Backward SDEs with constrained jumps and Quasi-Variational Inequalities: applications to impulse controls in finance

Huyên PHAM

PMA Université Paris 7, and Institut Universitaire de France

Joint work with : I. Kharroubi (PMA, CREST), J. Ma and J. Zhang (USC)

Workshop Optimization and Optimal Control Linz, October 22, 2008

Introduction

Consider the parabolic Quasi-Variational Inequality (QVI) :

$$\min\left[-\partial_t v - \mathcal{L}v - f, v - \mathcal{H}v\right] = 0, \quad v(T, .) = g, \qquad (1)$$

where ${\boldsymbol{\mathcal{L}}}$ is the second order local operator

$$\mathcal{L}\mathbf{v}(t,x) = b(x).D_x\mathbf{v}(t,x) + \frac{1}{2}\mathrm{tr}(\sigma\sigma'(x)D_x^2\mathbf{v}(t,x))$$

and ${\mathcal H}$ is the nonlocal operator

$$\mathcal{H}v(t,x) = \sup_{e \in E} \mathcal{H}^e v(t,x)$$

with

$$\mathcal{H}^{e}v(t,x) = v(t,x+\gamma(x,e)) + c(x,e).$$

Introduction (II)

The QVI (1) is the **dynamic programming equation of the impulse control problem** (see Bensoussan-Lions 82 or Øksendal-Sulem 06) :

$$v(t,x) = \sup_{\alpha} \mathsf{E}\Big[g(X_T^{\alpha}) + \int_t^T f(X_s^{\alpha}) ds + \sum_{t < \tau_i \leq s} c(X_{\tau_i}^{\alpha}, \xi_i)\Big]$$

with

- controls : $\alpha = (\tau_i, \xi_i)_i$ where
 - $(\tau_i)_i$ time decisions : nondecreasing sequence of stopping times
 - $(\xi_i)_i$ action decisions : sequence of r.v. s.t. $\xi_i \in \mathcal{F}_{\tau_i}$ valued in E,
- controlled process X^{α} defined by

$$X_s^{\alpha} = x + \int_t^s b(X_u^{\alpha}) du + \int_t^s \sigma(X_u^{\alpha}) dW_u + \sum_{t < \tau_i \le s} \gamma(X_{\tau_i}^{\alpha}, \xi_i)$$

- A 🗏 🕨

Introduction (III)

Various applications of impulse controls :

• Financial modelling with discrete transaction dates, due e.g. to fixed transaction costs or liquidity constraints

• Optimal multiple stopping : swing options

• Firm's investment and real options : management of power plants, valuation of gas storage, ...

• More generally to models with control policies that do not accumulate in time.

 $\rightarrow \, Many \,\, papers \, !$

Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
 - The obstacle term contains the solution itself
 - It is nonlocal

→ Ξ → → Ξ →

э

Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
 - The obstacle term contains the solution itself
 - It is nonlocal

► Classical approach : Decouple the QVI (1) by defining by iteration the sequence of functions $(v_n)_n$:

$$\min\left[-\partial_t v_{n+1} - \mathcal{L} v_{n+1} - f, v_{n+1} - \mathcal{H} v_n\right] = 0, v_{n+1}(T, .) = g \qquad (2)$$

 \rightarrow associated to a sequence of optimal stopping time problems (reflected BSDEs)

3 K 4 3 K

Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
 - The obstacle term contains the solution itself
 - It is nonlocal

► Classical approach : Decouple the QVI (1) by defining by iteration the sequence of functions $(v_n)_n$:

min
$$[-\partial_t v_{n+1} - \mathcal{L} v_{n+1} - f, v_{n+1} - \mathcal{H} v_n] = 0, v_{n+1}(T, .) = g$$
 (2)

 \rightarrow associated to a sequence of optimal stopping time problems (reflected BSDEs)

 \rightarrow Furthermore, to compute v_{n+1} , we need to know v_n on the whole domain \rightarrow heavy computations : **numerically challenging**!

