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Outline of the presentation

Introduction.
Characteristic functions of models with 
time-dependent parameters.
Application to Heston’s model.
Case study: Calibration to Eurostoxx 50.
Application to Forward start options.
Forward skew of Heston’s model.
Conclusions.
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Introduction

Exotic valuation: usually carried out with Monte Carlo.
Calibration: fast analytic models are needed for
valuation of vanilla products.
Analytic models depend on just a few parameters
which cannot fit the whole set of market parameters.
More degrees of freedom are needed in order to
calibrate the market across all maturities.
The most natural way of introducing more parameters
is to let them depend on time.
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Characteristic functions of models with time-dependent parameters

Characteristic function methods:
Useful when the characteristic function is analytic.
The Inversion of the characteristic function is carried out 
through the inverse Fourier transform.

Characteristic function:
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Introduction

Family of characteristic functions for which the 
methodology can be applied:

The method proposed introduces time-dependent 
parameters for a wide variety of models which admit 
analytic characteristic function:

Merton jump model.

: sum of all Poisson distributed jumps up to time      .
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Introduction

Cox Ingersoll Ross model.

: short rate interest rate at time     .

Heston stochastic volatility model.

: logarithm of underlying.  : variance process.

Hybrids with jumps, stochastic interest rates and volatility.
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Characteristic functions of models with time-dependent parameters

All relevant information of a Markov process with 
independent increments at an instant      is given by the 
joint probability distribution:

Objective: Find                       in terms of 
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Characteristic functions of models with time-dependent parameters

Characteristic function under search:

Joint density               in terms of densities              
and                (independent increments):

Subtituting                       in                     :
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Characteristic functions of models with time-dependent parameters

After substituting                     :
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Characteristic functions of models with time-dependent parameters

Identifying terms:
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Application to Heston´s model

Heston process:

The two state variables for Heston’s process are the 
logarithm of the stock price                       and the 
variance process      :

These two state variables translate into      and      for 
the characteristic function:
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Application to Heston´s model

Joint characteristic function for Heston process:
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Application to Heston´s model

Characteristic function with time-dependent 
parameters at maturity      :
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Application to Heston´s model

Valuation of vanilla options:

Characteristic function for cash or nothing option:

Inversion formula: cummulative density in terms of 
characteristic function.
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Application to Heston´s model

Characteristic function for asset or nothing option:

Final expression of vanillas:
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Application to Heston´s model

Valuation of FX quanto options (      in USD per EUR):

Characteristic function for asset^2 or nothing option:

Final expression for FX quanto vanillas:
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Calibration

A bootstrapping algorithm is proposed:
Periods in between vanilla maturities are chosen to let 
parameters change.
1. n = 1
2. Search model parameters (                ) from          to  to 
fit vanillas at      minimizing the following objective function:

N.B.        chosen to give more weight to options closer to ATM.
3. The parameters up to      are fixed
4. n = n + 1
5. Return to step 2
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Case study: Calibration to Eurostoxx 50.

K \ Mat 1m 3m 6m 9m 1y 2y 3y 4y 5y 10y
0.85 23.0 18.7 18.5 18.6 19.1 19.7 20.6 21.5 22.2 25.8
0.90 18.9 16.7 17.0 17.2 17.8 18.8 19.8 20.8 21.5 25.3
0.95 15.2 14.7 15.5 16.0 16.6 17.8 19.0 20.0 20.8 24.7
1.00 12.2 13.2 14.1 14.8 15.5 16.9 18.2 19.3 20.2 24.2
1.05 11.6 12.3 13.1 13.9 14.4 16.1 17.5 18.7 19.5 23.7
1.10 13.3 12.3 12.6 13.2 13.7 15.4 16.9 18.1 19.0 23.2
1.15 15.6 12.9 12.4 12.7 13.2 14.8 16.3 17.5 18.5 22.7

v0 θ κ σ ρ v0 θ κ σ ρ
max 1 1 20 1.5 1 100 100 100 100 1
min 0 0 0 0 -1 0 0 0 0 -1

σ κ

Time dependent Heston model is calibrated to the following 
Eurostoxx 50 volatility surface:

To avoid problems with discrete dividend payments, what is 
calibrated is the forward delivered at the last maturity rather than the 
underlying itself.

Two calibrations are carried out:
Left: constrained calibration (esp. with respect to      and    ).
Right: unconstrained calibration
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Case study: Calibration to Eurostoxx 50.

Maximum error for both calibrations: 8 bp for most OTM options.
Both calibrations are equivalent from a qualitative point of view:

Market is pricing in increasing uncertainty of volatility:     is constant 
while     reduces (left) vs      is constant while      increases (right).
Market is pricing in increasing volatility (from 11% to around 45% at 
10y) and increasing skew.
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Application to Forward start options.

Forward start option:

Applying the tower law:

The expectation E can be calculated integrating over 
the state variables     and      at times     and     . 
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Application to Forward start options.

The increment                     depends on      but not on    :

Doing the change of variable                    :

Exchanging the order of integration, the expectation E 
can be calculated as a regular vanilla with respect to a 
new measure      . 
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Application to Forward start options.

Definition of the characteristic function of      :

Substituting     and exchanging the order of integration:

Replacing the definition of                     and reordering:
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Application to Forward start options.

Final expression obtained for               :

The marginal distribution of the underlying       is 
obtained by setting              in                        .

The final forward start option price is:
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Forward skew of Heston’s model.

Consider the price of the forward start option when the 
underlying       is driven by BS process with constant vol:

It is understood by forward skew the implied volatility 
surface that results when the forward start option price 
above, equals the price of the same forward start option 
when      is a Heston process.
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Forward skew of Heston’s model.

Lower maturity options are more sensitive to the 
variance distribution as the forward start term increases.

Constrained calibration (left) seems a lot more 
reasonable than unconstrained calibration (right).
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Forward skew of Heston’s model.

Longer maturity options are less sensitive to the 
variance distribution as the forward start term increases.

Constrained and unconstrained calibrations seem to 
agree a lot more for longer maturity options.
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Forward skew of Heston’s model.

Between both calibrations: big difference for short maturity 
forward start options.

Both calibrations fit the marginal distribution of the underlying but,
the variance distribution is not specifically calibrated in either case.

Market volatility surface:
Gives info about the 
marginal distribution of the 
underlying.

No info is given about the 
distribution of the variance 
(this info could be given by 
forward start or cliquet 
option quotes).
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Forward skew of Heston’s model.

What´s different from both calibrations?
Consider the instantaneous volatility                  

(obtained applying Itô):

Calibrations with      greater than one can lead to very 
negative drift:

Constrained:      cannot be higher than 1.5.
Unconstrained:      far exceeds 1 at higher maturities:

– Variance is biased towards values near zero at long maturities.
– Forward implied volatility is lower and forward skew does not 

make sense.
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Forward skew of Heston’s model.

Calibration of the uncertainty of volatility (      and      ):
Left: constraining       to moderate values and calibrating     
seems to provide a better forward skew.
Right: fixing       and calibrating       may bias the forward 
skew towards artificially lower implied volatilities.
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Conclusions

A new method to introduce piecewise constant time-
dependent parameters using transform methods is 
presented:

The characteristic function of the underlying for a time 
horizon is calculated in terms of the characteristic functions 
of the sub-periods where the parameters change. 
Analytic tractability is preserved for a wide family of models 
such as hybrids with stochastic vol, interest rates an jumps.

The method has been applied to Heston’s model.
Two calibrations were carried out on the Eurostoxx 50.
The method has also been applied to valuation of 

forward start options.
The forward skew of both calibrations is explored.
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