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The Market Model

• The market consists of d assets traded at t = 0, . . . , T .

• Filtered probability space (Ω,F , (Ft)Tt=0, P ).

• The price of a portfolio is a non-linear function of the amount due

to transaction costs, other illiquidity effects. . .→ Modeling portfolio

processes becomes an issue.

• Kabanov (1999): Portfolios are vectors in Rd, expressing the number

of physical units of assets (or values of assets in terms of some

numéraire).

• The set of all portfolios that can be transformed to a vector in Rd+ is

a random subset of Rd: solvency region.

The form of the solvency region is determined by the current price

and transaction costs.
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The Market Model

• A market model is a sequence (Ct)Tt=0 of Ft-measurable set-valued

mappings Ω ⇒ Rd such that each Ct(ω) is a closed subset of Rd

with Rd− ⊆ Ct(ω).

• For each t and ω Ct(ω) denotes the set of all portfolios that are

freely available in the market.

• A market model is called convex, if each Ct(ω) is convex.

• A convex market model is called conical, if each Ct(ω) is a cone.
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Example 1: Frictionless market

If (St)Tt=0 is an adapted price process with values in Rd+, then

Ct(ω) = {x ∈ Rd |St(ω) · x ≤ 0}, t = 0, . . . , T

defines a conical market model.
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Example 2: Proportional transaction costs
• [Kabanov (1999)]: If (St)Tt=0 is an adapted price process and (Λt)Tt=0

an adapted matrix of transaction costs coefficients, the solvency regions

are defined as

K̂t := {x ∈ Rd | ∃a ∈ Rd×d+ : xiSit +
d∑
j=1

(aji − (1 + λijt )aij) ≥ 0, 1 ≤ i ≤ d}.

• One can also define solvency regions directly in terms of bid-ask

matrices (Πt)Tt=0 as in [Schachermayer (2004)]:

K̂t = {x ∈ Rd | ∃a ∈ Rd×d+ : xi +
∑d
j=1(aji − πijt aij) ≥ 0, 1 ≤ i ≤ d}.

• For each ω and t the set K̂t(ω) is a polyhedral cone and

Ct(ω) := −K̂t(ω), t = 0, . . . , T

defines a conical market model.
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Example 3: Convex price processes

[Astic and Touzi (2007)], [Pennanen (2006)]

• A convex price process is a sequence (St)Tt=0 of R ∪ {+∞}-valued

functions on Rd × Ω such that for each t the function St is

B(Rd)⊗Ft-measurable and for each ω the function St(·, ω) is lower

semicontinuous, convex and vanishes at 0.

• St(x, ω) denotes the total price of buying a portfolio x at time t and

scenario ω.

• If (St)Tt=0 is a convex price process, then

Ct(ω) = {x ∈ Rd |St(x, ω) ≤ 0}, t = 0, . . . , T

defines a convex market model.
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Example 3: Convex price processes
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Example 3: Convex price processes

• [Çetin and Rogers (2007)]: A market with one riskfree and one risky

asset. The convex price process is given by

St((y, x), ω) = y + st(ω)ϕ(x)

for a strictly positive adapted price process of a risky asset (st)Tt=0

and a strictly convex and increasing function ϕ : R→ (−∞,∞].
(Example: ϕ(x) = eαx−1

α .)

• [Çetin, Jarrow and Protter (2004)]: A supply curve st(x, ω) gives a

price per unit of x units of a risky asset. Then the total price is

given by

St((y, x), ω) = y + st(x, ω)x.

No assumptions about convexity, smoothness required.

Concluding Workshop, December 2, 2008



Markets with convex transaction costs 9

Example 4: Convex transaction costs

• Replace a bid-ask matrix (Πt)Tt=0 by a matrix of convex price

processes (Sijt )Tt=0 (1 ≤ i, j ≤ d) on R+.

• Sij(x, ω) denotes the number of units of asset i for which one can

buy x units of asset j. In a market with proportional transaction

costs we have Sij(x, ω) =

πij(ω)x if x ≥ 0,
1

πji(ω)x if x ≤ 0
.

• If (Sijt ) (1 ≤ i, j ≤ d) are sequences of convex price processes on

R+, then

Ct(ω) = {x ∈ Rd | ∃a ∈ Rd×d+ : xi ≤
d∑
j=1

(aji − Sijt (aij , ω)), 1 ≤ i ≤ d}

defines a convex market model.
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Notation

• A denotes the set of all adapted Rd-valued processes.

• A process x ∈ A is a self-financing portfolio processes if

xt − xt−1 ∈ Ct P -a.s. for all t = 0, . . . , T

We always define x−1 := 0.

• The set of all final values of self-financial portfolio processes (or,

equivalently, of all claims that can be replicated at no cost) is

denoted by AT (C)
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Motivation: Hedging

• We want to give a dual characterization of the set of all initial

endowments that allow an investor to hedge a given claim →
“Hedging theorem”.

• A key to the hedging theorem is no-arbitrage condition and FTAP:

In a “classical” frictionless model it

– provides existence of “pricing” martingales (martingale measures)

– provides closedness of the set AT (C) of all claims that can be

replicated at no cost.
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Motivation: Hedging

• In a market with proportional transaction costs several natural

generalizations of the notions of arbitrage and martingale measures

are possible [Kabanov and Stricker (2001)], [Schachermayer (2004)],

[Grigoriev (2005)], [Rásonyi (2008)]...

• In a market with convex structure martingale measures are not

sufficient for the dual characterization [Föllmer and Kramkov

(1997)]...

