Markets with convex transaction costs

1

Irina Penner

Humboldt University of Berlin Email: penner@math.hu-berlin.de

Joint work with **Teemu Pennanen** Helsinki University of Technology

Special Semester on Stochastics with Emphasis on Finance Concluding Workshop, Linz, December 2, 2008

The Market Model

- The market consists of d assets traded at $t = 0, \ldots, T$.
- Filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, P)$.
- The price of a portfolio is a non-linear function of the amount due to transaction costs, other illiquidity effects... → Modeling portfolio processes becomes an issue.
- Kabanov (1999): Portfolios are vectors in R^d, expressing the number of physical units of assets (or values of assets in terms of some numéraire).
- The set of all portfolios that can be transformed to a vector in R^d₊ is a random subset of R^d: solvency region.
 The form of the solvency region is determined by the current price and transaction costs.

The Market Model

- A market model is a sequence $(C_t)_{t=0}^T$ of \mathcal{F}_t -measurable set-valued mappings $\Omega \rightrightarrows \mathbb{R}^d$ such that each $C_t(\omega)$ is a closed subset of \mathbb{R}^d with $\mathbb{R}^d_- \subseteq C_t(\omega)$.
- For each t and $\omega C_t(\omega)$ denotes the set of all portfolios that are freely available in the market.
- A market model is called convex, if each $C_t(\omega)$ is convex.
- A convex market model is called conical, if each $C_t(\omega)$ is a cone.

Example 1: Frictionless market

If $(S_t)_{t=0}^T$ is an adapted price process with values in \mathbb{R}^d_+ , then

$$C_t(\omega) = \{ x \in \mathbb{R}^d \, | \, S_t(\omega) \cdot x \le 0 \}, \quad t = 0, \dots, T$$

defines a conical market model.

Example 2: Proportional transaction costs

• [Kabanov (1999)]: If $(S_t)_{t=0}^T$ is an adapted price process and $(\Lambda_t)_{t=0}^T$ an adapted matrix of transaction costs coefficients, the solvency regions are defined as

$$\hat{K}_t := \{ x \in \mathbb{R}^d \mid \exists a \in \mathbb{R}^{d \times d}_+ : \ x^i S^i_t + \sum_{j=1}^d (a^{ji} - (1 + \lambda^{ij}_t)a^{ij}) \ge 0, \ 1 \le i \le d \}.$$

• One can also define solvency regions directly in terms of bid-ask matrices $(\Pi_t)_{t=0}^T$ as in [Schachermayer (2004)]:

$$\hat{K}_t = \{ x \in \mathbb{R}^d \mid \exists a \in \mathbb{R}^{d \times d}_+ : x^i + \sum_{j=1}^d (a^{ji} - \pi_t^{ij} a^{ij}) \ge 0, \ 1 \le i \le d \}.$$

• For each ω and t the set $\hat{K}_t(\omega)$ is a polyhedral cone and

$$C_t(\omega) := -\hat{K}_t(\omega), \quad t = 0, \dots, T$$

defines a conical market model.

Example 3: Convex price processes

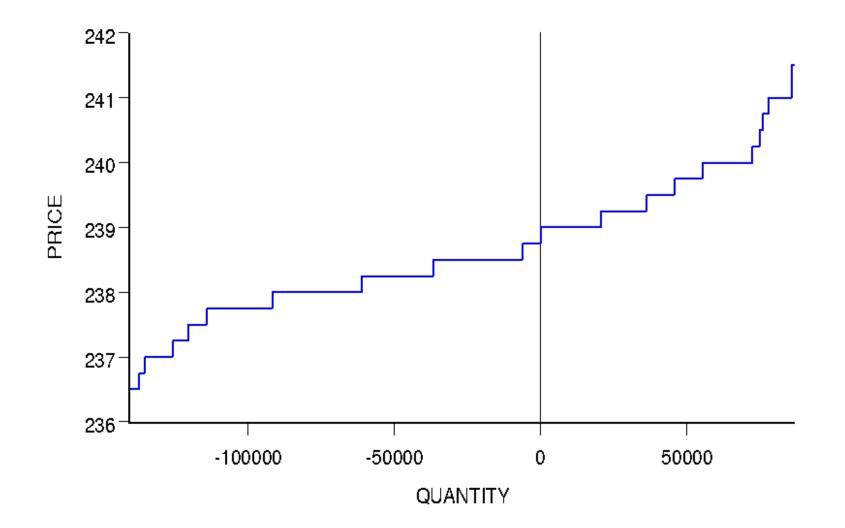
[Astic and Touzi (2007)], [Pennanen (2006)]

- A convex price process is a sequence (S_t)^T_{t=0} of ℝ ∪ {+∞}-valued functions on ℝ^d × Ω such that for each t the function S_t is B(ℝ^d) ⊗ F_t-measurable and for each ω the function S_t(·, ω) is lower semicontinuous, convex and vanishes at 0.
- S_t(x, ω) denotes the total price of buying a portfolio x at time t and scenario ω.
- If $(S_t)_{t=0}^T$ is a convex price process, then

 $C_t(\omega) = \{ x \in \mathbb{R}^d \mid S_t(x, \omega) \le 0 \}, \quad t = 0, \dots, T$

defines a convex market model.

