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Introduction

Consider the parabolic Quasi-Variational Inequality (QVI) :

min [−∂tv − Lv − f , v −Hv ] = 0 , v(T , .) = g , (1)

where L is the second order local operator

Lv(t, x) = b(x).Dxv(t, x) +
1

2
tr(σσ′(x)D2

x v(t, x))

and H is the nonlocal operator

Hv(t, x) = sup
e∈E
Hev(t, x)

with
Hev(t, x) = v(t, x + γ(x , e)) + c(x , e).
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Introduction (II)

The QVI (1) is the dynamic programming equation of the impulse
control problem (see Bensoussan-Lions 82 or Øksendal-Sulem 06) :

v(t, x) = sup
α
E
[
g(Xα

T ) +

∫ T

t

f (Xα
s )ds +

∑
t<τi≤s

c(Xα
τ−
i

, ξi )
]

with
• controls : α = (τi , ξi )i where

(τi )i time decisions : nondecreasing sequence of stopping times

(ξi )i action decisions : sequence of r.v. s.t. ξi ∈ Fτi valued in E ,

• controlled process Xα de�ned by

Xα
s = x +

∫ s

t

b(Xα
u )du +

∫ s

t

σ(Xα
u )dWu +

∑
t<τi≤s

γ(Xα
τ−
i

, ξi )
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Introduction (III)

Various applications of impulse controls :

• Financial modelling with discrete transaction dates, due e.g. to �xed
transaction costs or liquidity constraints

• Optimal multiple stopping : swing options

• Firm's investment and real options : management of power plants,
valuation of gas storage, ...
...
• More generally to models with control policies that do not accumulate
in time.

→ Many papers !
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Introduction (IV)

• Main theoretical and numerical di�culty in the QVI (1) :

The obstacle term contains the solution itself

It is nonlocal

I Classical approach : Decouple the QVI (1) by de�ning by iteration the
sequence of functions (vn)n :

min [−∂tvn+1 − Lvn+1 − f , vn+1 −Hvn] = 0 , vn+1(T , .) = g (2)

→ associated to a sequence of optimal stopping time problems (re�ected
BSDEs)

→ Furthermore, to compute vn+1, we need to know vn on the whole
domain → heavy computations : numerically challenging !
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Introduction (V)

• Our basic motivation :

I Find a probabilistic representation of QVI using BSDE, i.e. nonlinear
Feynman-Kac formula

I We hope to use such a representation for deriving a direct numerical
procedure for QVI
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Idea of the approach

• Instead of viewing the obstacle term as a re�ection of v onto Hv (or
vn+1 onto Hvn)

I consider it as a constraint on the jumps of v(t,Xt) for some suitable
forward jump process X :

• Let us introduce the uncontrolled jump di�usion X :

dXt = b(Xt)dt + σ(Xt)dWt +

∫
E

γ(Xt− , e)µ(dt, de), (3)

where µ is a Poisson random measure whose intensity λ is �nite and
supports the whole space E.
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Idea of the approach (II)

Take some smooth function v(t, x) and de�ne :

Yt := v(t,Xt), Zt := σ(Xt−)′Dxv(t,Xt−),

Ut(e) := v(t,Xt− + γ(Xt− , e))− v(t,Xt−) + c(Xt− , e)

= (Hev − v)(t,Xt−)

I Apply Itô's formula :

Yt = YT +

∫ T

t

f (Xs)ds + KT − Kt −
∫ T

t

Zs .dWs

+

∫ T

t

∫
E

[Us(e)− c(Xs− , e)]µ(ds, de),

where

Kt :=

∫ t

0

(−∂tv − Lv − f )(s,Xs)ds
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Idea of the approach (III)

• Now, suppose that min[−∂tv −Lv − f , v −Hv ] ≥ 0, and v(T , .) = g :

I Then (Y ,Z ,U,K ) satis�es

Yt = g(XT ) +

∫ T

t

f (Xs)ds + KT − Kt −
∫ T

t

Zs .dWs

+

∫ T

t

∫
E

[Us(e)− c(Xs− , e)]µ(ds, de), (4)

K is a nondecreasing process, and U satis�es the nonpositivity
constraint :