イボト イヨト イヨト

• Our basic motivation :

► Find a probabilistic representation of QVI using BSDE, i.e. nonlinear Feynman-Kac formula

 \blacktriangleright We hope to use such a representation for deriving a direct numerical procedure for QVI

Idea of the approach

- Instead of viewing the obstacle term as a reflection of v onto $\mathcal{H}v$ (or v_{n+1} onto $\mathcal{H}v_n$)
- ▶ consider it as a constraint on the jumps of $v(t, X_t)$ for some suitable forward jump process X:

3 N

Idea of the approach

- Instead of viewing the obstacle term as a reflection of v onto $\mathcal{H}v$ (or v_{n+1} onto $\mathcal{H}v_n$)
- ▶ consider it as a constraint on the jumps of $v(t, X_t)$ for some suitable forward jump process X:
- \bullet Let us introduce the uncontrolled jump diffusion X :

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t + \int_E \gamma(X_{t^-}, e)\mu(dt, de), \qquad (3)$$

where μ is a Poisson random measure whose intensity λ is finite and supports the whole space E.

Idea of the approach (II)

Take some smooth function v(t, x) and define :

$$Y_t := v(t, X_t), \quad Z_t := \sigma(X_{t-})' D_X v(t, X_{t-}),$$
$$U_t(e) := v(t, X_{t-} + \gamma(X_{t-}, e)) - v(t, X_{t-}) + c(X_{t-}, e)$$
$$= (\mathcal{H}^e v - v)(t, X_{t-})$$

< ∃→

Idea of the approach (II)

Take some smooth function v(t,x) and define :

$$Y_t := v(t, X_t), \quad Z_t := \sigma(X_{t^-})' D_x v(t, X_{t^-}),$$
$$U_t(e) := v(t, X_{t^-} + \gamma(X_{t^-}, e)) - v(t, X_{t^-}) + c(X_{t^-}, e)$$
$$= (\mathcal{H}^e v - v)(t, X_{t^-})$$

► Apply Itô's formula :

$$Y_t = Y_T + \int_t^T f(X_s) ds + K_T - K_t - \int_t^T Z_s dW_s$$
$$+ \int_t^T \int_E [U_s(e) - c(X_{s^-}, e)] \mu(ds, de),$$

where

$$K_t := \int_0^t (-\partial_t v - \mathcal{L}v - f)(s, X_s) ds$$

- ∢ ≣ ▶

Idea of the approach (III)

- Now, suppose that $\min[-\partial_t v \mathcal{L}v f, v \mathcal{H}v] \ge 0$, and v(T, .) = g:
- ▶ Then (Y, Z, U, K) satisfies

$$Y_{t} = g(X_{T}) + \int_{t}^{T} f(X_{s}) ds + K_{T} - K_{t} - \int_{t}^{T} Z_{s} dW_{s} + \int_{t}^{T} \int_{E} [U_{s}(e) - c(X_{s^{-}}, e)] \mu(ds, de), \qquad (4)$$

 ${\cal K}$ is a nondecreasing process, and ${\cal U}$ satisfies the nonpositivity constraint :

$$-U_t(e) \ge 0, \quad 0 \le t \le T, \ e \in E.$$
(5)

- A 🗄 🕨

Idea of the approach (III)

- Now, suppose that $\min[-\partial_t v \mathcal{L}v f, v \mathcal{H}v] \ge 0$, and v(T, .) = g:
- ▶ Then (Y, Z, U, K) satisfies

$$Y_{t} = g(X_{T}) + \int_{t}^{T} f(X_{s}) ds + K_{T} - K_{t} - \int_{t}^{T} Z_{s} dW_{s}$$
$$+ \int_{t}^{T} \int_{E} [U_{s}(e) - c(X_{s^{-}}, e)] \mu(ds, de), \qquad (4)$$

 ${\cal K}$ is a nondecreasing process, and ${\cal U}$ satisfies the nonpositivity constraint :

$$-U_t(e) \ge 0, \quad 0 \le t \le T, \ e \in E.$$
(5)

► View (4)-(5) as a Backward Stochastic Equation (BSE) with jump constraints

► We expect to retrieve the solution to the QVI (1) by solving the minimal solution to this constrained BSE.

3

Remark : Another look at this BSE.

The nonnegativity jump-constraint $: -U_t(e) \ge 0$ can be removed by defining another nondecreasing process :

$$\bar{K}_t := K_t - \int_0^t \int_E U_s(e)\mu(ds, de),$$

so that the BSE for Y becomes (for simplicity, take c = 0) :

$$Y_t + \int_t^T Z_s dW_s = g(X_T) + \int_t^T f(X_s) ds + \bar{K}_T - \bar{K}_t$$

 \rightarrow The minimal solution to this BSE corresponds to the **superreplication problem** of the payoff $g(X_T) + \int_t^T f(X_s) ds$ by means of W in a jump-diffusion model. (Bouchard 06).

