# Backward SDEs with constrained jumps and Quasi-Variational Inequalities: applications to impulse controls in finance 

Huyên PHAM

PMA Université Paris 7, and Institut Universitaire de France
Joint work with : I. Kharroubi (PMA, CREST), J. Ma and J. Zhang (USC)
Workshop Optimization and Optimal Control Linz, October 22, 2008

## Introduction

Consider the parabolic Quasi-Variational Inequality (QVI) :

$$
\begin{equation*}
\min \left[-\partial_{t} v-\mathcal{L} v-f, v-\mathcal{H} v\right]=0, \quad v(T, .)=g \tag{1}
\end{equation*}
$$

where $\mathcal{L}$ is the second order local operator

$$
\mathcal{L} v(t, x)=b(x) \cdot D_{x} v(t, x)+\frac{1}{2} \operatorname{tr}\left(\sigma \sigma^{\prime}(x) D_{x}^{2} v(t, x)\right)
$$

and $\mathcal{H}$ is the nonlocal operator

$$
\mathcal{H} v(t, x)=\sup _{e \in E} \mathcal{H}^{e} v(t, x)
$$

with

$$
\mathcal{H}^{e} v(t, x)=v(t, x+\gamma(x, e))+c(x, e) .
$$

## Introduction (II)

The QVI (1) is the dynamic programming equation of the impulse control problem (see Bensoussan-Lions 82 or $\emptyset$ ksendal-Sulem 06) :

$$
v(t, x)=\sup _{\alpha} \mathbf{E}\left[g\left(X_{T}^{\alpha}\right)+\int_{t}^{T} f\left(X_{s}^{\alpha}\right) d s+\sum_{t<\tau_{i} \leq s} c\left(X_{\tau_{i}^{-}}^{\alpha}, \xi_{i}\right)\right]
$$

with

- controls : $\alpha=\left(\tau_{i}, \xi_{i}\right)_{i}$ where
- $\left(\tau_{i}\right)_{i}$ time decisions: nondecreasing sequence of stopping times
- $\left(\xi_{i}\right)_{i}$ action decisions : sequence of r.v. s.t. $\xi_{i} \in \mathcal{F}_{\tau_{i}}$ valued in $E$,
- controlled process $X^{\alpha}$ defined by

$$
X_{s}^{\alpha}=x+\int_{t}^{s} b\left(X_{u}^{\alpha}\right) d u+\int_{t}^{s} \sigma\left(X_{u}^{\alpha}\right) d W_{u}+\sum_{t<\tau_{i} \leq s} \gamma\left(X_{\tau_{i}^{-}}^{\alpha}, \xi_{i}\right)
$$

## Introduction (III)

## Various applications of impulse controls :

- Financial modelling with discrete transaction dates, due e.g. to fixed transaction costs or liquidity constraints
- Optimal multiple stopping : swing options
- Firm's investment and real options : management of power plants, valuation of gas storage, ...
:
- More generally to models with control policies that do not accumulate in time.
$\rightarrow$ Many papers !


## Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
- The obstacle term contains the solution itself
- It is nonlocal


## Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
- The obstacle term contains the solution itself
- It is nonlocal
- Classical approach : Decouple the QVI (1) by defining by iteration the sequence of functions $\left(v_{n}\right)_{n}$ :

$$
\begin{equation*}
\min \left[-\partial_{t} v_{n+1}-\mathcal{L} v_{n+1}-f, v_{n+1}-\mathcal{H} v_{n}\right]=0, v_{n+1}(T, .)=g \tag{2}
\end{equation*}
$$

$\rightarrow$ associated to a sequence of optimal stopping time problems (reflected BSDEs)

## Introduction (IV)

- Main theoretical and numerical difficulty in the QVI (1) :
- The obstacle term contains the solution itself
- It is nonlocal
- Classical approach : Decouple the QVI (1) by defining by iteration the sequence of functions $\left(v_{n}\right)_{n}$ :

$$
\begin{equation*}
\min \left[-\partial_{t} v_{n+1}-\mathcal{L} v_{n+1}-f, v_{n+1}-\mathcal{H} v_{n}\right]=0, v_{n+1}(T, .)=g \tag{2}
\end{equation*}
$$

$\rightarrow$ associated to a sequence of optimal stopping time problems (reflected BSDEs)
$\rightarrow$ Furthermore, to compute $v_{n+1}$, we need to know $v_{n}$ on the whole domain $\rightarrow$ heavy computations : numerically challenging!

