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The problem of controlling ruin probabilities is studied in a Cramér—Lundberg model where the
claim process is described by a compound Poisson process with claim size Yn at claim time TI'l.
The number N% of claims in (0,t] is a Poisson process with claim intensity A. There is a premium
(income) rate c which is fixed.

The insurance company can invest the capital (surplus/risk reserve) in a financial market where 2
assets can be traded. One of them is called the bond and is described by the interest rate which
here is assumed w.l.0.g. to be zero.

The other asset is called stock. It is described by a 1—dimensional price process {Sn, izl
where Sn is the price of one share of the stock at time Tr”r The price process will be driven by a
compound Poisson process which can be defined by the sequence {Tr"l, n>1} of market jump times
and the sequence of returns {R , n21}, where 1 +R_>0 and

() B,=8 _,(A*+R)

We write. N for the number of market jumps in (0,t] where {N;} is a Poisson process with
market intensity v. In general, v will be much larger than A.

Thus the price process is driven by a Lévy process as in the Black—Scholes model. However, a
compound Poisson process is chosen in place of a Wiener process. Moreover, only a moment
condition is assumed for the distribution of Rn' Thus, the model for the financial market is quite
general and flexible. The main advantage of the Black—Scholes model is the completeness of the
financial market. But this property is not needed in the present control problem.

We define the Poisson process {Nt} by superposition:
2) Nt = N{ + N; is a Poisson process with parameter A + v and jump times Tn’ B>l

We write Kn = 1 if the jump at Tn is caused by the financial market and Kn = 0 if the jump is
caused by a claim. Then we make the following assumption:

Model Assumption:

All random variables Zn = Tn — Tn—l’ Yn’ Rn’ Kn’ n>1, are independent. The (Zn) are iid and
have an exponential distribution with parameter A+V; the (Yn) are iid and positive; the (Rn) are
iid as well as the (Kn). We assume

P[R <0]>0,E[R ] >0 and E[R2] <ee,

3) P[K =1]=pt-=1-P[K_=0],

q:= %E [Yn] < 1 for the classical ruin probability q with start in 0.



In the joint model of insurance and finance, {Tn, n20} are the decision times and the real—valued
discrete—time process {Xn, n>0} describes the risk process (surplus process) immediately after
time Tn' A dynamic portfolio specifies a portfolio Gn € R at any time Tn‘ There Bn represents the
amount of capital invested in the stock. We have the following law of motion:

@4 X

Xn+ 1

=Xn+c-Zn_'_1+E)n-RIH~1 forKn+1=1’ XHZO.
=Xn+C'Zn+1_Yn+1 forKn+1=O, XHZO.

n+1



For technical reasons we set Xn " S for Xn < 0. Once in state x € (—o0,0), the system moves
to the absorbing state —eo in the next step.
We write ©(x) for the set of all portfolios 8 admissible at x which is assumed to be

Ox) = [0x] ,x20.
We define ©(x) := {0} for x <0.For 6 € O(x), x —6 represents the amount of the capital which
is invested in the bond, i.e., which is not invested in the stock. In this model we do not allow for
negative amounts Gn, thus excluding short selling of the stock.
A number x < O represents a state of ruin. A stationary (investment) plan is a measurable function
¢ such that @(x) c ©(x) for all x. Then (p(Xn) specifies the portfolio Gn € @(Xn) for the period
(Tn’Tn +1] . We will sometimes write for the state (risk) process

- x50
(5) noE T
Our performance criterion is the ruin probability:

6)  W(x,0):=P [Xﬁ"P <0 for somen] .

At first view, the ruin probability is not a classical performance criterion for control problems.
However, one can write the ruin probability as some total cost in an embedded discrete—stage
model where one has to pay one unit of cost when entering the ruin state. After this simple
observation, results from discrete—time dynamic programming for minimizing costs apply.
Lundberg inequalities will be derived for the controlled model which extend the classical
inequalities for the uncontrolled model.

The present paper is related to Gaier, Grandits & Schachermayer (2003) where a continuous—time
control model is studied for a Black—Scholes market by different methods.

If y(x) is the classical ruin probability for an initial reserve x, then y(x) = y(x,Qy) where
Po(x) =0. If I 0 is the classical Lundberg exponent then a classical theorem says

—Ty X

0< Co TR Y(x) = Y(x,09) <e for some constant C0 > 0.
Now let ¢ be a stationary investment plan such that the decision maker invests a constant fraction

v of capital at any (decision) time, i.e. ®(X) = 7y-X, then it was shown by Paulsen & Gjessing
(1997) and Frovola, Kabanov & Pergamenshchikov (2002) that the asymptotic behaviour of the

ruin probability is completely different under the investment plan @. In fact, in the latter case the
ruin probability has a polynomial decay (as function of the initial reserve) even if the financial
market is described by a stock price process with high returns. Therefore, this plan is called
dangerous in Frovola, Kabanov & Pergamenshchikov (2002).

However, if @ is an investment plan such that a constant amount A is invested in the stock
independently of the current risk reserve, i.e. ¢(x) = A, then one can find some A and some

exponent I > r, such that



T-x

(7 yx,p)se

(8) V(x,0) 2 C-e "% for some 0 < C <1 and for every investment plan @
(see Gaier, Grandits & Schachermayer 2003, Schil 2005). A plan with (7) for some t > ts will be
call profitable. The plan @ may however be not admissible when the insurance company is poor,

since ¢(x) = A ¢ O(x) for x < A. In the present paper we study stationary investment plans ¢*
such that

9 0*(x) =min (x, A) for some A > 0.

Such a plan is admissible.

THEOREM There exist a plan ©* of the form (9) and some t* > i such that

9 wxe*)<e
Then ©* is admissible and profitable.

—1*.X

Of course in view of (8), we have r* <t in (10).

THEOREM One even can choose t* = 1 if the market intensity v is high.

If v is high which is a natural condition, then the model is close to a continuous—time model.

'PARADOXON' Assume (1) Yn ~ E,, i.e. the claims have an Erlang distribution;
(i1) the price process is a martingale, i.e. E [Rn] = 0; (ii1) v is large.
Then there exist some stationary plan ¢ such that @(x) = x for small values x and

W(X,0) 2 Y(X,90) = Y(x) and Y(X,0) > Y(X,9g) = Y(x) for small x.
Hence, if the system is close to ruin, it may be good to invest all the capital in a martingale.

The paper builds on methods from discrete—time control / stochastic dynamic programming /

Markov decision processes.
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