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1 INTRODUCTION

Let (2, F, Ft, P) be a filtrated probability space and B(t),t >0 a
Fi— real valued Brownian motion. Let Ry = R\ {0} and v(dz) a
o-finite measure on (R, B(Ry)). Let N(dt, dz) denote a stationary
Poisson random measure on Ry X Ry with intensity measure
dtv(dz). Denote by N(dt,dz) = N(dt, dz) — dtv(dz) the
compensated Poisson measure. Suppose we have a cash flow
where the amount X(t) at time t is modelled by a stochastic delay
equation of the form:

dX(t) = {Al(t)X(t)+A2(t)X(t—h)—i—/thAo(t,s)X(s)ds}dt

(1) +Ci(t)dB(t) + | Galt,z)N(dt,dz);t >0
Ro

X(t) = n(t); t<0,

Here h > 0 is a fixed delay and A;(t), Ax(t), Ao(t, s),
Ci(t), Gy(t, z),n are given bounded deterministic functions.
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Suppose we consume at the rate u(t) at time t from this wealth
X(t), and that this consumption rate influences the growth rate of
X(t) both through its value u(t) at time t and through its former
value u(t — h), because of some delay mechanisms in the system
determining the dynamics of X(t).

With such a consumption rate u(t) the dynamics of the
corresponding cash flow X“(t) is given by

t

dXU(t) = {A(t)X"(t) + A ()X (t — h) + /t_hAo(t, s)XY(s)ds
+By(t)u(t) + Ba(t)u(t — h)}dt + Ci(t)dB(t)
(2) +/RO Co(t, z)N(dt, dz); t > 0
X4(t) = n(t);, t=<0,

where Bj(t), Bo(t) are deterministic bounded functions.
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Suppose the consumer wants to maximize the combined utility of
the consumption up ot the terminal time T and the terminal
wealth. Then the problem is to find u(-) such that

-
(3) J(u) = E[/0 Ui(t, u(t))dt + Uo(X“(T))]

is maximal. Here U(t,-) and Ux(-) are given utility functions.
This is an example of a stochastic control problem with delay.
Such problems have been studied by many authors. See

e.g. [EDS], [@S2], [KS], [L], [LR] and the references therein. The
methods used in these papers, however, do not apply to the cases
studied here. Moreover, these papers do not consider partial
information control.(See below ).
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It was shown in [L1] that the system (2) is equivalent to the
following controlled stochastic Volterra equation:

Xﬂ):(KK@949$+A%@quw@+Li@¢@ﬂ@
0
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where
K(t,s) = ®(t,s)Bi(s) + ®(t,s + h)Bx(s + h)
and & is the transition function satisfying

o

ar = AD9(t.s) + A (0)0(t — h.s)

+ /t Ao(t, 7)®(7,s)dT

—h
dlcs) = [, O(t,s)=0 for
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So the control of the system (2) reduces to the control of the
system (4). Stochastic Volterra equations are interesting in their
own right, also for applications, e.g., to economics or population
dynamics. See e.g. Example 1.1 in [@Z] and the references therein.
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In the first part of this paper, we study a linear quadratic control
problem for the following controlled stochastic Volterra equation:

XU(t) = &)+ /Ot[mr,s)x () + Da(t.s)u(s) + Kalt. s)]dB(s)

4 /t/RO Ka(t, s, 2)X"(s)Ri(ds, dz) + /0 Da(t,s)X"(s)ds
+//ROD3tszu(s)Ndsdz //ROK5tsz (ds,dz
(5 /0 Ks(t,s)u(s)ds

where u(t) is our control process and £(t) is a given predictable
process with E[¢2(t)] < oo for all t > 0, while K;, D; are bounded
deterministic functions.

S == qup Centre of
é @ }ngs‘;BRS”ETET k Mathematics for
9.8 L] Applications




In reality one often does not have the complete information when
performing a control to a system. This means that the control
processes are required to be predictable with respect to a
sub-filtration {G:} with G; C F;. So the space of controls will be

(6)
U = {u(s); u(s) is Gi-predictable and such that E[/ s)|?ds] < oc
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U is a Hilbert space equipped with the inner product

.
<y up = E[/0 1 (5)us()ds]

|| - || will denote the norm in U. Let U,4 be a closed, convex subset
of U, which will be the space of admissible controls. Consider the
linear quadratic cost functional:

E[/TQl(s ds—i—/ Q(s)X (s ds—l—/ Qs(s

/ Qu(s)XY(s)ds + a1 X“(T)? + aqu(T)]

and the value function:

(8) J=inf J(u)

ueU,y
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In Section 2 we prove the existence of an optimal control and
provide some characterizations for the control.