## Introduction (V)

- Our basic motivation :
- Find a probabilistic representation of QVI using BSDE, i.e. nonlinear Feynman-Kac formula
- We hope to use such a representation for deriving a direct numerical procedure for QVI


## Idea of the approach

- Instead of viewing the obstacle term as a reflection of $v$ onto $\mathcal{H} v$ (or $v_{n+1}$ onto $\mathcal{H}\left(v_{n}\right)$
- consider it as a constraint on the jumps of $v\left(t, X_{t}\right)$ for some suitable forward jump process $X$ :


## Idea of the approach

- Instead of viewing the obstacle term as a reflection of $v$ onto $\mathcal{H} v$ (or $v_{n+1}$ onto $\left.\mathcal{H} v_{n}\right)$
- consider it as a constraint on the jumps of $v\left(t, X_{t}\right)$ for some suitable forward jump process $X$ :
- Let us introduce the uncontrolled jump diffusion $X$ :

$$
\begin{equation*}
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{E} \gamma\left(X_{t^{-}}, e\right) \mu(d t, d e) \tag{3}
\end{equation*}
$$

where $\mu$ is a Poisson random measure whose intensity $\lambda$ is finite and supports the whole space E .

## Idea of the approach (II)

Take some smooth function $v(t, x)$ and define :

$$
\begin{aligned}
Y_{t} & :=v\left(t, X_{t}\right), \quad Z_{t}:=\sigma\left(X_{t^{-}}\right)^{\prime} D_{x} v\left(t, X_{t^{-}}\right), \\
U_{t}(e) & :=v\left(t, X_{t^{-}}+\gamma\left(X_{t^{-}}, e\right)\right)-v\left(t, X_{t^{-}}\right)+c\left(X_{t^{-}}, e\right) \\
& =\left(\mathcal{H}^{e} v-v\right)\left(t, X_{t^{-}}\right)
\end{aligned}
$$

## Idea of the approach (II)

Take some smooth function $v(t, x)$ and define :

$$
\begin{aligned}
Y_{t} & :=v\left(t, X_{t}\right), \quad Z_{t}:=\sigma\left(X_{t^{-}}\right)^{\prime} D_{x} v\left(t, X_{t^{-}}\right), \\
U_{t}(e) & :=v\left(t, X_{t^{-}}+\gamma\left(X_{t^{-}}, e\right)\right)-v\left(t, X_{t^{-}}\right)+c\left(X_{t^{-}}, e\right) \\
& =\left(\mathcal{H}^{e} v-v\right)\left(t, X_{t^{-}}\right)
\end{aligned}
$$

- Apply Itô's formula :

$$
\begin{aligned}
Y_{t}= & Y_{T}+\int_{t}^{T} f\left(X_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \cdot d W_{s} \\
& +\int_{t}^{T} \int_{E}\left[U_{s}(e)-c\left(X_{s^{-}}, e\right)\right] \mu(d s, d e),
\end{aligned}
$$

where

$$
K_{t}:=\int_{0}^{t}\left(-\partial_{t} v-\mathcal{L} v-f\right)\left(s, X_{s}\right) d s
$$

## Idea of the approach (III)

- Now, suppose that $\min \left[-\partial_{t} v-\mathcal{L} v-f, v-\mathcal{H} v\right] \geq 0$, and $v\left(T_{,}.\right)=g$ :
- Then $(Y, Z, U, K)$ satisfies

$$
\begin{align*}
Y_{t}= & g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \cdot d W_{s} \\
& +\int_{t}^{T} \int_{E}\left[U_{s}(e)-c\left(X_{s^{-}}, e\right)\right] \mu(d s, d e), \tag{4}
\end{align*}
$$

$K$ is a nondecreasing process, and $U$ satisfies the nonpositivity constraint :

$$
\begin{equation*}
-U_{t}(e) \geq 0, \quad 0 \leq t \leq T, e \in E \tag{5}
\end{equation*}
$$

