Optimal dividend and reinvestment policies when payments are subject to both fixed and proportional costs

Jostein Paulsen

UNIVERSITETET I BERGEN

Matematisk institutt

October 15, 2008

Talk based on the paper
Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs SIAM Journal of Control and Optimization, 2008, Vol. 47, No 5, 2201-2226.

(1) Introduction to the problem

(2) The solution
(3) A financial example

The model

Income process without payments

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

Standing assumptions:
A1. $|\mu(y)|+|\sigma(y)| \leq K(1+y)$ for all $y \geq 0$ and some $K>0$.
A2. μ and σ are continuously differentiable and the derivatives μ^{\prime} and σ^{\prime} are Lipschitz continuous for all $y \geq 0$.
A3. $\sigma^{2}(y)>0$ for all $y \geq 0$.
A4. $\mu^{\prime}(y) \leq r$ for all $y \geq 0$. Here r is a discount factor.
Let

$$
L g(y)=\frac{1}{2} \sigma^{2}(y) g^{\prime \prime}(y)+\mu(y) g^{\prime}(y)-r g(y)
$$

Comments on Assumption A4

A4: $\mu^{\prime}(y) \leq r$ for all $y \geq 0$. Here r is a discount factor. Consider the special case

$$
d X_{t}=\left(\mu_{0}+\mu_{1} X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x
$$

Here $\mu^{\prime}(x)=\mu_{1}$ and furthermore

$$
E^{x}\left[e^{-r t} X_{t}\right]=\left(x+\frac{\mu_{0}}{\mu_{1}}\right) e^{\left(\mu_{1}-r\right) t}-\frac{\mu_{0}}{\mu_{1}} e^{-r t}
$$

If $\mu_{1} \leq r$ this stabilizes, but if $\mu_{1}>r$ it grows to infinity and therefore it is clearly better to wait. The right quantities to compare are therefore $\mu^{\prime}(x)$ and r, one representing the geometric growth rate and the other the geometric discounting rate. The condition $\mu^{\prime}(x) \leq r$ just says that in no state should growth rate exceed discounting rate.

The problem

Total dividends paid up to time t is D_{t}. When reserves hit zero reinvestments are made, total reinvestments up to time t is C_{t}. Both C and D are nondecreasing and RCLL. Associated costs are

$$
\begin{aligned}
d \bar{C}_{t} & =c_{0} 1_{\left\{\Delta C_{t}>0\right\}}+c_{1} d C_{t}, \quad 0 \leq c_{1} \leq 1, \\
d \bar{D}_{t} & =d_{0} 1_{\left\{\Delta D_{t}>0\right\}}+d_{1} d D_{t},
\end{aligned}
$$

where c_{0}, c_{1}, d_{0} and d_{1} all are nonnegative constants. Therefore

$$
\begin{aligned}
d Y_{t}= & \mu\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d W_{t}+\left(1-c_{1}\right) d C_{t}-\left(1+d_{1}\right) d D_{t} \\
& -c_{0}{ }_{\left\{\Delta C_{t}>0\right\}}-d_{0} 1_{\left\{\Delta D_{t}>0\right\}},
\end{aligned}
$$

with $Y_{0-}=y$.

The problem

For given (C, D) let

$$
V_{C, D}(y)=\limsup _{n \rightarrow \infty} E^{y}\left[\int_{0-}^{v_{n}^{-}} e^{-r t} d A_{t}\right],
$$

where $A=D-C$ and $v_{n}=\inf \left\{t: C_{t} \vee D_{t}>n\right\}$.
We want to find

$$
V^{*}(y)=\sup _{(C, D)} V_{C, D}(y) .
$$

and also, if it exists, the optimal policy $\left(C^{*}, D^{*}\right)$.

Literature

Shreve, Lehoczky and Gaver (1984).
Same model as here, but without fixed costs.
Richard (1977), Constantinides and Richard (1978),
Harrison, Sellke and Taylor (1983).
With fixed costs, but only linear Brownian motion.
Avram, Palmowski and Pistorius (2007).
Spectrally negative Lévy process, but no fixed costs.
Porteus (1977).
Discrete time
Papers with absorbtion at zero
Paulsen (2007).
Same model and expenses as in this paper Jeanblanc-Picqué and Shiryaev (1995). Linear Brownian motion.