Example 3: Convex price processes



7

Example 3: Convex price processes

• [Çetin and Rogers (2007)]: A market with one riskfree and one risky asset. The convex price process is given by

 $S_t((y,x),\omega) = y + s_t(\omega)\varphi(x)$

for a strictly positive adapted price process of a risky asset $(s_t)_{t=0}^T$ and a strictly convex and increasing function $\varphi : \mathbb{R} \to (-\infty, \infty]$. (Example: $\varphi(x) = \frac{e^{\alpha x} - 1}{\alpha}$.)

[Çetin, Jarrow and Protter (2004)]: A supply curve s_t(x, ω) gives a price per unit of x units of a risky asset. Then the total price is given by

$$S_t((y,x),\omega) = y + s_t(x,\omega)x.$$

No assumptions about convexity, smoothness required.

Example 4: Convex transaction costs

- Replace a bid-ask matrix $(\Pi_t)_{t=0}^T$ by a matrix of convex price processes $(S_t^{ij})_{t=0}^T$ $(1 \le i, j \le d)$ on \mathbb{R}_+ .
- $S^{ij}(x,\omega)$ denotes the number of units of asset i for which one can buy x units of asset j. In a market with proportional transaction costs we have $S^{ij}(x,\omega) = \begin{cases} \pi^{ij}(\omega)x & \text{if } x \ge 0, \\ \frac{1}{\pi^{ji}(\omega)}x & \text{if } x \le 0 \end{cases}$.
- If (S_t^{ij}) $(1 \le i, j \le d)$ are sequences of convex price processes on \mathbb{R}_+ , then

$$C_t(\omega) = \{ x \in \mathbb{R}^d \, | \, \exists a \in \mathbb{R}^{d \times d}_+ : \ x^i \le \sum_{j=1}^d (a^{ji} - S_t^{ij}(a^{ij}, \omega)), \, 1 \le i \le d \}$$

defines a convex market model.

Notation

- \mathcal{A} denotes the set of all adapted \mathbb{R}^d -valued processes.
- A process $x \in \mathcal{A}$ is a self-financing portfolio processes if

 $x_t - x_{t-1} \in C_t$ *P*-a.s. for all $t = 0, \ldots, T$

We always define $x_{-1} := 0$.

• The set of all final values of self-financial portfolio processes (or, equivalently, of all claims that can be replicated at no cost) is denoted by $A_T(C)$

Motivation: Hedging

- We want to give a dual characterization of the set of all initial endowments that allow an investor to hedge a given claim → "Hedging theorem".
- A key to the hedging theorem is no-arbitrage condition and FTAP: In a "classical" frictionless model it
 - provides existence of "pricing" martingales (martingale measures)
 - provides closedness of the set $A_T(C)$ of all claims that can be replicated at no cost.

Motivation: Hedging

- In a market with proportional transaction costs several natural generalizations of the notions of arbitrage and martingale measures are possible [Kabanov and Stricker (2001)], [Schachermayer (2004)], [Grigoriev (2005)], [Rásonyi (2008)]...
- In a market with convex structure martingale measures are not sufficient for the dual characterization [Föllmer and Kramkov (1997)]...
- We are interested in a no-arbitrage notion that implies closedness of the set $A_T(C)$.

No-arbitrage notions for conical models

[Kabanov and Stricker (2001)], [Kabanov, Rásonyi and Stricker (2001), (2003)], [Schachermayer (2004)]

• A market model C has the no arbitrage property if

 $A_T(C) \cap L^0(\mathbb{R}^d_+) = \{0\},\$

where $A_T(C) = \{x_T \mid x \text{ is self-financing}\}.$

• A market model \tilde{C} dominates a conical market model C if $C_t \subseteq \tilde{C}_t$ and $C_t \setminus C_t^0 \subset \operatorname{ri} \tilde{C}_t$ for all $t = 0, \dots, T$,

where $C_t^0 = C_t \cap -C_t$.

No-arbitrage notions for convex models

• Given a convex market model C, we define a conical market model C^{∞} by

 $C_t^{\infty}(\omega) = \{ x \in \mathbb{R}^d \, | \, C_t(\omega) + \alpha x \subset C_t(\omega) \, \forall \alpha > 0 \}, \quad t = 0, \dots, T.$

• $C_t^{\infty}(\omega)$ is the recession cone of $C_t(\omega)$:

$$C_t^{\infty}(\omega) = \bigcap_{\alpha > 0} \alpha C_t(\omega)$$

If C is conical then $C^{\infty} = C$.