## Idea of the approach (III)

- Now, suppose that $\min \left[-\partial_{t} v-\mathcal{L} v-f, v-\mathcal{H} v\right] \geq 0$, and $v\left(T_{,}.\right)=g$ :
- Then $(Y, Z, U, K)$ satisfies

$$
\begin{align*}
Y_{t}= & g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \cdot d W_{s} \\
& +\int_{t}^{T} \int_{E}\left[U_{s}(e)-c\left(X_{s^{-}}, e\right)\right] \mu(d s, d e) \tag{4}
\end{align*}
$$

$K$ is a nondecreasing process, and $U$ satisfies the nonpositivity constraint :

$$
\begin{equation*}
-U_{t}(e) \geq 0, \quad 0 \leq t \leq T, e \in E \tag{5}
\end{equation*}
$$

- View (4)-(5) as a Backward Stochastic Equation (BSE) with jump constraints
- We expect to retrieve the solution to the QVI (1) by solving the minimal solution to this constrained BSE.


## Remark: Another look at this BSE.

The nonnegativity jump-constraint : $-U_{t}(e) \geq 0$ can be removed by defining another nondecreasing process :

$$
\bar{K}_{t}:=K_{t}-\int_{0}^{t} \int_{E} U_{s}(e) \mu(d s, d e)
$$

so that the BSE for $Y$ becomes (for simplicity, take $c=0$ ):

$$
Y_{t}+\int_{t}^{T} Z_{s} \cdot d W_{s}=g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}\right) d s+\bar{K}_{T}-\bar{K}_{t}
$$

$\rightarrow$ The minimal solution to this BSE corresponds to the superreplication problem of the payoff $g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}\right) d s$ by means of $W$ in a jump-diffusion model. (Bouchard 06).

- Here, we shall keep explicitly the jump-constraint $\rightarrow$ more general jump-constraint on $U$
- Moreover, by considering general dependence on $f, c$, we introduce a class of BSDE with constrained jumps.


## Outline

(1) Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization
(2) Connection with quasi-variational inequalities
(3) Numerical issues
- Probabilistic method based on BSDE representation of QVI
(4) Conclusion


## Outline

(1) Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization
(2) Connection with quasi-variational inequalities
(3) Numerical issues
- Probabilistic method based on BSDE representation of QVI

4 Conclusion

## Definition

Minimal Solution: find a solution

$$
\begin{align*}
(Y, Z, U, K) & \in \mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{L}^{2}(\tilde{\mu}) \times \mathbf{A}^{2} \text { to } \\
Y_{t}= & g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, Y_{s}, Z_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} \cdot d W_{s} \\
& -\int_{t}^{T} \int_{E}\left(U_{s}(e)-c\left(X_{s^{-}}, Y_{s^{-}}, Z_{s}, e\right)\right) \mu(d s, d e) \tag{6}
\end{align*}
$$

with

$$
\begin{equation*}
h\left(U_{t}(e), e\right) \geq 0, \quad d \mathbf{P} \otimes d t \otimes \lambda(d e) \text { a.e. } \tag{7}
\end{equation*}
$$

such that for any other solution $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K})$ to (6)-(7) :

$$
Y_{t} \leq \tilde{Y}_{t}, \quad 0 \leq t \leq T, \text { a.s. }
$$

## BSDEs with constrained jumps

## Related literature

- Constraints on $Y \rightarrow$ reflected BSDE : El Karoui et al (97), Hamadène et al, etc ...
- Constraints on $Z$ : Cvitanic et al (98), Hu and Buckdahn (98), Peng (99), Peng and Xu (07)


## Assumptions on coefficients

- Forward SDE : $b$ and $\sigma$ Lipschitz continuous, $\gamma$ bounded and Lipschitz continuous w.r.t. $x$ uniformly in $e$ :

$$
\left|\gamma(x, e)-\gamma\left(x^{\prime}, e\right)\right| \leq k\left|x-x^{\prime}\right| \quad \forall e \in E
$$

- Backward SDE : $f g$ and $c$ have linear growth, $f$ and $g$ Lipschitz continuous, $c$ Lipschitz continuous w.r.t. $y$ and $z$ uniformly in $x$ and $e$

$$
\left|c(x, y, z, e)-c\left(x, y^{\prime}, z^{\prime}, e\right)\right| \leq k_{c}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)
$$