− Ut(e) ≥ 0, 0 ≤ t ≤ T , e ∈ E . (5)

I View (4)-(5) as a Backward Stochastic Equation (BSE) with jump
constraints

I We expect to retrieve the solution to the QVI (1) by solving the
minimal solution to this constrained BSE.
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Remark : Another look at this BSE.
The nonnegativity jump-constraint : −Ut(e) ≥ 0 can be removed by
de�ning another nondecreasing process :

K̄t := Kt −
∫ t

0

∫
E

Us(e)µ(ds, de),

so that the BSE for Y becomes (for simplicity, take c = 0) :

Yt +

∫ T

t

Zs .dWs = g(XT ) +

∫ T

t

f (Xs)ds + K̄T − K̄t

→ The minimal solution to this BSE corresponds to the

superreplication problem of the payo� g(XT ) +
∫ T

t
f (Xs)ds by means

of W in a jump-di�usion model. (Bouchard 06).
I Here, we shall keep explicitly the jump-constraint → more general
jump-constraint on U
I Moreover, by considering general dependence on f , c, we introduce a
class of BSDE with constrained jumps.
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Formulation of the problem
Existence via penalization

De�nition

Minimal Solution : �nd a solution
(Y ,Z ,U,K ) ∈ S2 × L2(W)× L2(~µ)× A2 to

Yt = g(XT ) +

∫ T

t

f (Xs ,Ys ,Zs)ds + KT − Kt −
∫ T

t

Zs .dWs

−
∫ T

t

∫
E

(Us(e)− c(Xs− ,Ys− ,Zs , e))µ(ds, de) (6)

with

h(Ut(e), e) ≥ 0, dP⊗ dt ⊗ λ(de) a.e. (7)

such that for any other solution (Ỹ , Z̃ , Ũ, K̃ ) to (6)-(7) :

Yt ≤ Ỹt , 0 ≤ t ≤ T , a.s.
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Formulation of the problem
Existence via penalization

BSDEs with constrained jumps

Related literature

• Constraints on Y → re�ected BSDE : El Karoui et al (97), Hamadène
et al, etc ...

• Constraints on Z : Cvitanic et al (98), Hu and Buckdahn (98), Peng
(99), Peng and Xu (07)
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Formulation of the problem
Existence via penalization

Assumptions on coe�cients

Forward SDE : b and σ Lipschitz continuous, γ bounded and
Lipschitz continuous w.r.t. x uniformly in e :

|γ(x , e)− γ(x ′, e)| ≤ k|x − x ′| ∀e ∈ E

Backward SDE : f g and c have linear growth, f and g Lipschitz
continuous, c Lipschitz continuous w.r.t. y and z uniformly in x and
e

|c(x , y , z , e)− c(x , y ′, z ′, e)| ≤ kc(|y − y ′|+ |z − z ′|)

Constraint : h Lipschitz continuous w.r.t. u uniformly in e :

|h(u, e)− h(u′, e)| ≤ kh|u − u′|

and
u 7→ h(u, e) nonincreasing. (e.g . h(u, e) = −u)
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Formulation of the problem
Existence via penalization

Penalized BSDEs

Consider for each n the BSDE with jumps :

Y n

t = g(XT ) +

∫ T

t

f (Xs ,Y
n

s ,Z
n

s )ds + Kn

T − Kn

t −
∫ T

t

Zn

s .dWs

−
∫ T

t

∫
E

[Un

s (e)− c(Xs− ,Y
n

s− ,Z
n

s , e)]µ(ds, de) (8)

with a penalization term

Kn

t = n

∫ t

0

∫
E

h−(Un

s (e), e)λ(de)ds

where h− = max(−h, 0).

→ For each n, existence and uniqueness of (Y n,Zn,Un) solution to (8)
from Tang and Li (94), and Barles et al. (97).
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Formulation of the problem
Existence via penalization

Convergence of the penalized BSDEs

• Convergence of (Y n) : usually by comparison results

• Convergence of (Zn,Un,Kn) : more di�cult !

→ Moreover, in general, we need some strong convergence to pass to the
limit in the nonlinear terms f (x , y , z), c(x , y , z) and h(u, e).