• We are interested in a no-arbitrage notion that implies closedness of

the set AT (C).

Concluding Workshop, December 2, 2008



Markets with convex transaction costs 13

No-arbitrage notions for conical models

[Kabanov and Stricker (2001)], [Kabanov, Rásonyi and Stricker (2001),

(2003)], [Schachermayer (2004)]

• A market model C has the no arbitrage property if

AT (C) ∩ L0(Rd+) = {0},

where AT (C) = {xT |x is self-financing}.

• A market model C̃ dominates a conical market model C if

Ct ⊆ C̃t and Ct \ C0
t ⊂ ri C̃t for all t = 0, . . . , T,

where C0
t = Ct ∩ −Ct.

• A conical market model C has the robust no-arbitrage property if C

is dominated by another conical model C̃ which has the no-arbitrage

property.
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No-arbitrage notions for convex models
• Given a convex market model C, we define a conical market model

C∞ by

C∞t (ω) = {x ∈ Rd |Ct(ω) + αx ⊂ Ct(ω) ∀α > 0}, t = 0, . . . , T.

• C∞t (ω) is the recession cone of Ct(ω):

C∞t (ω) =
⋂
α>0

αCt(ω)

If C is conical then C∞ = C.

• The set C∞t (ω) describes the behavior of Ct(ω) infinitely far from

the origin.

• We say that a convex market model C has the robust no scalable

arbitrage property if the model C∞ has the robust no-arbitrage

property.
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No-arbitrage notions for convex models

• Given a convex market model C, one can also consider the conical

market model C ′ given by

C ′t(ω) := cl
⋃
α>0

αCt(ω), t = 0, . . . , T.

• Ct(ω) is the tangent cone of Ct(ω). If C is conical then C ′ = C.

• The set C ′t(ω) describes the behavior of Ct(ω) close to the origin.

• We say that a convex market model C has the robust no marginal

arbitrage property if the model C ′ has the robust no-arbitrage

property.
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Main result

Theorem 1 If the convex market model C has the robust no scalable

arbitrage property then the set AT (C) of all claims that can be

replicated with zero initial investment is closed in probability.
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Applications: Hedging

• A contingent claim processes with physical delivery c = (ct)Tt=0 ∈ A
is a security that gives its owner a random portfolio ct possibly at

each time t = 0, . . . , T .

• The set of all claim processes that can be replicated with zero initial

investment is

A(C) = {c ∈ A | ∃x ∈ A : xt−xt−1+ct ∈ Ct, t = 0, . . . , T, xT = 0}.

• We call a process p ∈ A a super-hedging premium process for a

claim process c if c− p ∈ A(C).

• If c = (0, . . . , 0, cT ) and p = (p0, 0, . . . , 0), then c− p ∈ A(C) iff

there exists a self-financing portfolio process such that

cT ≤ p0 + xT .
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Applications: Hedging

Theorem 2 [Hedging Theorem] Assume that a market model C is

convex and that it has the robust no scalable arbitrage property. Let

c, p ∈ A be such that c− p ∈ L1(P ). Then the following are equivalent:

(i) p is a super-hedging premium process for c.

(ii) E

[
T∑
t=0

(ct − pt) · zt
]
≤ E

[
T∑
t=0

σCt(zt)
]

for every Rd+-valued bounded martingale (zt)Tt=0.

Here σCt(ω) denotes the support function of Ct(ω):

σCt(ω)(z) := sup
x∈Ct(ω)

x · z, z ∈ Rd.
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Applications: Hedging

• If C is conical, we have

σCt(ω)(y) =

0 if y ∈ C∗t (ω),

+∞ otherwise.

• An adapted Rd \ { 0}-valued process z = (zt)Tt=0 is called a

consistent price system for a conical model C, if z is a martingale

such that zt ∈ C∗t almost surely for all t.

• z = (zt)Tt=0 is called a strictly consistent price system for a conical

model C if z is a martingale with strictly positive components and

such that zt ∈ riC∗t almost surely for all t.

[Kabanov, Rásonyi and Stricker (2001), (2003)], [Schachermayer (2004)]
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Applications: Hedging

Corollary 3 Assume that C is a conical market model and that it has

the robust no arbitrage property. Assume further that F0 is trivial and

let cT ∈ L1(P ) and p0 ∈ R. Then the following are equivalent.

(i) p = (p0, 0, . . . , 0) is a super-hedging premium for c = (0, . . . , 0, cT ).

(ii) E [cT · zT ] ≤ p0 · z0
for every bounded consistent price system (zt)Tt=0.

(iii) E [cT · zT ] ≤ p0 · z0
for every bounded strictly consistent price system (zt)Tt=0.

[Kabanov, Rásonyi and Stricker (2003)], [Schachermayer (2004)]
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Applications: FTAP

Theorem 4 [FTAP]

• A convex market model C has the robust no scalable arbitrage

property if and only if there exists a strictly positive martingale z

such that zt ∈ ri domσCt for all t. (Equivalently: there exists a

strictly consistent price system z for C∞).

• A convex market model C has the robust no marginal arbitrage

property if and only if there exists a strictly positive martingale z

such that zt ∈ (domσCt)
′ for all t. (Equivalently: there exists a

strictly consistent price system z for C ′).

Similar results in [Kabanov, Rásonyi and Stricker (2003)] and

[Schachermayer (2004)] for polyhedral conical models and in [Rásonyi

(2007)] and [Rokhlin (2007)] for more general conical models.
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Thank you

for your attention!
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