- Constraint : $h$ Lipschitz continuous w.r.t. $u$ uniformly in $e$ :

$$
\left|h(u, e)-h\left(u^{\prime}, e\right)\right| \leq k_{h}\left|u-u^{\prime}\right|
$$

and

$$
u \mapsto h(u, e) \text { nonincreasing. (e.g. } \quad h(u, e)=-u)
$$

## Outline

(1) Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization
(2) Connection with quasi-variational inequalities
(3) Numerical issues
- Probabilistic method based on BSDE representation of QVI
(4) Conclusion


## Penalized BSDEs

Consider for each $n$ the BSDE with jumps :

$$
\begin{align*}
Y_{t}^{n}= & g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, Y_{s}^{n}, Z_{s}^{n}\right) d s+K_{T}^{n}-K_{t}^{n}-\int_{t}^{T} Z_{s}^{n} \cdot d W_{s} \\
& -\int_{t}^{T} \int_{E}\left[U_{s}^{n}(e)-c\left(X_{s^{-}}, Y_{s^{-}}^{n}, Z_{s}^{n}, e\right)\right] \mu(d s, d e) \tag{8}
\end{align*}
$$

with a penalization term

$$
K_{t}^{n}=n \int_{0}^{t} \int_{E} h^{-}\left(U_{s}^{n}(e), e\right) \lambda(d e) d s
$$

where $h^{-}=\max (-h, 0)$.

## Penalized BSDEs

Consider for each $n$ the BSDE with jumps :

$$
\begin{align*}
Y_{t}^{n}= & g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, Y_{s}^{n}, Z_{s}^{n}\right) d s+K_{T}^{n}-K_{t}^{n}-\int_{t}^{T} Z_{s}^{n} \cdot d W_{s} \\
& -\int_{t}^{T} \int_{E}\left[U_{s}^{n}(e)-c\left(X_{s^{-}}, Y_{s^{-}}^{n}, Z_{s}^{n}, e\right)\right] \mu(d s, d e) \tag{8}
\end{align*}
$$

with a penalization term

$$
K_{t}^{n}=n \int_{0}^{t} \int_{E} h^{-}\left(U_{s}^{n}(e), e\right) \lambda(d e) d s
$$

where $h^{-}=\max (-h, 0)$.
$\rightarrow$ For each $n$, existence and uniqueness of $\left(Y^{n}, Z^{n}, U^{n}\right)$ solution to (8) from Tang and Li (94), and Barles et al. (97).

## Convergence of the penalized BSDEs

- Convergence of $\left(Y^{n}\right)$ : usually by comparison results
- Convergence of $\left(Z^{n}, U^{n}, K^{n}\right)$ : more difficult !
$\rightarrow$ Moreover, in general, we need some strong convergence to pass to the limit in the nonlinear terms $f(x, y, z), c(x, y, z)$ and $h(u, e)$.
- Uniform boundedness
- Weak convergence method (Peng)


## Comparison results

## Lemma

The sequence $\left(Y^{n}\right)_{n}$ is nondecreasing, i.e. $\forall n \in \mathbf{N}, Y_{t}^{n} \leq Y_{t}^{n+1}$, $0 \leq t \leq T$, a.s.

Proof. Based on comparison theorem for BSDEs with jumps in Royer (04). We used the nonincreasing property of $h$.

## Comparison results

## Lemma

The sequence $\left(Y^{n}\right)_{n}$ is nondecreasing, i.e. $\forall n \in \mathbf{N}, Y_{t}^{n} \leq Y_{t}^{n+1}$, $0 \leq t \leq T$, a.s.

Proof. Based on comparison theorem for BSDEs with jumps in Royer (04). We used the nonincreasing property of $h$.

## Lemma

For any quadruple $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K}) \in \mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{L}^{2}(\tilde{\mu}) \times \mathbf{A}^{2}$ satisfying (6)-(7), and for all $n \in \mathbf{N}$, we have

$$
Y_{t}^{n} \leq \tilde{Y}_{t}, \quad 0 \leq t \leq T, \text { a.s. }
$$

Proof. Suitable change of probability measures.