Literature

Papers written for combinations of dividend payments, investment policies and reinsurance policy, but restricted to
Brownian motion are
Cadenillas, Sarkar and Zapatero (2007),
Cadenillas, Choulli, Taksar and Zhang (2006).

General considerations

Why is it possible to give a complete solution for such a general model?
Consider again the equation $L g(y)=0$. Four (or five) basic solutions

General considerations

The variational problem

Consider the variational problem for unknown $V, y^{*}, \gamma^{*} \in\left(0, y^{*}\right)$ and $\delta^{*} \in\left(0, y^{*}\right)$,

The variational problem

$$
\begin{array}{ll}
L V(y) & =0,0<y<y^{*} \\
V\left(\gamma^{*}\right) & =V(0)+\frac{\gamma^{*}+c_{0}}{1-c_{1}}, \\
V^{\prime}\left(\gamma^{*}\right) & =\frac{1}{1-c_{1}}, \\
V\left(y^{*}\right) & =V\left(y^{*}-\delta^{*}\right)+\frac{\delta^{*}-d_{0}}{1+d_{1}} \\
V^{\prime}\left(y^{*}-\delta^{*}\right) & =\frac{1}{1+d_{1}}, \\
V^{\prime}\left(y^{*}\right) & =\frac{1}{1+d_{1}}, \\
V(y) & =V\left(y^{*}\right)+\frac{y-y^{*}}{1+d_{1}}, \quad y>y^{*}
\end{array}
$$

The variational problem

a) If this has a solution this solution is unique and

$$
V(y)=V^{*}(y), \quad y \geq 0 .
$$

The optimal policy is to pay δ^{*} in dividends whenever $Y_{t-}=y^{*}$ and to reinvest γ^{*} whenever $Y_{t-}=0$.
b) If this has no solution there is no optimal policy, but

$$
V^{*}(y)=\lim _{\bar{y} \rightarrow \infty} V_{\bar{y}, \gamma(\bar{y}), \delta(\bar{y})}(y)
$$

and this limit exists and is finite for every $y \geq 0$.

The variational problem

Proposition 1

a) Assume there is no optimal solution. Then there exists a solution g_{2} of $L g=0$ so that

$$
\lim _{y \rightarrow \infty} g_{2}(y)=\lim _{y \rightarrow \infty} g_{2}^{\prime}(y)=0
$$

Furthermore, for any other independent solution g_{1},

$$
\lim _{y \rightarrow \infty} g_{1}^{\prime}(y)=\lim _{y \rightarrow \infty} \frac{g_{1}(y)}{y}=\bar{g}_{1}
$$

for some positive and finite \bar{g}_{1}.

The variational problem

b) Assume that there are two solutions g_{1} and g_{2} of $L g=0$ so that

$$
\begin{aligned}
& \lim _{y \rightarrow \infty} g_{1}^{\prime}(y)=\bar{g}_{1}, \\
& \lim _{y \rightarrow \infty} g_{2}(y)=0,
\end{aligned}
$$

where \bar{g}_{1} is finite and nonzero. Assume in addition that

$$
\lim _{y \rightarrow \infty}\left(\frac{g_{1}(y)}{\bar{g}_{1}}-y\right)>\frac{\mu(0)}{r}-d_{0} .
$$

Then there is no optimal solution.

The variational problem

c) Assume there is a solution g of $L g=0$ so that

$$
\lim _{y \rightarrow \infty} \frac{g(y)}{y}=\infty
$$

or equivalently

$$
\lim _{y \rightarrow \infty} g^{\prime}(y)=\infty
$$

Then there is an optimal solution.

Linear Brownian Motion

Let the income process without dividends follow

$$
d X_{t}=\mu d t+\sigma d W_{t},
$$

It is easy to verify that $L g(y)=0$ has the independent solutions

$$
g_{i}(y)=e^{\theta_{i} y}, \quad i=1,2,
$$

where

$$
\begin{aligned}
& \theta_{1}=\frac{1}{\sigma^{2}}\left(\sqrt{\mu^{2}+2 r \sigma^{2}}-\mu\right) \\
& \theta_{2}=-\frac{1}{\sigma^{2}}\left(\sqrt{\mu^{2}+2 r \sigma^{2}}+\mu\right) .
\end{aligned}
$$

Clearly $\theta_{1}>0$, hence an optimal solution exists by Proposition 1.c. This is the main result of Harrison \& al. (1983).