In Section 3 we consider the following general controlled stochastic
Volterra equation:

XY(t) = x+/tb(t,s,X“(s),u(s),cu)ds+/0 o(t,s, X"(s), u(s),w)a

0
(99/0 /Ro 0(t,s, X"(s), u(s),z,w)N(ds, dz)

and the performance functional of the form:

-
(10)  J(u) = E{/O f(t, X“(t), u(t),w)dt + g(X”(T),w)},
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where b: [0, T] x [0, T] x Rx D x Q — R,

o:[0,T] x[0,T]x Rx D xQ — R,

O:[0, T] x[0, T] x Rx D x Ry xQ — R and

f:[0, T] x Rx D xQ — R are Fi-predictable and g : Rx Q2 — R
is F1 measurable and such that

;
(11) E[/O £ (£, X5 (t), u(t))|dt + [g(X(T))|| < oo,

for any u € Ag, the space of admissible controls. Here D is a
closed convex subset of R. The problem is to find o € Ag such
that

(12) &= sup J(u) = J(D)
uceAg

Using the Malliavin calculus, inspired by the method in [M@Z], we
will deduce a general maximum principle for the above control
problem.
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Note that we are off the Markovian setting because the solution of
the Volterra equation is not Markovian.

We emphasize that partial information is different from partial
observation, where the control is based on noisy observations of
the (current) state. For examples, our discussion includes the case
Gt = Fi—s (6 > 0 constant), which corresponds to delayed
information flow. This case is not covered by partial observation
models. For a comprehensive presentation of the linear quadratic
control problem in the classical case with partial observation,

see [B], with partial information see [HQ)].
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2 LINEAR QUADRATIC CONTROL

Theorem

Suppose Ki(-,+) and [z KZ(t,s,z)v(dz) are bounded and
@2(s) >0, a1 > 0 and Q1(s) > & for some 6 > 0. Then there
exists a unique element u € U,y such that

(1) J=J(u)= inf J(v)

veU,y
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Proof. For simplicity, we assume Ds(t,s,z) = 0 and
Ks(t,s,z) = 0 in this proof because these terms can be similarly
estimated as the corresponding terms for Brownian motion B(-).
By (5) we have
t

E[X“(t)%] < TE[£(t)?] + 75[(/; Ki(t,s)X"(s)dB(s))’] + 7E[(/0 L

+7E(( /0 Ko, $)dB(s))?] + TE[( /0  Ka(t, $)u(s)ds)?] + TE( /0 0y
+7E[( / /R Ka(t,s,z)X"(s)N(ds, dz))?]

< 7E[E(t )2]+7E[/ K2(t, 5)X"(s) ds]+7E[/ D(t, 5)u(s)?ds]

+7/0 K3(t, s)ds+7/ K3(tsdsE[/ ds]+7tE[/ D3(t
+TE] /0 ( /R KX, s, 2)(dz)) X" (5)2ds]
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Applying Gronwall's inequality, there exists a constant (3 such that
(3) E[X“(£)?] < ( C1E[/ s)ds] + C1)e“ 7.

Similar arguments also lead to

E[(X*(e) - X ()] < CzeC2T<E[( / Ka(t,5) (tna(s) — un(s))ds)’
(@) +E[[ Dife,s(ua(s) - u1<s>)2ds1)

for some constant C;. Now, let u, € U,q be a minimizing
sequence for the value function, i.e., lim,_~ J(u,) = J. From the
estimate (3) we see that there exists a constant ¢ such that

-
E[/ Qs(s)u(s)ds + / Qa(s s)ds + ax X“( )]§c|u|+c
0

Thus, by virtue of the assumption on Q;, we have, for some
constant M,
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This implies that {u,} is bounded in U, hence weakly compact.
Let u,,, k > 1 be a subsequence that converges weakly to some
element ug in U. Since U,y is closed and convex, the Banach-Sack
Theorem implies ug € U,g. From (4) we see that if u, — v in U
then XU (t) — XU(t) in L?(Q) for every t > 0 and X“(-) — X(*)
in U. The same conclusion holds also for Z4(t) := X“(t) — X°(t).
Since Z" is linear in u, we conclude that equipped with the weak
topology both on U and L2(Q), Z!(t) : U — L?(R) is continuous
for every t > 0 and ZY(:) : U — U is also continuous. Thus,