- The set $C_t^{\infty}(\omega)$ describes the behavior of $C_t(\omega)$ infinitely far from the origin.
- We say that a convex market model C has the robust no scalable arbitrage property if the model C[∞] has the robust no-arbitrage property.

No-arbitrage notions for convex models

• Given a convex market model C, one can also consider the conical market model C' given by

$$C'_t(\omega) := \operatorname{cl} \bigcup_{\alpha > 0} \alpha C_t(\omega), \quad t = 0, \dots, T.$$

- $C_t(\omega)$ is the tangent cone of $C_t(\omega)$. If C is conical then C' = C.
- The set $C'_t(\omega)$ describes the behavior of $C_t(\omega)$ close to the origin.
- We say that a convex market model *C* has the robust no marginal arbitrage property if the model *C*' has the robust no-arbitrage property.

Main result

Theorem 1 If the convex market model C has the robust no scalable arbitrage property then the set $A_T(C)$ of all claims that can be replicated with zero initial investment is closed in probability.

- A contingent claim processes with physical delivery $c = (c_t)_{t=0}^T \in \mathcal{A}$ is a security that gives its owner a random portfolio c_t possibly at each time $t = 0, \ldots, T$.
- The set of all claim processes that can be replicated with zero initial investment is

 $A(C) = \{ c \in \mathcal{A} \mid \exists x \in \mathcal{A} : x_t - x_{t-1} + c_t \in C_t, t = 0, \dots, T, x_T = 0 \}.$

- We call a process p ∈ A a super-hedging premium process for a claim process c if c − p ∈ A(C).
- If $c = (0, ..., 0, c_T)$ and $p = (p_0, 0, ..., 0)$, then $c p \in A(C)$ iff there exists a self-financing portfolio process such that

 $c_T \le p_0 + x_T.$

17

Theorem 2 [Hedging Theorem] Assume that a market model C is convex and that it has the robust no scalable arbitrage property. Let $c, p \in A$ be such that $c - p \in L^1(P)$. Then the following are equivalent:

(i) p is a super-hedging premium process for c.

(ii)
$$E\left[\sum_{t=0}^{T} (c_t - p_t) \cdot z_t\right] \le E\left[\sum_{t=0}^{T} \sigma_{C_t}(z_t)\right]$$

for every \mathbb{R}^d_+ -valued bounded martingale $(z_t)_{t=0}^T$.

Here $\sigma_{C_t(\omega)}$ denotes the support function of $C_t(\omega)$:

$$\sigma_{C_t(\omega)}(z) := \sup_{x \in C_t(\omega)} x \cdot z, \quad z \in \mathbb{R}^d.$$

• If C is conical, we have

$$\sigma_{C_t(\omega)}(y) = \begin{cases} 0 & \text{if } y \in C_t^*(\omega), \\ +\infty & \text{otherwise.} \end{cases}$$

- An adapted ℝ^d \ {0}-valued process z = (z_t)^T_{t=0} is called a consistent price system for a conical model C, if z is a martingale such that z_t ∈ C^{*}_t almost surely for all t.
- $z = (z_t)_{t=0}^T$ is called a strictly consistent price system for a conical model C if z is a martingale with strictly positive components and such that $z_t \in \operatorname{ri} C_t^*$ almost surely for all t.

[Kabanov, Rásonyi and Stricker (2001), (2003)], [Schachermayer (2004)]

Corollary 3 Assume that C is a conical market model and that it has the robust no arbitrage property. Assume further that \mathcal{F}_0 is trivial and let $c_T \in L^1(P)$ and $p_0 \in \mathbb{R}$. Then the following are equivalent.

(i) $p = (p_0, 0, ..., 0)$ is a super-hedging premium for $c = (0, ..., 0, c_T)$. (ii) $E[c_T \cdot z_T] \le p_0 \cdot z_0$

for every bounded consistent price system $(z_t)_{t=0}^T$.

(iii) $E[c_T \cdot z_T] \le p_0 \cdot z_0$

for every bounded strictly consistent price system $(z_t)_{t=0}^T$.

[Kabanov, Rásonyi and Stricker (2003)], [Schachermayer (2004)]

Applications: FTAP

Theorem 4 [FTAP]

- A convex market model C has the robust no scalable arbitrage property if and only if there exists a strictly positive martingale zsuch that $z_t \in \operatorname{ridom} \sigma_{C_t}$ for all t. (Equivalently: there exists a strictly consistent price system z for C^{∞}).
- A convex market model C has the robust no marginal arbitrage property if and only if there exists a strictly positive martingale zsuch that $z_t \in (\operatorname{dom} \sigma_{C_t})'$ for all t. (Equivalently: there exists a strictly consistent price system z for C').

Similar results in [Kabanov, Rásonyi and Stricker (2003)] and [Schachermayer (2004)] for polyhedral conical models and in [Rásonyi (2007)] and [Rokhlin (2007)] for more general conical models.

Thank you for your attention!

Concluding Workshop, December 2, 2008