A Robust Predictable L^{∞} -Martingale Representation Property for Marked Point Processes and Super-Additive Insurance Markets

> Johannes Leitner TU Vienna

December 2, 2008

Content

- 1. The Economic Model
- 2. Marked Point Process / Random Measures
- 3. Super-Additive Markets, No-Arbitrage
- 4. Irreversible / Dynamic Insurance Markets
- 5. Completeness / Hedging, Replication

The Economic Model

- New information arrives at stopping times,
- Super-additive (insurance) market,
- No-arbitrage, completeness, replication of contingent claims.

Marked Point Process

- (Ω, \mathcal{F}, P) probability space. (E, \mathcal{B}) separable metric space, $\overline{E} := E \cup \{\Delta\}, \Delta \notin E$. E.g. $E = \mathbb{R}^d \setminus \{0\}$.
- Sequence $\mathbf{R}_+ \times \overline{E}$ -valued random variables $(T_n, X_n)_{n \ge 1}$ with
 - 1. Points: $T_0 := 0 < T_n < T_{n+1}$ on $\{T_n < \infty\}, n \ge 1$,
 - 2. Marks: $\{X_n = \Delta\} = \{T_n = \infty\}, n \ge 1.$
- Interpretation: price, interest rate, etc., jumps by X_n at T_n .

Random Measure

Corresponding random measure:

$$\mu(\omega, dt, dx) = \sum_{n \ge 1} \epsilon_{(T_n(\omega), X_n(\omega))}(dt, dx) \mathbf{1}_{\{T_n(\omega) < \infty\}}, \quad \omega \in \Omega,$$

 $\epsilon_{(t,x)}$ probability measure concentrated in $(t,x) \in \mathbf{R}_+ \times \overline{E}$.

 μ is optional w.r.t.

$$\mathcal{F}_t := \mathcal{F}_0 \vee \sigma \Big(X_n \mathbf{1}_{[T_n,\infty)}(t), n \ge 1 \Big), t \ge 0.$$

Stochastic Integrals w.r.t. Random Measures

H predictable (optional) process, define **pathwise** (if integral exists):

$$H * \mu_t(\omega) := \int_{[0,t] \times E} H(\omega, s, x) \mu(\omega; ds, dx), \quad \omega \in \Omega.$$

Marked point process: On $[0, \sup_{n\geq 1} T_n)$

$$H * \mu = \sum_{n \ge 1} H(T_n, X_n) \mathbf{1}_{[T_n, \infty)}.$$

5

Compensator of a Random Measures

Let μ be optional, $\sigma\text{-finite.}$ There exists a unique predictable random measure $\hat{\mu}$ such that

 $H * \mu - H * \hat{\mu}$ is a local **martingale**

for all predictable H such that $H * \mu$ is of locally integrable total variation.

 $\hat{\mu}$ is the predictable compensator of μ .

 \exists kernel *K* from $(\Omega \times \mathbf{R}_+, \mathcal{P})$ into (E, \mathcal{B}) and non-decreasing predictable process *A* such that:

$$\hat{\mu}(\omega; dt, dx) = K(\omega, t, dx) dA_t(\omega).$$

Counting process $N := \sum_{n \ge 1} \mathbf{1}_{[T_n,\infty)}$, Compensator $\hat{N} = A$

Assume throughout

- \hat{N} is continuous.
- \hat{N}_{∞} is uniformly bounded.

Insurance Market

K(t, dx) describes the law of X_n given \mathcal{F}_{t-} and $T_n = t$.

 $H(\omega, t, x) = x \mathbf{1}_{x>0}, \ \lambda \ge 0$ security loading:

$$H * \mu - H * \left((1 + \lambda) \cdot \hat{\mu} \right) = H * \mu - \left(E_K [H] (1 + \lambda) \right) \cdot \hat{N}$$

is a risk process.