## Uniform boundedness of the penalized BSDEs

## Asumption (H1)

There exists a triple $(\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K}) \in \mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{L}^{2}(\mu) \times \mathbf{A}^{2}$ satisfying (6)-(7)

## Lemma

Under ( $\mathrm{H} \mathbf{1}$ ), there exists some constant $C$ such that

$$
\begin{equation*}
\left\|Y^{n}\right\|_{S^{2}}+\left\|Z^{n}\right\|_{\mathbf{H}^{2}}+\left\|U^{n}\right\|_{\mathbf{L}^{2}(\tilde{\mu})}+\left\|K^{n}\right\|_{\mathcal{S}^{2}} \leq C \tag{9}
\end{equation*}
$$

for all $n \in \mathbf{N}$.
Proof. Classical arguments based on elementary inequality $2 a b \leq \frac{a^{2}}{\eta}+\eta b^{2}$, Gronwall's lemma and Burkholder-Davis-Gundy's inequality + comparison result of previous lemma.

## Convergence of the penalized solutions

## Theorem

Under (H1), there exists a unique minimal solution

$$
(Y, Z, U, K) \in \mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{L}^{2}(\tilde{\mu}) \times \mathbf{A}^{2}
$$

with $K$ predictable, to (6)-(7). $Y$ is the increasing limit of $\left(Y^{n}\right)$ and also in $\mathbf{L}_{\mathbb{F}}^{2}(\mathbf{0}, \mathbf{T}), K$ is the weak limit of $\left(K^{n}\right)$ in $\mathbf{L}_{\mathbb{F}}^{2}(\mathbf{0}, \mathbf{T})$, and for any $p \in$ $[1,2)$,

$$
\left\|Z^{n}-Z\right\|_{\operatorname{LP}^{\mathrm{P}}(\mathbf{W})}+\left\|U^{n}-U\right\|_{\operatorname{LP}_{(\tilde{\mu})}} \longrightarrow 0
$$

as $n$ goes to infinity.
Proof. Use the weak compactness of $\left(Z^{n}\right),\left(U^{n}\right)$ and $\left(f\left(X^{n}, Y^{n}, Z^{n}\right)\right)$ and $\left(K^{n}\right)$ to get limits $Z, U, \phi$ and $K$. Then control jumps of the predictable process $K$ via a random partition of the interval $(0, \mathrm{~T})$ and obtain a convergence in measure.

## Nonmarkovian case

## Remark

Existence and uniqueness results for the minimal solution hold true in a nonmarkovian framework:

$$
\begin{aligned}
\mathbb{F} & =\text { filtration generated by } W \text { and } \mu \\
g\left(X_{T}\right) & =\zeta \\
f(x, y, z) & =f(\omega, y, z) \\
c(x, y, z) & =c(\omega, y, z)
\end{aligned}
$$

## Related semilinear QVIs and viscosity property

- Markov property of $X \rightarrow Y_{t}=v\left(t, X_{t}\right)$ for some deterministic function $v$
- Consider the semilinear QVI :

$$
\begin{equation*}
\min \left[-\partial_{t} w-\mathcal{L} w-f\left(., w, \sigma^{\prime} D_{x} w\right), \inf _{e \in E} h\left(\mathcal{H}^{e} w-w, e\right)\right]=0 \tag{10}
\end{equation*}
$$

where $\mathcal{L}$ is the second order local operator as before, and $\mathcal{H}^{e}, e \in E$, are the nonlocal operators

$$
\mathcal{H}^{e} w(t, x)=w(t, x+\gamma(x, e))+c\left(x, w(t, x), \sigma^{\prime}(x) D_{x} w(t, x), e\right)
$$

## Related semilinear QVIs and viscosity property

- Markov property of $X \rightarrow Y_{t}=v\left(t, X_{t}\right)$ for some deterministic function $v$
- Consider the semilinear QVI :

$$
\begin{equation*}
\min \left[-\partial_{t} w-\mathcal{L} w-f\left(., w, \sigma^{\prime} D_{x} w\right), \inf _{e \in E} h\left(\mathcal{H}^{e} w-w, e\right)\right]=0 \tag{10}
\end{equation*}
$$

where $\mathcal{L}$ is the second order local operator as before, and $\mathcal{H}^{e}, e \in E$, are the nonlocal operators

$$
\mathcal{H}^{e} w(t, x)=w(t, x+\gamma(x, e))+c\left(x, w(t, x), \sigma^{\prime}(x) D_{x} w(t, x), e\right)
$$

## Asumption (H2)

The function $v$ has linear growth: $\sup _{[0, T] \times \mathbb{R}^{d}} \frac{v(t, x)}{1+|x|}<\infty$.