XU(t): U— L3(Q), X“():U—=U

are continuous with respect to the weak topology of U and L2(Q).
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Since the functionals of X" involved in the definition of J(u) are
lower semi- continuous with respect to the weak topology, it
follows that

lim J(up,) =

k—o0

klim E[/ Qi(s ds+/ Q2(s) X (s ds+/ Q3(s)un, (:

/ Qu(s)X % (s)ds + ar X7+ (T)? + azX“”k(T)]

> FE |: / Ql UO dS / Q2 X UO dS / Q3 U()

; / Qu(5)X*(5)ds + a1 X*(T)? + a2X”°(T)}
0
— J(uh1)

which implies that ug is an optimal control.
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The uniqueness is a consequence of the fact that J(u) is strictly
convex in u which is due to the fact that X" is affine in u and x?
is a strictly convex function. The proof is complete. O

To characterize the optimal control, we assume D;(t,s) = 0 and
Ds(t,s,z) =0, i.e., consider the controlled system:

XU(t) = §(t)—|—/0t[K1(t,s)X”(s)+Kg(t,s)]dB(s)—|—/0tK3(t,s)u(s)‘
+ /t/R K4(t,s,z)X”(s)N(ds,dz)+/tD2(t,s)X”(s)ds
0 0 0
®) /0 /R Ks(t, s, 2)Ri(ds, dz)
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Set
dF(t,s) := dsF(t,s)
(9) = Kl(t,s)dB(s)qL/R Ka(t,s,z)N(ds, dz) + Da(t, s)ds.

For a predictable process h(s), we have
t
/ h(s)dF(t,s)
0

- /OtKl(ts //ROK4tsz $)i(ds, dz)

(10) —l—/ot Ds(t,s)h(s)ds.
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Introduce

(11) . /01 £(sn)dF (Sn_1, 1)

Mo(t) = /OtKg(t,sl)dB(sl)+Z/OtdF(t,sl)/051 dF (51, )
n=1

Sp—2 Sn—1
(12) ... / dF(sn,Q, S,,,l) / K2(5n717 Sn)dB(Sn)a
0 0
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t . o0 t S1
Ms(t) = /O/RK;,(t,sl,z)dN(dsl,dz)JrZ/o dF(t,sl)/O dF (s1,
0 n=1

Sn—2 Sn—1 ~
(13) / dF (5n_2, 5n1) / Ks(5n_1. 5n, 2)d N (dsn, d2),
0 0
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and

L(ts) = Kg(t,s)—i—i/tdF(t,sl)/SI dF (51, )
n=1"Ss s

(14) / " Ky(sm, 5)dF (51, 50)
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The following theorem is a characterization of the optimal control.

Theorem
Suppose U,q = U. Let u be the unique optimal control given in
Proposition 1. Then u is determined by the following equation:

2Qu(s)u(s) + 2E] / Q(NL(1, )L(I, $)dI)dt|Gd]
(15} 2a£] / L(T,s)dtGs] + Qs(s)
+ E[/ Qu(1)L(1, 5)dI|G]

)
(16} 2£] / Qo) (M (1) + Mo(1) + Ms())L(1, 5)dl|Gs]

+ aE[L(T,s)|Gs]
(17} 2a1E[(Mi(T) + Mo(T) + M3(T))L(T, s)|Gs] = 0.
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Proof. For any w € U, since u is the optimal control we have

d
(18) J(u)(w) = d—sJ(u +ew)|e=o =0
This leads to
[ / Qi(s ds+2/ @(s)X (s )55XU+EW(5)|€:°dS

/Qg(s)w ds—i—/ Qu(s x“+EW( J]o_ods

(4921 X*(T) X (T |ezo + 32qu+5W(T)|s=o] —0

de

for all w € U.
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By virtue of (8), it is easy to see that

w d urew
V() = X ()

satisfies the equation:
Y*(t)
t t
= / Kl(t,s)YW(s)dB(s)+/ Ks(t,s)w(s)ds
0 0

(20)+ /0/EK4(t,s,z)vW(s)ﬂ/(ds,dz)+/0 Ds(t, 5)Y"(s)ds
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Note that Y" is independent of u. Next we will find an explicit
expression for X". Let dF(t,s) be defined as in (9). Repeatedly
using equation (8) we have