 \blacktriangleright Here, we shall keep explicitly the jump-constraint \rightarrow more general jump-constraint on U

▶ Moreover, by considering general dependence on f, c, we introduce a class of BSDE with constrained jumps.

Introduction

BSDEs with constrained jumps Connection with QVIs Numerical issues Conclusion

Outline

1 Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization

2 Connection with quasi-variational inequalities

3 Numerical issues

• Probabilistic method based on BSDE representation of QVI

4 Conclusion

Formulation of the problem Existence via penalization

Outline

1 Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization
- 2 Connection with quasi-variational inequalities

3 Numerical issues

• Probabilistic method based on BSDE representation of QVI

4 Conclusion

< ∃ >

Formulation of the problem Existence via penalization

Definition

Minimal Solution : find a solution $(Y, Z, U, K) \in S^2 \times L^2(W) \times L^2(\tilde{\mu}) \times A^2$ to

$$Y_{t} = g(X_{T}) + \int_{t}^{T} f(X_{s}, Y_{s}, Z_{s}) ds + K_{T} - K_{t} - \int_{t}^{T} Z_{s} dW_{s} - \int_{t}^{T} \int_{E} (U_{s}(e) - c(X_{s-}, Y_{s-}, Z_{s}, e)) \mu(ds, de)$$
(6)

with

 $h(U_t(e), e) \ge 0, \quad d\mathbf{P} \otimes dt \otimes \lambda(de) \text{ a.e.}$ (7)

such that for any other solution $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K})$ to (6)-(7) :

 $Y_t \leq \tilde{Y}_t, \quad 0 \leq t \leq T, \text{ a.s.}$

3 N (4 3 N

Formulation of the problem Existence via penalization

BSDEs with constrained jumps

Related literature

- Constraints on $Y \rightarrow$ reflected BSDE : El Karoui et al (97), Hamadène et al, etc ...
- \bullet Constraints on Z : Cvitanic et al (98), Hu and Buckdahn (98), Peng (99), Peng and Xu (07)

< ∃ >

Formulation of the problem Existence via penalization

Assumptions on coefficients

• Forward SDE : b and σ Lipschitz continuous, γ bounded and Lipschitz continuous w.r.t. x uniformly in e :

$$|\gamma(x,e) - \gamma(x',e)| \le k|x-x'| \quad \forall e \in E$$

• **Backward SDE** : f g and c have linear growth, f and g Lipschitz continuous, c Lipschitz continuous w.r.t. y and z uniformly in x and e

$$|c(x, y, z, e) - c(x, y', z', e)| \le k_c(|y - y'| + |z - z'|)$$

• **Constraint** : *h* Lipschitz continuous w.r.t. *u* uniformly in *e* :

$$|h(u,e)-h(u',e)|\leq k_h|u-u'|$$

and

$$u \mapsto h(u, e)$$
 nonincreasing. (e.g. $h(u, e) = -u$)

Formulation of the problem Existence via penalization

Outline

Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization

2 Connection with quasi-variational inequalities

3 Numerical issues

• Probabilistic method based on BSDE representation of QVI

4 Conclusion

< ∃→

Formulation of the problem Existence via penalization

Penalized BSDEs

Consider for each *n* the BSDE with jumps :

$$Y_{t}^{n} = g(X_{T}) + \int_{t}^{T} f(X_{s}, Y_{s}^{n}, Z_{s}^{n}) ds + K_{T}^{n} - K_{t}^{n} - \int_{t}^{T} Z_{s}^{n} dW_{s} - \int_{t}^{T} \int_{E} [U_{s}^{n}(e) - c(X_{s-}, Y_{s-}^{n}, Z_{s}^{n}, e)] \mu(ds, de)$$
(8)

with a penalization term

$$\mathcal{K}_t^n = n \int_0^t \int_E h^-(U_s^n(e), e) \lambda(de) ds$$

where $h^- = \max(-h, 0)$.