Uniform boundedness

Weak convergence method (Peng)
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Comparison results

Lemma

The sequence (Y n)n is nondecreasing, i.e. ∀n ∈ N, Y n
t ≤ Y n+1

t ,
0 ≤ t ≤ T, a.s.

Proof. Based on comparison theorem for BSDEs with jumps in Royer
(04). We used the nonincreasing property of h.

Lemma

For any quadruple (Ỹ , Z̃ , Ũ, K̃ ) ∈ S2 × L2(W)× L2(~µ)× A2 satisfying
(6)-(7), and for all n ∈ N, we have

Y n

t ≤ Ỹt , 0 ≤ t ≤ T , a.s.

Proof. Suitable change of probability measures.
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t ≤ Ỹt , 0 ≤ t ≤ T , a.s.

Proof. Suitable change of probability measures.

Huyên PHAM BSDEs with constrained jumps and QVIs



Introduction
BSDEs with constrained jumps

Connection with QVIs
Numerical issues

Conclusion

Formulation of the problem
Existence via penalization

Uniform boundedness of the penalized BSDEs

Asumption (H1)

There exists a triple (Ỹ , Z̃ , Ũ, K̃ ) ∈ S2 × L2(W)× L2(µ)× A2 satisfying
(6)-(7)

Lemma

Under (H1), there exists some constant C such that

‖Y n‖
S2

+ ‖Zn‖
H2

+ ‖Un‖
L2(~µ)

+ ‖Kn‖
S2
≤ C (9)

for all n ∈ N.

Proof. Classical arguments based on elementary inequality

2ab ≤ a
2

η + ηb2, Gronwall's lemma and Burkholder-Davis-Gundy's

inequality + comparison result of previous lemma.
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Formulation of the problem
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Convergence of the penalized solutions

Theorem

Under (H1), there exists a unique minimal solution

(Y ,Z ,U,K ) ∈ S2 × L2(W)× L2(~µ)× A2

with K predictable, to (6)-(7). Y is the increasing limit of (Y n) and also
in L2F(0,T), K is the weak limit of (Kn) in L2F(0,T), and for any p ∈
[1, 2),

‖Zn − Z‖
Lp(W)

+ ‖Un − U‖
Lp(~µ)
−→ 0,

as n goes to in�nity.

Proof. Use the weak compactness of (Zn), (Un) and (f (X n,Y n,Zn))
and (Kn) to get limits Z , U, φ and K . Then control jumps of the
predictable process K via a random partition of the interval (0,T) and
obtain a convergence in measure.
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Nonmarkovian case

Remark

Existence and uniqueness results for the minimal solution hold true in a
nonmarkovian framework :

F = �ltration generated by W and µ

g(XT ) = ζ

f (x , y , z) = f (ω, y , z)

c(x , y , z) = c(ω, y , z)
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Related semilinear QVIs and viscosity property

• Markov property of X → Yt = v(t,Xt) for some deterministic function v

• Consider the semilinear QVI :

min
h
− ∂tw − Lw − f (.,w , σ′Dxw), inf

e∈E
h(Hew − w , e)

i
= 0 (10)

where L is the second order local operator as before, and He , e ∈ E , are the
nonlocal operators

Hew(t, x) = w(t, x + γ(x , e)) + c(x ,w(t, x), σ′(x)Dxw(t, x), e).

Asumption (H2)

The function v has linear growth : sup[0,T ]×Rd
v(t,x)
1+|x| <∞.

Proposition

Under (H2), the function v is a viscosity solution to (10).
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Elements of proof : arguments by penalized IPDE

• Markov property of X → Y n
t = vn(t,Xt) for some deterministic function vn.

• From Barles et al (98), we know that vn is a viscosity solution to the Integral
PDE :

−∂tw − Lw − f (.,w , σ′Dxw)

−n
Z
E

h−
`
Hew(t, x)− w(t, x), e

´
λ(de) = 0 (11)

• We then pass to the limit by adapting stability arguments for viscosity
solutions.

Huyên PHAM BSDEs with constrained jumps and QVIs



Introduction
BSDEs with constrained jumps

Connection with QVIs
Numerical issues

Conclusion

Terminal condition for v

• Need a terminal condition to complete the PDE characterization of the
function v .