X4(t)
= 5(1’) + At[Kl(t, Sl)Xu(Sl) + Kg(t,sl)]dB(Sl) + /Ot K3(t, Sl)u(Sl)d

+/t /RO Ka(t, s1,2)X"“(s1)N(dsy, dz) + /Ot Dy(t,s1)X"(s1)ds

/ / K5 t,s1,z dSl,dZ)
Ro

(21)
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= f(t)-i—/t Kl(t,sl) |:£(51)“l‘/SI[K]_(S]_,SQ)XU(SQ)“FKQ(S]_,SQ)]C/B(.'
0 0
+/1/ K4(51,52,Z)XU(SQ)N(d52,dZ)Jr/o K3(51,52)u(52)d52
Ro

—i—/ D2(51,52)X”(52)d52+/ / Ks(s1, 52,2 )N(dsz,dz)}dB(sl
)
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+/t/ Ka(t, s1,2) [5(51)+/051[K1(51,52)XU(52)+Kz(sl,sz)]dB

0 Ro

+ / 3 / Ka(s1, 52, 2)X"(52) (dsy, dz) + /0 " Ka(s1, ) u(s5)dso
0 Ro

+/§23@2(51,52)Xu(52)d52

+ /0 3 /R ect 55, 2)Ri(dsp, dz)} Ni(ds1, dz)
(24)
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/ / Da(t, 51,7 [ (s1) + /1[K1(51,52)X”(52)+Kz(sl,sz)]dB
Ro 0
/ / K4 51,52, (Sg)N(ng,dZ)—i—/ K3(51,52)u(52)d52
Ro 0
+/ D2(51,52) (52 d52+/ /R K5 51752, )N(dSQ,dZ):| dS]_
0 0
—|—/(2K)g(t,51)d8(51) +/Ot Ks(t, s1)u(s1)dst

// Ks(t, s1,z dsl,dz)
Ro
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_ g(t)+§:1 /0 L (t.s1) /O " A (51, 55) - /0 " e (50)dF (51, 0)

o0 t S1
+ Z/ dF(t,sl)/ dF(s1, ) -
n=1"0 0
Sp—2 Sp—1
[ ) [ el s ()
0 0
o0 t S1
+ Z/ dF(tasl)/ dF(s1,52) -
n=170 0
Sn—2 Sn—1
/ dF(5n2,5nl)/ K3(5n7175n)u(5n)d5n
0 0
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oo t s1
+ Z/O dF(t,sl)/o dF (s, )" -
n=1

Spn—2 Sn—1 ~
N R e e Y
0 0 Ro
t t
+ / Kg(t,sl)dB(Sl)-i-/ K3(t,51)u(51)d51
0

0

/ / K5 t,s1,z dSl,dZ)
Ro
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Similarly, we have the following expansion for Y":

Yo ()
= /0 K3t5 dS—i—Z/ dF(t 51)/ dFSl,Sz)--'
(27) ”_/0‘5" dF(Sn—275n—1)/O K3(5n—175n)W(5n)d5n-
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Interchanging the order of integration,

v = [ wie)|rate.s) +

S
S

0 t 1 Sn—1
Z/ dF(t,sl)/ dF(S]_,SQ)"'/ K3(sn, s)dF(sn—1,5n)|ds
n=1"% s

t

(2:8)/0 L(t,s)w(s)ds.

Now substituting Y* into (19) we obtain that
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E[2 /0 " Qu(s)u(s)w(s)ds + 2 /O " Qa(s)X(s) /O " Ls, Hyw()di)d
+ E[ /0 " Qu(s)w(s)ds + /0 ") /O T i(s, /)W(/)d/)ds}
+ 2&(329{/()TXU(T)L(T,S)W(S)O'S+az/oTL(T,S)W(S)dS] =0

for all w € U.
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Interchanging the order of integration and conditioning on Gs we
see that (29) is equivalent to

3 " Qus)uls)wls)ds +2 / " wo)El / L (X)L, 5)dl|
4 E[/ Qs(s ds+/ W(S)E[/STQ4(/)L(/,S)d/\gs]ds]
v 2] [ BTG Iw(s)o]
+ k| [BOEIL(T. )G Iw(s)s] =0
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Since this holds for all w € U, we conclude that
T
201()u(s) + 26[ | QDX (DL 5)dllG.]
S

]
L Qs(s) + E / Qu(1)L(/, 5)dl|Gs]
(31) + 2a1E[XY(T)L(T,s)|Gs] + a2E[L(T,s)|Gs] = 0.