< ∃→

Formulation of the problem Existence via penalization

Penalized BSDEs

Consider for each *n* the BSDE with jumps :

$$Y_{t}^{n} = g(X_{T}) + \int_{t}^{T} f(X_{s}, Y_{s}^{n}, Z_{s}^{n}) ds + K_{T}^{n} - K_{t}^{n} - \int_{t}^{T} Z_{s}^{n} dW_{s} - \int_{t}^{T} \int_{E} [U_{s}^{n}(e) - c(X_{s-}, Y_{s-}^{n}, Z_{s}^{n}, e)] \mu(ds, de)$$
(8)

with a penalization term

$$K_t^n = n \int_0^t \int_E h^-(U_s^n(e), e) \lambda(de) ds$$

where $h^- = \max(-h, 0)$.

 \rightarrow For each *n*, existence and uniqueness of (Y^n, Z^n, U^n) solution to (8) from Tang and Li (94), and Barles et al. (97).

∃ >

Formulation of the problem Existence via penalization

Convergence of the penalized BSDEs

- Convergence of (Y^n) : usually by comparison results
- Convergence of (Z^n, U^n, K^n) : more difficult !

 \rightarrow Moreover, in general, we need some strong convergence to pass to the limit in the nonlinear terms f(x, y, z), c(x, y, z) and h(u, e).

- Uniform boundedness
- Weak convergence method (Peng)

Formulation of the problem Existence via penalization

Comparison results

Lemma

The sequence $(Y^n)_n$ is nondecreasing, i.e. $\forall n \in \mathbf{N}, Y_t^n \leq Y_t^{n+1}$, $0 \leq t \leq T$, a.s.

Proof. Based on comparison theorem for BSDEs with jumps in Royer (04). We used the nonincreasing property of h.

ヨト イヨト

Formulation of the problem Existence via penalization

Comparison results

Lemma

The sequence $(Y^n)_n$ is nondecreasing, i.e. $\forall n \in \mathbf{N}, Y_t^n \leq Y_t^{n+1}$, $0 \leq t \leq T$, a.s.

Proof. Based on comparison theorem for BSDEs with jumps in Royer (04). We used the nonincreasing property of h.

Lemma

For any quadruple $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K}) \in S^2 \times L^2(W) \times L^2(\tilde{\mu}) \times A^2$ satisfying (6)-(7), and for all $n \in \mathbb{N}$, we have

$$Y_t^n \leq \tilde{Y}_t, \quad 0 \leq t \leq T, \text{ a.s.}$$

Proof. Suitable change of probability measures.

Formulation of the problem Existence via penalization

Uniform boundedness of the penalized BSDEs

Asumption (H1)

There exists a triple $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K}) \in S^2 \times L^2(W) \times L^2(\mu) \times A^2$ satisfying (6)-(7)

Lemma

Under (H1), there exists some constant C such that

$$\|Y^{n}\|_{S^{2}} + \|Z^{n}\|_{H^{2}} + \|U^{n}\|_{L^{2}(\tilde{\mu})} + \|K^{n}\|_{S^{2}} \leq C$$
(9)

for all $n \in \mathbf{N}$.

Proof. Classical arguments based on elementary inequality $2ab \leq \frac{a^2}{\eta} + \eta b^2$, Gronwall's lemma and Burkholder-Davis-Gundy's inequality + comparison result of previous lemma.

Formulation of the problem Existence via penalization

Convergence of the penalized solutions

Theorem

Under (H1), there exists a unique minimal solution

$$(Y, Z, U, K) \in \mathcal{S}^2 imes \mathsf{L}^2(\mathsf{W}) imes \mathsf{L}^2(\widetilde{\mu}) imes \mathsf{A}^2$$

with K predictable, to (6)-(7). Y is the increasing limit of (Y^n) and also in $L^2_{\mathbb{F}}(\mathbf{0}, \mathbf{T})$, K is the weak limit of (K^n) in $L^2_{\mathbb{F}}(\mathbf{0}, \mathbf{T})$, and for any $p \in [1, 2)$,

$$\left\|Z^{n}-Z\right\|_{\mathsf{L}^{\mathsf{p}}(\mathsf{W})}+\left\|U^{n}-U\right\|_{\mathsf{L}^{\mathsf{p}}(\tilde{\mu})}\longrightarrow 0,$$

as *n* goes to infinity.