A useful comparison result

Lemma

Assume A2 and A3. Let $f_{i}(y), i=1,2$ solve

$$
\frac{1}{2} \sigma^{2}(y) f_{i}^{\prime \prime}(y)+\mu_{i}(y) f_{i}^{\prime}(y)-r f_{i}(y)=0, \quad y \geq 0,
$$

where $\mu_{1}(y)>\mu_{2}(y)$ for all $y \geq 0$ and

$$
f_{i}(0)=f_{0} \quad \text { and } \quad f_{i}^{\prime}(0)=f_{1} \geq 0, \quad i=1,2 .
$$

Then $f_{1}^{\prime}(y)<f_{2}^{\prime}(y)$ for all $y>0$, which in turn implies that $f_{1}(y)<f_{2}(y)$ for all $y>0$.

A useful comparison result

Proposition 2

Assume there is no optimal policy, and let V be the value function. Consider the equation (in $\bar{\gamma}$).

$$
\begin{align*}
V^{\prime}(\bar{\gamma}) & =\frac{1}{1-c_{1}}, \tag{1}\\
V(\bar{\gamma}) & =V(0)+\frac{\bar{\gamma}+c_{0}}{1-c_{1}} . \tag{2}
\end{align*}
$$

Furthermore, with g_{1} and g_{2} as in Proposition 1, write

$$
V(y)=a_{1} g_{1}(y)+a_{2} g_{2}(y)
$$

a) We have

$$
\lim _{y \rightarrow \infty} V^{\prime}(y)=\frac{1}{1+d_{1}}
$$

A useful comparison result

b) If $c_{1}+d_{1}>0$ then (1) has a unique solution. Furthermore

$$
\begin{aligned}
& a_{1}=\frac{1}{1+d_{1}} \frac{1}{\bar{g}_{1}} \\
& a_{2}=\frac{1}{1-c_{1}} \frac{1}{g_{2}^{\prime}(\bar{\gamma})}-\frac{1}{1+d_{1}} \frac{1}{\bar{g}_{1}} \frac{g_{1}^{\prime}(\bar{\gamma})}{g_{2}^{\prime}(\bar{\gamma})} .
\end{aligned}
$$

Here $\bar{g}_{1}=\lim _{y \rightarrow \infty} g_{1}^{\prime}(y)$ and $\bar{\gamma}$ is the solution of

$$
\begin{aligned}
c_{0}= & \frac{1-c_{1}}{1+d_{1}} \frac{1}{\bar{g}_{1}}\left(g_{1}(y)-g_{1}(0)\right) \\
& +\left(\frac{1}{g_{2}^{\prime}(y)}-\frac{1-c_{1}}{1+d_{1}} \frac{1}{\bar{g}_{1}} \frac{g_{1}^{\prime}(y)}{g_{2}^{\prime}(y)}\right)\left(g_{2}(y)-g_{2}(0)\right)-y .
\end{aligned}
$$

A useful comparison result

c) If $c_{1}=d_{1}=0$ there are two possibilities.
(i) The equation (1) has a unique solution and then a_{1}, a_{2} and $\bar{\gamma}$ are is in part b above.
(ii) The equation (1) has no solution, but

$$
\begin{aligned}
& a_{1}=\frac{1}{\bar{g}_{1}}, \\
& a_{2}=\frac{\lim _{y \rightarrow \infty}\left(\frac{g_{1}(y)}{g_{1}}-y\right)-\frac{g_{1}^{\prime}(0)}{\bar{g}_{1}}-c_{0}}{g_{2}(0)} .
\end{aligned}
$$

A financial example

Income process without dividends assumed to be a linear Brownian motion with drift μ and diffusion σ, but money can be invested in risk free assets with return r.
Investment costs are incurred with rate $\alpha\left(Y_{t}\right)$ so that total investment costs have intensity $\alpha\left(Y_{t}\right) Y_{t}$.
Assume that this consists of a fixed part α_{0} and a part that is proportional with the amount invested α_{1}, i.e.