## Proposition

Under (H2), the function $v$ is a viscosity solution to (10).

## Elements of proof : arguments by penalized IPDE

- Markov property of $X \rightarrow Y_{t}^{n}=v_{n}\left(t, X_{t}\right)$ for some deterministic function $v_{n}$.
- From Barles et al (98), we know that $v_{n}$ is a viscosity solution to the Integral PDE:

$$
\begin{gather*}
-\partial_{\boldsymbol{t}} w-\mathcal{L} w-f\left(., w, \sigma^{\prime} D_{x} w\right) \\
-n \int_{E} h^{-}\left(\mathcal{H}^{e} w(t, x)-w(t, x), e\right) \lambda(d e)=0 \tag{11}
\end{gather*}
$$

- We then pass to the limit by adapting stability arguments for viscosity solutions.


## Terminal condition for $v$

- Need a terminal condition to complete the PDE characterization of the function $v$.
- Condition $v(T,)=$.$g is irrelevant : discontinuity in T^{-}$due to constraints


## Terminal condition for $v$

- Need a terminal condition to complete the PDE characterization of the function $v$.
- Condition $v(T,)=$.$g is irrelevant : discontinuity in T^{-}$due to constraints
- Face-lifting terminal data :

$$
\begin{equation*}
\min \left[v\left(T^{-}, .\right)-g, \inf _{e \in E} h\left(\mathcal{H}^{e} v\left(T^{-}, .\right)-v\left(T^{-}, .\right), e\right)\right]=0 \tag{12}
\end{equation*}
$$

## Proposition

Under (H2), the function $v$ is a viscosity solution to (12)

## Comparison results for semilinear QVIs

## Asumption (H3)

There exists a nonnegative function $\Lambda \in \mathcal{C}^{2}\left(\mathbb{R}^{d}\right)$ satisfying
(i) $b \cdot D \Lambda+\frac{1}{2} \operatorname{tr}\left(\sigma \sigma^{\prime} D^{2} \Lambda\right)+f\left(., \Lambda, \sigma^{\prime} D \Lambda\right) \leq \rho \Lambda$ for some $\rho>0$
(ii) $\inf _{e \in E} h\left(\Lambda\left(x+\gamma(x, e)+c\left(x, \Lambda(x), \sigma(x)^{\prime} D \Lambda(x)-\Lambda(x), e\right) \geq q(x)\right.\right.$ for all $x \in \mathbb{R}^{d}$ for some continuous function $q>0$ on $\mathbb{R}^{d}$.
(iii) $\Lambda \geq g$ on $\mathbf{R}^{d}$
(iv) $\lim _{|x| \rightarrow \infty} \frac{\Lambda(x)}{1+|x|}=+\infty$

Assumption (H3) essentially ensures the existence of strict supersolution which allows to control the nonlocal term in QVI (10)-(12) via some convex small perturbation. $\Rightarrow$ require some convexity conditions to deal with the dependence of $f$ and $c$ on $y, z$.

## Comparison results for semilinear QVIs (II)

## Asumption (H4)

(i) The function $f(x, .,$.$) is convex in (y, z) \in \mathbf{R} \times \mathbf{R}^{d} \forall x \in \mathbf{R}^{d}$.
(ii) The function $h(., e)$ is concave in $u \in \mathbf{R} \forall e \in E$.
(iii) The function $c(x, ., ., e)$ is convex in $(y, z) \in \mathbf{R} \times \mathbf{R}^{d}, \forall(x, e) \in \mathbf{R}^{d} \times E$.
(iv) The function $c(x, ., z, e)$ is decreasing in $y \in \mathbf{R}, \forall(x, z, e) \in \mathbf{R}^{d} \times \mathbf{R}^{d} \times E$.

## Proposition

Assume that (H3) and (H4) hold. Let $U$ (resp. $V$ ) be LSC (resp. USC) viscosity supersolution (resp. subsolution) of (10)-(12) satisfying the linear growth condition

$$
\sup _{[0, T] \times \mathbb{R}^{\boldsymbol{d}}} \frac{|U(t, x)|+|V(t, x)|}{1+|x|}<\infty
$$

Then, $U \geq V$ on $[0, T] \times \mathbf{R}^{d}$.

