculate the Fourier transform of $((x - K)^+ - k)$. They insert into the pricing formula the inversion formula of the Fourier transform, interchange measure and get a formula for the price of the option.

Introduction
000000000000000000000000000000000000000
00

CAT Bond: Independent Triggering Event

Let $\{r_t\}$ denote the interest rate, i.e. the zero coupon prices are calculated as

Models

$$B(0,T) = \operatorname{I\!E}_{\mathbb{Q}}\left[\exp\left\{-\int_{0}^{T} r_{s} \, \mathrm{d}s
ight\}
ight].$$

Suppose the triggering event *A* is independent of $\{r_t\}$ with $\mathbb{Q}[A] = 1 - q$.

We denote the return of the bond by v_c , i.e. the value at time T is $1 + v_c$.

Introduction	
0000000000000000000	
00	

Pricing and Hedging

CAT Bond: Independent Triggering Event

Then the price of the act-of-God bond becomes

$$\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{-\int_{0}^{T} r_{t} dt\right\}(1+v_{c})(1-\mathbb{I}_{A})\right]$$
$$= (1+v_{c})\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{-\int_{0}^{T} r_{t} dt\right\}\right]q$$
$$= (1+v_{c})B(0,T)q$$

Models

Note that only q has to be determined by the market because the zero coupon bond exists.

Hanspeter Schmidli On CAT Options and Bonds

00000000 000000000000000 00	

CAT Bond: Dependent Interest Rate and Triggering Event

Models

Denote by \mathbb{IP}_T the risk adjusted forward measure, i.e. the measure obtained by using 1/B(0, T) as numeraire. That is,

 $\mathrm{d} \mathbb{P}_T/\mathrm{d} \mathbb{Q} = \exp\{-\int_0^T r_s \,\mathrm{d} s\}/B(0, T).$

Changing the measure we find

$$\mathbb{E}_{\mathbb{Q}}\Big[\exp\Big\{-\int_{0}^{T} r_{t} dt\Big\}(1+v_{c})(1-\mathbb{I}_{A})\Big] \\ = (1+v_{c})B(0,T)\mathbb{E}_{T}[1-\mathbb{I}_{A}] = (1+v_{c})B(0,T)q_{T}.$$

Here $q_T = 1 - \operatorname{IP}_T[A]$.

Note: The formula looks simple but the problem is to calculate q_T , which is as hard as under \mathbb{Q} .

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	00000000000000000000000000000000000000
Hedging the PCS Option		

Setup

```
Time Horizons 0 < T_1 < T_2.
Initial capital x.
Aggregate insurance loss X (not \mathcal{F}_{T_2}-measurable)
Price \pi_t of the option at time t.
Number of options \kappa_t in the portfolio (previsible).
Index P_t at time t.
Expiry date T_2.
Value of the option at expiry date f(P_{T_2}).
Utility function u(x) (at time T_2).
Suppose all quantities are discounted.
```

Introduction 00000000 000000000000000000000000000	Models 0000 000 000	Pricing and Hedgi ○○○○○○○○○○ ○●○○○○○○
Hedging the PCS Option		

The Utility Maximising Problem

The gain from trading in the option is

$$-\kappa_0\pi_0+\int_0^{T_2}\kappa_s\,\mathrm{d}\pi_s+\kappa_{T_2}f(P_{T_2})\;.$$

The insurer (representative agent) wants to maximise

$$\mathbb{E}\Big[u\Big(x-\kappa_0\pi_0+\int_0^{T_2}\kappa_s\,\mathrm{d}\pi_s+\kappa_{T_2}f(P_{T_2})-\mathbb{E}_{\mathbb{Q}}[X\mid\mathcal{F}_{T_2}]\Big)\Big]\;.$$

Hanspeter Schmidli

ging

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	00000000000000000000000000000000000000
Hedging the PCS Option		

The Hedging Strategy

Standard methods from pricing in incomplete markets show that there is a unique trading strategy $\{\kappa_t\}$ which leads to a maximisation of the expected utility.