Proof. Use the weak compactness of (Z^n) , (U^n) and $(f(X^n, Y^n, Z^n))$ and (K^n) to get limits Z, U, ϕ and K. Then control jumps of the predictable process K via a random partition of the interval (0,T) and obtain a convergence in measure.

・得い イヨト イヨト

Formulation of the problem Existence via penalization

Nonmarkovian case

Remark

Existence and uniqueness results for the minimal solution hold true in a nonmarkovian framework :

$$\mathbb{F} = \text{ filtration generated by } W \text{ and } \mu$$
$$g(X_T) = \zeta$$
$$f(x, y, z) = f(\omega, y, z)$$
$$c(x, y, z) = c(\omega, y, z)$$

< ∃→

э

Related semilinear QVIs and viscosity property

- Markov property of $X \to Y_t = v(t, X_t)$ for some deterministic function v
- Consider the semilinear QVI :

$$\min\left[-\partial_t w - \mathcal{L}w - f(., w, \sigma' D_x w), \inf_{e \in E} h(\mathcal{H}^e w - w, e)\right] = 0 \qquad (10)$$

where $\mathcal L$ is the second order local operator as before, and $\mathcal H^e$, $e\in E$, are the nonlocal operators

$$\mathcal{H}^{e}w(t,x) = w(t,x+\gamma(x,e)) + c(x,w(t,x),\sigma'(x)D_{x}w(t,x),e).$$

< ∃ >

Related semilinear QVIs and viscosity property

- Markov property of $X \to Y_t = v(t, X_t)$ for some deterministic function v
- Consider the semilinear QVI :

$$\min\left[-\partial_t w - \mathcal{L}w - f(., w, \sigma' D_x w), \inf_{e \in E} h(\mathcal{H}^e w - w, e)\right] = 0 \qquad (10)$$

where $\mathcal L$ is the second order local operator as before, and $\mathcal H^e$, $e\in E$, are the nonlocal operators

$$\mathcal{H}^{e}w(t,x) = w(t,x+\gamma(x,e)) + c(x,w(t,x),\sigma'(x)D_{x}w(t,x),e).$$

Asumption (H2)

The function v has linear growth : $\sup_{[0,T]\times \mathbb{R}^d} \frac{v(t,x)}{1+|x|} < \infty$.

Proposition

Under (H2), the function v is a viscosity solution to (10).

Elements of proof : arguments by penalized IPDE

- Markov property of $X \to Y_t^n = v_n(t, X_t)$ for some deterministic function v_n .
- From Barles et al (98), we know that v_n is a viscosity solution to the Integral PDE :

$$-\partial_t w - \mathcal{L}w - f(., w, \sigma' D_x w)$$
$$-n \int_{\mathcal{E}} h^- (\mathcal{H}^e w(t, x) - w(t, x), e) \lambda(de) = 0$$
(11)

• We then pass to the limit by adapting stability arguments for viscosity solutions.

Terminal condition for v

- Need a terminal condition to complete the PDE characterization of the function v.
- Condition v(T, .) = g is irrelevant : discontinuity in T^- due to constraints

프 🖌 🛪 프 🛌

э

Terminal condition for v

- Need a terminal condition to complete the PDE characterization of the function v.
- Condition v(T, .) = g is irrelevant : discontinuity in T^- due to constraints
- ► Face-lifting terminal data :

$$\min\left[v(T^{-},.)-g,\inf_{e\in E}h(\mathcal{H}^{e}v(T^{-},.)-v(T^{-},.),e)\right]=0 \quad (12)$$

Proposition

Under (H2), the function v is a viscosity solution to (12)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Comparison results for semilinear QVIs

Asumption (H3)

There exists a nonnegative function $\Lambda \in \mathcal{C}^2(\mathbb{R}^d)$ satisfying

(i)
$$b \cdot D\Lambda + \frac{1}{2} tr(\sigma \sigma' D^2 \Lambda) + f(., \Lambda, \sigma' D\Lambda) \le \rho \Lambda$$
 for some $\rho > 0$

(ii) inf_{e∈E} h(Λ(x + γ(x, e) + c(x, Λ(x), σ(x)'DΛ(x) - Λ(x), e) ≥ q(x) for all x ∈ ℝ^d for some continuous function q > 0 on ℝ^d.
(iii) Λ ≥ g on ℝ^d

(iv)
$$\lim_{|x|\to\infty} \frac{\Lambda(x)}{1+|x|} = +\infty$$

Assumption **(H3)** essentially ensures the existence of strict supersolution which allows to control the nonlocal term in QVI (10)-(12) via some convex small perturbation. \Rightarrow require some convexity conditions to deal with the dependence of f and c on y, z.