$$
\alpha(y) y=\alpha_{0}+\alpha_{1} y .
$$

This gives

$$
d X_{t}=\left(\mu_{0}+\left(r-\alpha_{1}\right) X_{t}\right) d t+\sigma d W_{t},
$$

where $\mu_{0}=\mu-\alpha_{0}$. Assume that $\mu_{0}>0$ and $0 \leq \alpha_{1}<r$. When $\alpha_{0}=0$ and $\alpha_{1}=r$, this is Brownian motion.
The generator is

$$
L g(y)=\frac{1}{2} \sigma^{2} g^{\prime \prime}(y)+\left(\mu_{0}+\left(r-\alpha_{1}\right) y\right) g^{\prime}(y)-r g(y)=0 .
$$

A financial example

Assume first that $\alpha_{1}=0$. Two solutions are

$$
\begin{aligned}
& g_{1}(y)=r y+\mu_{0}, \\
& g_{2}(y)=e^{-k(y)} U\left(1, \frac{1}{2}, k(y)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
k(y) & =\frac{r}{\sigma^{2}}\left(y+\frac{\mu_{0}}{r}\right)^{2}, \\
U(a, b, x) & =\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-x t} t^{a-1}(1+t)^{b-a-1} d t, a>0 .
\end{aligned}
$$

In this case there is no optimal solution, but if $c_{1}=d_{1}=0$,

$$
V^{*}(y)=y+\frac{\mu_{0}}{r}-\frac{c_{0}}{U\left(1, \frac{1}{2}, k(0)\right)} e^{-(k(y)-k(0))} U\left(1, \frac{1}{2}, k(y)\right) .
$$

The first two terms are the value if there were no costs when reaching zero, i.e. when $c_{0}=0$.

A financial example

When $\alpha_{1}>0$, we have the solutions

$$
\begin{aligned}
& g_{1}(y)=e^{-k(y)} F\left(1, \frac{1}{2}, k(y)\right), \\
& g_{2}(y)=e^{-k(y)} U\left(1, \frac{1}{2}, k(y)\right) .
\end{aligned}
$$

Also

$$
e^{-k(y)} F(a, b, k(y)) \sim\left(y+\frac{\mu_{0}}{r-\alpha_{1}}\right)^{\frac{r}{r-\alpha_{1}}}
$$

hence there is always a solution.

A financial example

In all tables fixed values are $\sigma^{2}=\mu_{0}=1, c_{0}=d_{0}=0.1$,
$c_{1}=d_{1}=0.05, r=0.1$ and $\alpha=0.02$.
Solutions were obtained by using Runge-Kutta for $g_{1}(0)=0, g_{1}^{\prime}(0)=1$ and $g_{2}(0)=1, g_{2}^{\prime}(0)=0$, together with the MATLAB function fsolve.

A financial example

c_{0}	0	0.1	1	3	5	7.76	10
y^{*}	4.50	5.14	5.89	6.33	6.54	6.73	6.84
γ^{*}	0	0.61	1.31	1.72	1.92	2.10	2.20
$y^{*}-\delta^{*}$	0.47	1.06	1.75	2.15	2.35	2.52	2.62
$V^{*}(0)$	8.81	8.52	7.36	5.13	2.96	0	-2.39
$V^{*}(1)$	9.77	9.66	9.44	9.15	8.90	8.56	8.29
$V^{*}(5)$	13.50	13.28	13.23	13.16	13.11	13.08	13.07

A financial example

d_{0}	0	0.1	1	3	5	10
y^{*}	1.94	5.14	14.83	29.28	41.80	70.53
γ^{*}	0.67	0.61	0.50	0.45	0.43	0.40
$y^{*}-\delta^{*}$	1.94	1.06	0.73	0.61	0.57	0.52
$V^{*}(0)$	8.95	8.52	7.53	6.67	6.19	5.48
$V^{*}(1)$	10.10	9.66	8.64	7.75	7.26	6.51
$V^{*}(5)$	13.92	13.38	11.98	10.76	10.08	9.06

A financial example

$c_{0}=d_{0}$	0	0.1	1	3	5	5.42	10
y^{*}	1.30	5.14	15.68	30.84	43.80	46.71	73.28
γ^{*}	0	0.61	1.15	1.45	1.60	1.62	1.80
$y^{*}-\delta^{*}$	1.30	1.06	1.37	1.60	1.73	1.75	1.91
$V^{*}(0)$	9.24	8.52	6.35	3.22	0.53	0	-5.61
$V^{*}(1)$	10.22	9.66	8.45	7.32	6.59	6.46	5.28
$V^{*}(5)$	14.04	13.38	11.88	10.66	10.00	9.88	8.99