• Condition v(T , .) = g is irrelevant : discontinuity in T− due to
constraints

I Face-lifting terminal data :

min
[
v(T−, .)− g , inf

e∈E
h(Hev(T−, .)− v(T−, .), e)

]
= 0 (12)

Proposition

Under (H2), the function v is a viscosity solution to (12)
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Comparison results for semilinear QVIs

Asumption (H3)

There exists a nonnegative function Λ ∈ C2(Rd) satisfying

(i) b · DΛ + 1

2
tr(σσ′D2Λ) + f (.,Λ, σ′DΛ) ≤ ρΛ for some ρ > 0

(ii) infe∈E h(Λ(x + γ(x , e) + c(x ,Λ(x), σ(x)′DΛ(x)− Λ(x), e) ≥ q(x)
for all x ∈ Rd for some continuous function q > 0 on Rd .

(iii) Λ ≥ g on Rd

(iv) lim|x|→∞
Λ(x)
1+|x| = +∞

Assumption (H3) essentially ensures the existence of strict supersolution
which allows to control the nonlocal term in QVI (10)-(12) via some
convex small perturbation. ⇒ require some convexity conditions to deal
with the dependence of f and c on y , z .
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Comparison results for semilinear QVIs (II)

Asumption (H4)

(i) The function f (x , ., .) is convex in (y , z) ∈ R× Rd ∀x ∈ Rd .

(ii) The function h(., e) is concave in u ∈ R ∀e ∈ E.

(iii) The function c(x , ., ., e) is convex in (y , z) ∈ R× Rd , ∀(x , e) ∈ Rd × E.

(iv) The function c(x , ., z , e) is decreasing in y ∈ R , ∀(x , z , e) ∈ Rd ×Rd ×E.

Proposition

Assume that (H3) and (H4) hold. Let U (resp. V ) be LSC (resp. USC)
viscosity supersolution (resp. subsolution) of (10)-(12) satisfying the linear
growth condition

sup
[0,T ]×Rd

|U(t, x)|+ |V (t, x)|
1 + |x | <∞

Then, U ≥ V on [0,T ]× Rd .

Huyên PHAM BSDEs with constrained jumps and QVIs



Introduction
BSDEs with constrained jumps

Connection with QVIs
Numerical issues

Conclusion

PDE characterization of the function v

Theorem

Under (H2), (H3) and (H4), the function v is the unique viscosity
solution to (10)-(12) satisfying the linear growth condition.

sup
(t,x)∈[0,T ]×Rd

|v(t, x)|
1 + |x |

<∞.

Moreover v is continuous on [0,T )× Rd .

→ Probabilistic representation of semilinear QVIs, and in particular of
impulse control problems by means of BSDEs with constrained jumps.
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Probabilistic method based on BSDE representation of QVI

Outline

1 Backward SDEs with constrained jumps
Formulation of the problem
Existence and approximation via penalization

2 Connection with quasi-variational inequalities

3 Numerical issues
Probabilistic method based on BSDE representation of QVI

4 Conclusion
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Probabilistic method based on BSDE representation of QVI

Approximation by the penalized BSDE

• We set V n
t (e) = Un

t (e)− c(Xt ,Y
n

t− ,Z
n
s , e), and we rewrite the

penalized BSDE for (Y n,Zn,V n) as :

Y n

t = g(XT ) +

∫ T

t

∫
E

fn(Xs ,Y
n

s ,Z
n

s ,V
n

s (e), e)λ(de)ds

−
∫ T

t

Zn

s dWs −
∫ T

t

∫
E

V n

s (e)µ̃(de, ds)

where µ̃(dt, de) = µ(dt, de)− λ(de)dt, and

fn(x , y , z , v , e) :=
1

λ(E )
f (x , y , z)− v + nh−(v + c(x , y , z , e), e).