Comparison results for semilinear QVIs (II)

Asumption (H4)

- (i) The function f(x,.,.) is convex in $(y,z) \in \mathbf{R} \times \mathbf{R}^d \ \forall x \in \mathbf{R}^d$.
- (ii) The function h(., e) is concave in $u \in \mathbf{R} \ \forall e \in E$.
- (iii) The function c(x, ..., e) is convex in $(y, z) \in \mathbf{R} \times \mathbf{R}^d$, $\forall (x, e) \in \mathbf{R}^d \times E$.
- (iv) The function c(x,.,z,e) is decreasing in $y \in \mathbf{R}$, $\forall (x,z,e) \in \mathbf{R}^d \times \mathbf{R}^d \times E$.

Proposition

Assume that **(H3)** and **(H4)** hold. Let U (resp. V) be LSC (resp. USC) viscosity supersolution (resp. subsolution) of (10)-(12) satisfying the linear growth condition

$$\sup_{\mathcal{T}]\times\mathbb{R}^{d}}\frac{|U(t,x)|+|V(t,x)|}{1+|x|}<\infty$$

Then, $U \ge V$ on $[0, T] \times \mathbf{R}^d$.

[0,

PDE characterization of the function v

Theorem

Under (H2), (H3) and (H4), the function v is the unique viscosity solution to (10)-(12) satisfying the linear growth condition.

$$\sup_{\substack{(t,x)\in[0,T]\times\mathbb{R}^d}}\frac{|v(t,x)|}{1+|x|}<\infty.$$

Moreover v is continuous on $[0, T) \times \mathbb{R}^d$.

 \rightarrow Probabilistic representation of semilinear QVIs, and in particular of impulse control problems by means of BSDEs with constrained jumps.

Probabilistic method based on BSDE representation of QVI

< ∃ >

Outline

Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization

2 Connection with quasi-variational inequalities

3 Numerical issues

• Probabilistic method based on BSDE representation of QVI

④ Conclusion

Probabilistic method based on BSDE representation of QVI

프 🖌 🛪 프 🛌

Approximation by the penalized BSDE

• We set $V_t^n(e) = U_t^n(e) - c(X_t, Y_{t-}^n, Z_s^n, e)$, and we rewrite the penalized BSDE for (Y^n, Z^n, V^n) as :

$$Y_t^n = g(X_T) + \int_t^T \int_E f_n(X_s, Y_s^n, Z_s^n, V_s^n(e), e) \lambda(de) ds$$
$$- \int_t^T Z_s^n dW_s - \int_t^T \int_E V_s^n(e) \tilde{\mu}(de, ds)$$

where $ilde{\mu}(dt,de)=\mu(dt,de)-\lambda(de)dt$, and

$$f_n(x,y,z,v,e) := \frac{1}{\lambda(E)}f(x,y,z) - v + nh^-(v+c(x,y,z,e),e).$$

• We assume for simplicity that the state space of jump size E is finite : $E = \{1, ..., m\}$ (otherwise discretize E).

< 3 >

Time discretization of the penalized BSDE

- Time grid $\pi = (t_i)$ on [0, T] : $t_i = i\Delta t$, $i = 0, \dots, N$, $\Delta t = T/N$
- Forward Euler scheme X^{π} for X

$$\begin{aligned} X_{t_0}^{\pi} &= x \\ X_{t_{i+1}}^{\pi} &:= X_{t_i}^{\pi} + b(X_{t_i}^{\pi})\Delta t + \sigma(X_{t_i}^{\pi}) \big(W_{t_{i+1}} - W_{t_i} \big) + \sum_{e=1}^{m} \gamma(X_{t_i}^{\pi}, e) \mu((t_i, t_{i+1}] \times \{e\}). \end{aligned}$$