Note that X“(t) can be written as
t
Xu(t) = Ml(t) + MQ(I‘) + M3(t) + / U(S)L(t, S)dS.
0

Substituting X“(t) into (31), we get (17), completing the proof.
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Example

Consider the controlled system

(32)  XY(t)=¢&(¢t) + /Ot Ky(t,s)dB(s) + /Ot Ks(t, s)u(s)ds

and the performance functional

E[/T Q1 (s)u2(s)ds + /OT Qs(s)u(s)ds

(33) / Qa(s)XY(s)ds + a1 X“(T)? + aQX”(T)]
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Suppose G; = {Q, 0}, meaning that the control is deterministic. In
this case, we can find the unique optimal control explicitly. Noting
that the conditional expectation reduces to expectation, the
equation (17) for the optimal control u becomes

.
2Qu(s)u(s) + 2a1 /O u(t)Ks(T, )t Ka(T, 5)

+Qs(s / Qa(NKs(1,s)dl
(34) + aK3(T,s)+2a18(T)Ks(T,s) =0,

where we have used the fact that E[M(t)] =0,
My (t) = &(t), L(t,s) = K3(t,s) in this special case.
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Put
(35) b= /T u(t)Ks(T, t)dt
0

Then (35) yields

(36) u(s) = —arb + h(s),

where

Qs(s) + [.| Qu(N)K3(l,s)dI
h(s) = — 200(s)

_ 32K3( T, S) + 231g( T)K3(T, S)
201(5)
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Substitute the expression of u into (36) to get

T K3(T, t)2 T _
_alb/o Ql(t)dt+/0 h(t)Ks3(T,t)dt = b

Consequently,

1 T
b= / h(t)Ks(T, t)dt
1+ 1fTK3 )dt (kT 1)
Together with (37) we arrive at
1 ! 3(T5 )
= — h(t)Ks(T, h
u(s) al<1+81fT K3(T§) dt/ (t)K3( t)dt) 0 +h(s)
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3 A GENERAL MAXIMUM PRINCIPLE
In this section, we consider the following general controlled
stochastic Volterra equation:

XY(t) = x+/o b(t,s,X”(s),u(s),w)ds—i—/o o(t,s, X"(s), u(s),w)a
(19/0 [ 0(t.5.X4(5),u(s),z,) (5, )

where u(t) is our control process taking values in a given open
convex set D C R. More precisely, u € Ag, where Ag is a family
of G;- predictable controls. Here G; C F; is a given subfiltration
and b: [0, T] x[0,T]x Rx DxQ — R,

o:[0,T] x[0,T] x Rx D xQ — R and

6:[0,T] x [0, T] x R x D x Ry x Q — R are given measurable, F;
predictable functions.
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Consider a performance functional of the form:

-
(2) J(v) = E[/ f(t,X”(t),u(t),w)dt—i—g(X”(T),w)],

0

where f : [0, T] x R x D x Q — R is F; predictable and
g R xQ — R is Fr measurable and such that

G)

E[/ |f(t, X (t), u(t),w)|dt+|g(X“(T),w)|] < oo, forall wueAg
0

The purpose of this section is to give a characterization for the

critical point of J(u). First, in the following two subsections we

recall briefly some basic properties of Malliavin calculus for B(-)
and N(-,-). For more information we refer to [D@P] and [DM@P].
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3.1 Integration by parts formula for B(-)

In this subsection, Fr = o(B(s),0 < s < T). Recall that the
Wiener-Ito chaos expansion theorem states that any

F € [2(Fr, P) admits the representation

(4) F=YInlfn)
n=0

for a unique sequence of symmetric deterministic function
f, € L2([0, T]*") and
(

5)
T th tr
I,,(f,,):n!/0 /0 /0 fo(t1, -+, ty)dB(t1)dB(t2) - - - dB(t,).