## PDE characterization of the function $v$

## Theorem

Under (H2), (H3) and (H4), the function $v$ is the unique viscosity solution to (10)-(12) satisfying the linear growth condition.

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}^{\boldsymbol{d}}} \frac{|v(t, x)|}{1+|x|}<\infty
$$

Moreover $v$ is continuous on $[0, T) \times \mathbb{R}^{d}$.
$\rightarrow$ Probabilistic representation of semilinear QVIs, and in particular of impulse control problems by means of BSDEs with constrained jumps.

## Outline

(1) Backward SDEs with constrained jumps

- Formulation of the problem
- Existence and approximation via penalization
(2) Connection with quasi-variational inequalities
(3) Numerical issues
- Probabilistic method based on BSDE representation of QVI
(4) Conclusion


## Approximation by the penalized BSDE

- We set $V_{t}^{n}(e)=U_{t}^{n}(e)-c\left(X_{t}, Y_{t^{-}}^{n}, Z_{s}^{n}, e\right)$, and we rewrite the penalized BSDE for $\left(Y^{n}, Z^{n}, V^{n}\right)$ as :

$$
\begin{aligned}
Y_{t}^{n}= & g\left(X_{T}\right)+\int_{t}^{T} \int_{E} f_{n}\left(X_{s}, Y_{s}^{n}, Z_{s}^{n}, V_{s}^{n}(e), e\right) \lambda(d e) d s \\
& -\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{t}^{T} \int_{E} V_{s}^{n}(e) \tilde{\mu}(d e, d s)
\end{aligned}
$$

where $\tilde{\mu}(d t, d e)=\mu(d t, d e)-\lambda(d e) d t$, and

$$
f_{n}(x, y, z, v, e):=\frac{1}{\lambda(E)} f(x, y, z)-v+n h^{-}(v+c(x, y, z, e), e) .
$$

- We assume for simplicity that the state space of jump size $E$ is finite : $E=\{1, \ldots, m\}$ (otherwise discretize $E$ ).


## Time discretization of the penalized BSDE

- Time grid $\pi=\left(t_{i}\right)$ on $[0, T]: t_{i}=i \Delta t, i=0, \ldots, N, \Delta t=T / N$
- Forward Euler scheme $X^{\pi}$ for $X$

$$
\begin{aligned}
X_{t_{0}}^{\pi} & =x \\
X_{t_{i+1}}^{\pi} & :=X_{t_{i}}^{\pi}+b\left(X_{t_{i}}^{\pi}\right) \Delta t+\sigma\left(X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)+\sum_{e=1}^{m} \gamma\left(X_{t_{i}}^{\pi}, e\right) \mu\left(\left(t_{i}, t_{i+1}\right] \times\{e\}\right) .
\end{aligned}
$$

## Time discretization of the penalized BSDE

- Time grid $\pi=\left(t_{i}\right)$ on $[0, T]: t_{i}=i \Delta t, i=0, \ldots, N, \Delta t=T / N$
- Forward Euler scheme $X^{\pi}$ for $X$

$$
\begin{aligned}
X_{t_{0}}^{\pi} & =x \\
X_{t_{i+1}}^{\pi} & =X_{t_{i}}^{\pi}+b\left(X_{t_{i}}^{\pi}\right) \Delta t+\sigma\left(X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)+\sum_{e=1}^{m} \gamma\left(X_{t_{i}}^{\pi}, e\right) \mu\left(\left(t_{i}, t_{i+1}\right] \times\{e\}\right) .
\end{aligned}
$$

- Backward Euler scheme $\left(Y^{n, \pi}, Z^{n, \pi}, V^{n, \pi}\right)$ for $\left(Y^{n}, Z^{n}, V^{n}\right)$

$$
\begin{aligned}
Y_{t_{N}}^{n, \pi}= & g\left(X_{t_{N}}^{\pi}\right) \\
Y_{t_{i}}^{n, \pi}= & Y_{t_{i+1}}^{n, \pi}+\Delta t \sum_{e=1}^{m} \lambda(e) f_{n}\left(X_{t_{i}}^{\pi}, Y_{t_{i}}^{n, \pi}, Z_{t_{i}}^{n, \pi}, V_{t_{i}}^{n, \pi}, e\right) \\
& -Z_{t_{i}}^{n, \pi} \cdot\left(W_{t_{i+1}}-W_{t_{i}}\right)-\sum_{e=1}^{m} V_{t_{i}}^{n, \pi}(e) \tilde{\mu}\left(\left(t_{i}, t_{i+1}\right] \times\{e\}\right)
\end{aligned}
$$