If u(x) is the utility function of a representative agent, then we find the indifference price

$$\pi_t = \frac{\mathbb{E}[f(P_{\mathcal{T}_2})u'(x - \mathbb{E}_{\mathbb{Q}}[X \mid \mathcal{F}_{\mathcal{T}_2}]) \mid \mathcal{F}_t]}{\mathbb{E}[u'(x - \mathbb{E}_{\mathbb{Q}}[X \mid \mathcal{F}_{\mathcal{T}_2}]) \mid \mathcal{F}_t]} .$$

Introduction 00000000 00000000000000 00	Models 0000 000 000	Pricing and Hedging ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Hedging the PCS Option

The Problem in Discrete Time

It seems simpler to consider the problem in discrete time. Let $0 = t_0 < t_1 < \cdots < t_k = T_1 < t_{k+1} < \cdots < t_n = T_2$. $\pi_i, \kappa_i, P_i, \mathcal{F}_i$ for $\pi_{t_i}, \kappa_{t_i}, P_{t_i}, \mathcal{F}_{t_i}$.

The value at time t_i becomes

$$V_{i}(x) = \sup_{\kappa} \mathbb{E} \Big[u \Big(x - \kappa_{i} \pi_{i} - \sum_{\ell=i+1}^{n-1} (\kappa_{\ell} - \kappa_{\ell-1}) \pi_{\ell} \\ + \kappa_{n-1} f(P_{n}) - \mathbb{E}_{\mathbb{Q}} [X \mid \mathcal{F}_{n}] \Big) \mid \mathcal{F}_{i} \Big] .$$

We want to maximise $V_0(x)$.

Hanspeter Schmidli

	Models	Pricing and Hedging
00000000 00000000000000 00	0000 000 000	00000000000000000000000000000000000000
Hedging the PCS Option		

Time
$$t_{n-1}$$

We have to calculate

$$V_{n-1}(x) = \sup_{k} \operatorname{I\!E}[u(x - k\pi_{n-1} + kf(P_n) - \operatorname{I\!E}_{\mathbb{Q}}[X \mid \mathcal{F}_n]) \mid \mathcal{F}_{n-1}].$$

First derivative is with respect to k

 $\mathbb{E}[(f(P_n) - \pi_{n-1})u'(x - k\pi_{n-1} + kf(P_n) - \mathbb{E}_{\mathbb{Q}}[X \mid \mathcal{F}_n]) \mid \mathcal{F}_{n-1}].$

Second derivative

 $\operatorname{I\!E}[(f(P_n) - \pi_{n-1})^2 u''(x - k\pi_{n-1} + kf(P_n) - \operatorname{I\!E}_{\mathbb{Q}}[X \mid \mathcal{F}_n]) \mid \mathcal{F}_{n-1}] < 0$

Introduction 00000000	Models 0000	Pricing and Hedging
000000000000000000000000000000000000000	000 000	00000000
Hedging the PCS Option		

Time
$$t_{n-1}$$

Suppose $\lim_{x\to\infty} u'(x) = 0$ and $\lim_{x\to-\infty} u'(x) = \infty$. Then the first derivative tends to ∞ as $k \to -\infty$ and to $-\infty$ as $k \to \infty$. Thus there is a unique k where the sup is taken.

At time t_{n-1} , the wealth determines the optimal κ_{n-1} .

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	0000000000000000000000000000000000000
Hedging the PCS Option		

Time
$$t_i < t_{n-1}$$

Define

$$V_i(x) = \sup_k \mathbb{E}[V_{i+1}(x+k(\pi_{i+1}-\pi_i)) \mid \mathcal{F}_i].$$

The first derivative is

$$\mathbb{E}[(\pi_{i+1} - \pi_i)V'_{i+1}(x + k(\pi_{i+1} - \pi_i)) \mid \mathcal{F}_i].$$

The second derivative is

 $\operatorname{I\!E}[(\pi_{i+1} - \pi_i))^2 V_{i+1}''(x + k(\pi_{i+1} - \pi_i)) \mid \mathcal{F}_i] < 0.$

Also strictly concave in k.

Hanspeter Schmidli

	Models	Pricing and Hedging
0000000 0000000000000 00	0000 000 000	00000000000000000000000000000000000000
Hedging the PCS Option		

Time
$$t_i < t_{n-1}$$

Recursively, the first derivative tends to ∞ as $k \to -\infty$ and to $-\infty$ as $k \to \infty$. Thus there is a unique k where the sup is taken.

At time t_i , the wealth determines the optimal κ_i . In particular, there is a unique optimal strategy maximising the expected utility.