Moreover, the following isometry holds

[e.9]

(6) E[F?) = nll|fal |20, 772
n=0
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Let D> be the space of all F € L2(F1, P) such that its chaos
expansion (4) satisfies

(7) HFHzDLQ = Z nn!HfNH%2([O,T]X") < 00.
n=0

For F € D1 and t € [0, T], the Malliavin derivative of F, D:F, is
defined by

(8) DiF =" nlp1(fa(- 1)),
n=0

where I,_1(f,(-, t)) is the n — 1 times iterated integral to the first
n—1 variables of f, keeping the last variable t, = t as a parameter.
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We need the following result:

Theorem A ( Integration by parts formula (duality formula)
for B(+))

Suppose h(t) is Fi-adapted with E[f0 h?(t)dt] < co and let
F e D172 Then

(9) E[F / t)dB(t)] = E| / t) D, Fdt].
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3.2 Integration by parts formula for N

In this section F1 = o(n(s),0 <s < T), where

n(s) = o Jr, zN(dr, dz). Recall that the Wiener-Ito chaos
expansion theorem states that any F € L?(Fr, P) admits the
representation

n=0

for a unique sequence of functions f, € L2((dt x v)"), where
[2((dt x v)") is the space of functions fy(t1, 21, - , tn, Zn);

ti € [0, T], zi € Ro such that f, € L?((dt x v)") and f, is
symmetric with respect to the pairs of variables
(t1,21), (2, 22), ..., (tn, zn). Here I,(f,) is the iterated integral:
(11

) T th t2 ~
/n(fn) = n'/ / / / / f,,(tl,zl,--' 7t',-,,Zn)/\/(CI'l'hC]Zl)"'
0 Ro /0 Ro 0 Ro
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Moreover, the following isometry holds

o)

(12) E[FZ] — Zon!”fn”%z((thl/)”)'

Let DLQ be the space of all F € L?(Fr, P) such that its chaos
expansion (1) satisfies

(13) IFIE, =37 ol 1fal oy < o0
n=0

For F € Dy and t € [0, T], the Malliavin derivative of F, D;,F,
is defined by

(14) Dt,zF = annfl(fn(Wta Z))’
n=0

where I,_1(fa(, t,2)) is the n — 1 times iterated integral with
respect to the first n — 1 pairs of variables of f,, keeping the last
pair (tn, z,) = (t,z) as a parameter.
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We need the following result:

Theorem B ( Integration by parts formula (duality formula)
for )

Suppose h(t, z) is Fi-predictable with
E[fOT Jr, h3(t, z)dtv(dz)] < oo and let F € Dy 5. Then

E[F/ /R (t,z)N(dt, dz)] —E[/ /R (t,z) Dy, Fdtv(dz)).
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3.3 Maximum principles for optimal control of stochastic
Volterra equations

We will make the following assumptions throughout this
subsection.

(H.1). The functions b: [0, T] x [0, T] X R x D x Q — R,
o:[0,T]x[0,T]x RxDxQ— R,

0:[0,T] x[0, T]x RxD x Ry x Q2 — R,
f:[0,T]xRxDxQ— Rand g: R xQ — R are continuously
differentiable with respect to x € R and u € D. (H.2). For all

t € (0, T) and all G; -measurable random variables « the control

/804(5) = aX[t,T](S)

belongs to Ag.
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(H.3). For all u, 8 € Ag with 3 bounded, there exists § > 0 such
that

ut+yBeAg forall ye(—0,9)

(H.4). For all u, 8 € Ag with 3 bounded, the process
YB(t) = %X(“”ﬂ)(tﬂy:o exists and satisfies the equation

Yo(t)

— ?(t, s,X”(S),u(S))Yﬁ(S)der/O %(t’S’XU(SLU(S))ﬁ(S)dS

0
9o

b [0 X0 U Y s)aBLs) + [0 (1 X4(5) ulsNC
0 0
+ / /R (£, 5, X"(s), u(s), z) Y* () (s, dz)

+ /O/Ro g—fot,s,XU(s),u(s),z)ﬁ(s)ﬂ/(ds,dz)
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(H.5). For all u € Ag, the Malliavin derivatives D:(g’(X(T))) and
D: .(g'(X(T))) exist. In the sequel, we omit the random
parameter w for simplicity.