## Time discretization of the penalized BSDE (II)

- Backward Euler scheme ( $\left.Y^{\boldsymbol{n}, \pi}, Z^{\boldsymbol{n}, \pi}, V^{\boldsymbol{n}, \pi}\right)$ for $\left(Y^{\boldsymbol{n}}, Z^{\boldsymbol{n}}, V^{\boldsymbol{n}}\right)$

$$
\begin{align*}
\boldsymbol{Y}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi}= & \boldsymbol{Y}_{\boldsymbol{t}_{\boldsymbol{i}+\boldsymbol{1}}}^{\boldsymbol{n}, \pi}+\Delta \boldsymbol{t} \sum_{\boldsymbol{e}=\mathbf{1}}^{\boldsymbol{m}} \lambda(\boldsymbol{e}) \boldsymbol{f}_{\boldsymbol{n}}\left(\boldsymbol{X}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\pi}, \boldsymbol{Y}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi}, \boldsymbol{z}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi}, \boldsymbol{v}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi}, \boldsymbol{e}\right) \\
& -\boldsymbol{z}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi} \cdot\left[\boldsymbol{W}_{\boldsymbol{t}_{\boldsymbol{i}+\boldsymbol{1}}}-\boldsymbol{W}_{\boldsymbol{t}_{\boldsymbol{i}}}\right]-\sum_{\boldsymbol{e}=\mathbf{1}}^{\boldsymbol{m}} \boldsymbol{v}_{\boldsymbol{t}_{\boldsymbol{i}}}^{\boldsymbol{n}, \pi}(\boldsymbol{e}) \tilde{\mu}\left(\left(\boldsymbol{t}_{\boldsymbol{i}}, \boldsymbol{t}_{\boldsymbol{i}+\mathbf{1}}\right] \times\{\boldsymbol{e}\}\right) \tag{13}
\end{align*}
$$

- By taking conditional expectation in (13) :

$$
Y_{t_{i}}^{n, \pi}=\mathbf{E}\left[Y_{t_{i+1}}^{n, \pi} \mid \mathcal{F}_{t_{i}}\right]+\Delta t \sum_{e=1}^{m} \lambda(e) f_{n}\left(X_{t_{i}}^{\pi}, Y_{t_{i}}^{n, \pi}, Z_{t_{i}}^{n, \pi}, V_{t_{i}}^{n, \pi}, e\right)
$$

- By multiplying by $W_{t_{i+1}}-W_{t_{i}}$ and taking expectation:

$$
Z_{t_{i}}^{n, \pi}=\frac{1}{\Delta t} \mathbf{E}\left[Y_{t_{i+1}}^{n, \pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{\mathbf{i}}}\right]
$$

- By multiplying by $\tilde{\mu}\left(\left(t_{i}, t_{i+1}\right] \times\{e\}\right)$ and taking expectation:

$$
V_{t_{i}}^{n, \pi}(e)=\frac{1}{\lambda(e) \Delta t} \mathbf{E}\left[Y_{t_{i+1}}^{n, \pi} \tilde{\mu}\left(\left(t_{i}, t_{i+1}\right] \times\{e\}\right) \mid \mathcal{F}_{t_{i}}\right], \quad e=1, \ldots, m
$$

## Simulation of the penalized BSDE

- For fixed penalization coefficient $n$, the rate of convergence of the time discretization procedure was analyzed in Bouchard and Elie (06).
- Here, we need to refine the estimation for $n$ large
- Computation of the conditional expectations: Longstaff-Schwarz algorithm, Monte-Carlo method, quantization method, random walk method ...


## Conclusion

- New insight into impulse control problems, and more generally into semilinear QVIs by means of BSDEs with constrained jumps
- This provides direct (without iteration) probabilistic numerical procedure
- Current investigation and further questions
- Analysis of the convergence of these approximation schemes
- Numerical implementation.