- (E) - (

Time discretization of the penalized BSDE

- Time grid $\pi = (t_i)$ on [0, T]: $t_i = i\Delta t$, $i = 0, \dots, N$, $\Delta t = T/N$
- Forward Euler scheme X^{π} for X

$$\begin{aligned} X_{t_0}^{\pi} &= x \\ X_{t_{i+1}}^{\pi} &:= X_{t_i}^{\pi} + b(X_{t_i}^{\pi})\Delta t + \sigma(X_{t_i}^{\pi}) \big(W_{t_{i+1}} - W_{t_i} \big) + \sum_{e=1}^{m} \gamma(X_{t_i}^{\pi}, e) \mu((t_i, t_{i+1}] \times \{e\}). \end{aligned}$$

• Backward Euler scheme $(Y^{n,\pi}, Z^{n,\pi}, V^{n,\pi})$ for (Y^n, Z^n, V^n)

$$Y_{t_{N}}^{n,\pi} = g(X_{t_{N}}^{\pi})$$

$$Y_{t_{i}}^{n,\pi} = Y_{t_{i+1}}^{n,\pi} + \Delta t \sum_{e=1}^{m} \lambda(e) f_{n}(X_{t_{i}}^{\pi}, Y_{t_{i}}^{n,\pi}, Z_{t_{i}}^{n,\pi}, V_{t_{i}}^{n,\pi}, e)$$

$$- Z_{t_{i}}^{n,\pi} \cdot (W_{t_{i+1}} - W_{t_{i}}) - \sum_{e=1}^{m} V_{t_{i}}^{n,\pi}(e) \tilde{\mu}((t_{i}, t_{i+1}] \times \{e\})$$

Time discretization of the penalized BSDE (II)

• Backward Euler scheme $(Y^{n,\pi}, Z^{n,\pi}, V^{n,\pi})$ for (Y^{n}, Z^{n}, V^{n})

$$Y_{t_{j}}^{n,\pi} = Y_{t_{j+1}}^{n,\pi} + \Delta t \sum_{e=1}^{m} \lambda(e) f_{n}(X_{t_{j}}^{\pi}, Y_{t_{j}}^{n,\pi}, Z_{t_{j}}^{n,\pi}, V_{t_{j}}^{n,\pi}, e) \\ - Z_{t_{j}}^{n,\pi} \cdot [W_{t_{j+1}} - W_{t_{j}}] - \sum_{e=1}^{m} V_{t_{j}}^{n,\pi}(e) \tilde{\mu}((t_{i}, t_{j+1}] \times \{e\})$$
(13)

• By taking conditional expectation in (13) :

$$Y_{t_i}^{n,\pi} = \mathbf{E} \Big[Y_{t_{i+1}}^{n,\pi} \Big| \mathcal{F}_{t_i} \Big] + \Delta t \sum_{e=1}^m \lambda(e) f_n(X_{t_i}^{\pi}, Y_{t_i}^{n,\pi}, Z_{t_i}^{n,\pi}, V_{t_i}^{n,\pi}, e)$$

• By multiplying by $W_{t_{i+1}} - W_{t_i}$ and taking expectation :

$$Z_{t_i}^{n,\pi} = \frac{1}{\Delta t} \mathsf{E} \Big[Y_{t_{i+1}}^{n,\pi} (W_{t_{i+1}} - W_{t_i}) \Big| \mathcal{F}_{t_i} \Big]$$

• By multiplying by $ilde{\mu}((t_i,t_{i+1}] imes\{e\})$ and taking expectation :

$$V_{t_i}^{n,\pi}(e) = \frac{1}{\lambda(e)\Delta t} \mathsf{E}\Big[Y_{t_{i+1}}^{n,\pi}\tilde{\mu}((t_i, t_{i+1}] \times \{e\})\Big|\mathcal{F}_{t_i}\Big], \quad e = 1, \ldots, m.$$

Probabilistic method based on BSDE representation of QVI

Simulation of the penalized BSDE

- For fixed penalization coefficient n, the rate of convergence of the time discretization procedure was analyzed in Bouchard and Elie (06).
- \blacktriangleright Here, we need to refine the estimation for *n* large
- Computation of the conditional expectations : Longstaff-Schwarz algorithm, Monte-Carlo method, quantization method, random walk method ...

Conclusion

• New insight into impulse control problems, and more generally into semilinear QVIs by means of BSDEs with constrained jumps

- This provides direct (without iteration) probabilistic numerical procedure
- Current investigation and further questions
 - Analysis of the convergence of these approximation schemes
 - Numerical implementation.