THEOREM (Maximum principle for optimal control of
stochastic Volterra equations)
(1). Suppose @ is a critical point for J(u). Then

S == qup Centre of
§ UNIVERSITETET k Mathematics for
bl rosro L Applications




EH : %(S,X(s),ﬁ(s))/\(s,t)ds+ /t %(S,X(s),a(s))ds

: gi’(r s, X(s), 0(s))A(s, t)g'(X(T))ds
- g’;(r,s,qu),a(s))g’<>“<(7))ds
n tTg(;(T s, X(s), #(s))A(s, ) Ds(g'(X(T)))ds
- ZZ(Tsx(s) 0(s))Ds(g'(X(T)))ds
n /tT( . gi( .5, X(s), 8(s), 2)A(s, ) Ds - (g' (X(T)))v(dz))d.

.
+ /t( %(T,SJA((S),0(5),Z)Ds,z(g’(x(T)))V(dZ))dS} Gt

SEn. N == qup Centre of
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(2). Conversely, suppose i € Ag such that (17) holds. Then & is a
critical point for J(-).
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Proof. (1). Suppose @ is a critical point for J(u). Let 5 € Ag be
bounded. Write X = X% Then

0 = A+ yB)
- E[/o {gi(’-‘ X(®), (>>Yﬁ(t)+§f(t X(t), 0(t))B(1) ot
(18)  +g/(X(M)YAT),
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where

Yo(t)

I 0SLO

[
J, o
J,
|

‘@\ UNIVERSITETET

X (o+ypB) (t)|

?
fll

/\

s), 0(s)) YP(s) ds+/ 5.t
(t,s X(s) a(s))Y (s)dB(s)—i—/0

—tsX

t oo N

a(t, s, X(s),

 0(s), 2) Y7 (s)N(ds, dz)

% t,s,X(s), 0(s), z)8(s)N(ds, dz)
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By the duality formulae (9), (2), we have
Elg/(X(T)Y ()
B T ob 3 P
— E| [ ST s XDV O (T
0

) %(T 5. X(s), a(s))ﬂ(s)g’(k(r))ds]

+E ( a*O—(T s, X(s), (s ))Yﬁ(S)dB(S))g’(X(T))]

L JO

+E

([ s k), (s))ﬁ(s)ds(s))g'o%(n)}

L JO

- T
+|(f Rogi(rsxw 0(5).2)Y?(9)U(es. a2))g/ (X(T))|

el / Lo ) 8(s). 2)3(5) s, d2)g/(X(T))
(20) °
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ox
0
HE| [ GUT 5 X, 230 (KT
T o
+€| [ ST s X a(s))vﬂ(s)os(g'mT)))ds]
T g
€| [ ‘;u(r,s,X(s»a(s))ﬁ(s>os<g'<><(r)))]
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Let « be bounded Gt measurable. Choose 3.(s) = axj,1(s) and

substitute (21) into (18) to obtain
E / ol DY (s)as b [ s %060 (6]
v ] [ 0T %) 0 Y (9 (K]
" E:a t "0 (T s X(s) e (K ))ds}
- el T X6 )Y (D (KT
+ E / 99 (1 s, X(s), i(s))Ds(g (X(T)))ds]
el / | ):2)Y(6)Da (&' (X (TY)(d)]
e B u(s),z)Ds,z(g'_gX_(T)))u(cgi)gs}
(@ ranggoree CMA &

XT-—1




where YP(/) =0 for | < t, and for | > t,

Vi) = [ 205 K(s) s Y (5)ds
+a : %(/,S,X(s),a(s))ds

+ /t I ‘;z(/, s, X(s), b(s)) YP(s)dB(s)
+a/lg (1,5, X(s), i(s))dB(s)
/ /RO (1,s,X(s), i(s), z) YP(s)N(ds, dz)
(23) +a/ /RO (1,5, X(s), o(s), z)N(ds, dz)
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For I > s, put

dr(l,s) :==dsl(/,s)
= P(1,5.X(),8())ds + O (1,5, X(5), 8(5))dB(s)

Ox
(24) + . 29(/ s X( ), fl(s),z)N(ds,dz)

This means that for a predictable process h(s),we have

/ ' W()dr (1. 5)

= [ Pusxe o [

//R (1,5, X(s), 0(s), 2)h(s)N(ds, dz).
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Set

D(,t) — gb(/ 5, X(s), (s))ds
+ 80'(/ s, X(s), i(s))dB(s)

(26) + //RO (1,5, X(s), o(s), z)N(ds, dz).