• We assume for simplicity that the state space of jump size E is �nite :
E = {1, . . . ,m} (otherwise discretize E ).
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Probabilistic method based on BSDE representation of QVI

Time discretization of the penalized BSDE

• Time grid π = (ti ) on [0,T ] : ti = i∆t, i = 0, . . . ,N, ∆t = T/N

• Forward Euler scheme Xπ for X

Xπ
t0 = x

Xπ
ti+1

:= Xπ
ti

+ b(Xπ
ti

)∆t + σ(Xπ
ti

)
`
Wti+1 −Wti

´
+

mX
e=1

γ(Xπ
ti
, e)µ((ti , ti+1]× {e}).

• Backward Euler scheme (Y n,π,Zn,π,V n,π) for (Y n,Zn,V n)

Y n,π
tN

= g(Xπ
tN

)

Y n,π
ti

= Y n,π
ti+1

+ ∆t

mX
e=1

λ(e)fn(Xπ
ti
,Y n,π

ti
,Zn,π

ti
,V n,π

ti
, e)

− Zn,π
ti

.
`
Wti+1 −Wti

´
−

mX
e=1

V n,π
ti

(e)µ̃((ti , ti+1]× {e})
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Probabilistic method based on BSDE representation of QVI

Time discretization of the penalized BSDE

• Time grid π = (ti ) on [0,T ] : ti = i∆t, i = 0, . . . ,N, ∆t = T/N

• Forward Euler scheme Xπ for X

Xπ
t0 = x

Xπ
ti+1

:= Xπ
ti

+ b(Xπ
ti

)∆t + σ(Xπ
ti

)
`
Wti+1 −Wti

´
+

mX
e=1

γ(Xπ
ti
, e)µ((ti , ti+1]× {e}).

• Backward Euler scheme (Y n,π,Zn,π,V n,π) for (Y n,Zn,V n)

Y n,π
tN

= g(Xπ
tN

)

Y n,π
ti

= Y n,π
ti+1

+ ∆t

mX
e=1

λ(e)fn(Xπ
ti
,Y n,π

ti
,Zn,π

ti
,V n,π

ti
, e)

− Zn,π
ti

.
`
Wti+1 −Wti

´
−

mX
e=1

V n,π
ti

(e)µ̃((ti , ti+1]× {e})
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Probabilistic method based on BSDE representation of QVI

Time discretization of the penalized BSDE (II)
• Backward Euler scheme (Yn,π, Zn,π,Vn,π ) for (Yn, Zn,Vn )

Y
n,π
ti

= Y
n,π
ti+1

+ ∆t
mX
e=1

λ(e)fn (Xπti
,Y

n,π
ti

, Z
n,π
ti

,V
n,π
ti

, e)

− Z
n,π
ti

.[Wti+1
−Wti

] −
mX
e=1

V
n,π
ti

(e)µ̃((ti , ti+1 ] × {e}) (13)

By taking conditional expectation in (13) :

Y n,π
ti

= E
h
Y n,π
ti+1

˛̨̨
Fti
i

+ ∆t

mX
e=1

λ(e)fn(Xπ
ti
,Y n,π

ti
,Zn,π

ti
,V n,π

ti
, e)

By multiplying by Wti+1 −Wti
and taking expectation :

Zn,π
ti

=
1

∆t
E
h
Y n,π
ti+1

(Wti+1 −Wti
)
˛̨̨
Fti
i

By multiplying by µ̃((ti , ti+1]× {e}) and taking expectation :

V n,π
ti

(e) =
1

λ(e)∆t
E
h
Y n,π
ti+1

µ̃((ti , ti+1]× {e})
˛̨̨
Fti
i
, e = 1, . . . ,m.
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Probabilistic method based on BSDE representation of QVI

Simulation of the penalized BSDE

• For �xed penalization coe�cient n, the rate of convergence of the time
discretization procedure was analyzed in Bouchard and Elie (06).

I Here, we need to re�ne the estimation for n large

• Computation of the conditional expectations : Longsta�-Schwarz
algorithm, Monte-Carlo method, quantization method, random walk
method ...
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Conclusion

• New insight into impulse control problems, and more generally into
semilinear QVIs by means of BSDEs with constrained jumps

This provides direct (without iteration) probabilistic numerical
procedure

• Current investigation and further questions

Analysis of the convergence of these approximation schemes

Numerical implementation.
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