Repeatedly using the linear equation (23), as in the proof of (26),
we obtain

(27) YPa (1) = aN(l, t),
where

A(1,t)
0 / S1
= D(/,t)+2/ dF(l,sl)/ dr(s1, ) -
k=1 t t
/10\

Sk—1
D(si, t)dT(Sk_1, Sy \guumn gu Centre of
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We substitute (27) into (22) to get

;
E[a{ : g:(sj(s),a(s))/\(s,t)ds+ gf (s, X(s), t(s))ds

t

+ @(T s, X(s), i(s))\(s, t)g'(X(T))ds

t gs (T,s, X(s), 0(s))g'(X(T))ds

+t$( X(s). t(s))A(s. £) De(&'(X(T)))ds

N 6"(T s, X(s), b(s)) Ds(g'(X(T)))ds

*/ﬂQwa (5). 2)A(s. £)Ds 2(& (X(T)))(d2)ds

+1A&ps&memewm@}

—(O@m\
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Since « is arbitrary, it follows that

-
E[ t %(S,X(S),Q(S))A(S,t)ds—i— : gf(s X(s), o(s))ds
[0 7.5, K(9, UG, 0 (KT

b [ 0T X9, B K(T))

T o ~

+ t gX(T s, X(s), 0(s))A(s, t)Ds(g'(X(T)))ds

- 80(T$X(s) 0(s)) Ds(g/(X(T)))ds

+ / /R  2)A(s, ) Ds (&' (X(T)))w(dz)ds

o B koot ,z)Ds,z<g'(k(T»)v(dz)dsgt]

Ro

M N

RN ol w | Centre of
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(2). Suppose (17) holds for some i € Ag. Running the arguments
in the proof of (1) backwards, we see that (18) holds for all

B € Ag of the form ax[ 7(s). This is sufficient because the set of
linear combinations of such (3 is dense in Ag. O
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Theorem
Suppose f, b, 0,0 are all independent of x. The the critical point i
of J(u) is characterized by the following equation:

31) = o0.
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Proof. Suppose f, b, o are all independent of x. Then (17)
reduces to

T of ~ R
E[ s X a(s))ds

T b

5. (T8 X(), 0(s))g'(X(T))ds

+
(T.s,X(s), 2(s))Ds(g'(X(T)))ds

< o
/ / (T.5,X(s), 8(s), 2) s (&' (X(T)))v(dz)ds|G
0

forall velo,T].

/
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By inserting G; we deduce that for all v > t,

E[ V gZ(s X(s), (s))ds

o [T s o) N (K(T)es
o [0 s K(s). 26D (KT
/ /R (s), 0(s), 2) Ds . (&' (X(T)))v(dz)ds gt]

(33: 0.

Taking the right derivative with respect to v at the point t we
obtain (31).
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4 Applications to stochastic delay control

We now apply the general maximum principle for optimal control of
Volterra equations to the stochastic delay problem (2) - (3) in the
Introduction, by using the equivalence between (2) and (4). The
system (4) satisfies the conditions of Theorem 3.2 and therefore we
get the following condition for an optimal harvesting rate oI(t):

] =0

(1) E|Ui(t, (1), w) + K(T, ) U(X(T).w)|G

D Uii=1,2.

where X(T) = XY(T) and Uj = &
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Now suppose U; and U, are stochastic utilities of the form

(2) Ul(t7 u, w) = fYt(w)Dl(ta U)
(3) Us(x,w) = ((w) Ua(x),

where v¢(w) > 0 is F-adapted and ((w) is Fr-measurable and
U1, Uz are concave, C!-functions on (0,00) and R, respectively.
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Then (1) simplifies to
@) Ut 2()EDelGe] = —K(T, t)E[CUL(X(T))IG:]

This gives a relation between the optimal control &(t) and the
corresponding optimal terminal wealth X(T). In particular, if

(5) Ua(x) = x
we get

_K(T.0E[CI9]

(6 By(e,0(0) =~ g
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We have proved

Corollary

The optimal consumption rate i(t) for the system (2), (2), (3),
(5) and the performance functional

T ~
J(u) = E[ /0 (@) Dr (8, u(6))de + C(@)XU(T)]

with partial information G is given by (6).
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