Spaces of predictable integrands

 $H: \Omega \times \mathbf{R}_+ \times E \to \mathbf{R}$ measurable w.r.t. $\mathcal{P} \otimes \mathcal{B}$ (predictable)

Insurance claim equals $H(\omega, t, x)$ if $(T_n(\omega), X_n(\omega)) = (t, x)$

$$G_{\infty} := \{H \text{ predictable}\} \cap L^{\infty}, \text{ and for } p < \infty$$

 $G_p := \{H \text{ predictable} \mid \int_E |H(\cdot; x)|^p K(\cdot; dx) \in L^{\infty}\}.$

Change of measure

For q conjugate to p set

$$G_q^{++} := \{ Y \in G_q | Y > 0 \}.$$

For
$$Y \in G_1^{++}$$
 and $M^Y := (Y-1) * (\mu - \hat{\mu})$ define Q^Y by

$$\frac{dQ^Y}{dP} = \mathcal{E}(M^Y)_{\infty} > 0.$$

W.r.t. Q^Y the compensator $\hat{\mu}^{Q^Y}$ of μ is given as $Y \cdot \hat{\mu}$.

Integrability Condition

 $(\mathcal{H}, \mathcal{Y}) := (G_p, G_q^{++})$ satisfies the following condition

(INT) For all
$$(H, Y) \in \mathcal{H} \times \mathcal{Y}$$
, we have $Q^Y \sim P$ and
 $H * (\mu - \hat{\mu}^{Q^Y}) = H * \mu - (HY) * \hat{\mu}$ is a uniformly integrable
 Q^Y -martingale.

Super-Additive Markets

Linear space $\mathcal{V}_0 \subseteq L^1(\mathcal{F}_0)$ of initial capitals, \mathcal{H} linear space (of actions in a market)

Functional $W : \mathcal{V}_0 \times \mathcal{H} \to L^0, (v, H) \mapsto W_v^H$ such that $W_v^0 = v$ and $W_{v+\hat{v}}^{H+\hat{H}} \ge W_v^H + W_{\hat{v}}^{\hat{H}}.$

EMM Condition

 $\mathcal{Z} \neq \emptyset$, Z > 0 for all $Z \in \mathcal{Z}$.

(EMM) For all $(v, H) \in \mathcal{V}_0 \times \mathcal{H}$ there exists a $Z \in \mathcal{Z}$ such that

(i)
$$ZW_v^H \in L^1$$
,

(ii) $E[ZW_v^H | \mathcal{F}_0] = v.$

Abstract No-Arbitrage

Let $(v, H), (\tilde{v}, \tilde{H}) \in \mathcal{V}_0 \times \mathcal{H}$.

Proposition. Under Condition (EMM) we have

$$W_v^H \leq W_{\tilde{v}}^{\tilde{H}}$$
 and $v \geq \tilde{v}$ imply $v = \tilde{v}$ and $W_v^H = W_{\tilde{v}}^{\tilde{H}}$.
I.e. a no-domination property holds:

$$W_v^H \leq W_{\tilde{v}}^{\tilde{H}}$$
 and $P(W_v^H < W_{\tilde{v}}^{\tilde{H}}) > 0$ imply $P(v < \tilde{v}) > 0$.

In particular the no-arbitrage property holds:

$$W_v^H \ge v = W_v^0$$
 implies $W_v^H = v$.

Worst Case Scenario Condition

Let $\mathcal{H} \times \mathcal{Y} \subseteq G_p \times G_q^{++}$, (INT).

(WCS) For all $H \in \mathcal{H}$ there exists a $Y^H \in \mathcal{Y}$ such that $(HY^H) * \hat{\mu}_{\infty} \leq (HY) * \hat{\mu}_{\infty}$ for all $Y \in \mathcal{Y}$.

The Irreversible Insurance Market

Assume $(\mathcal{H}, \mathcal{Y})$ to satisfy property (WCS).

For $(v, H) \in L^p(\mathcal{F}_0) \times \mathcal{H}$, define $W_v^H := v + (H * \mu)_\infty - (HY^{-H}) * \hat{\mu}_\infty$ $= v + (H * \mu)_\infty - \left(\int_E HY^{-H} dK\right) \cdot \hat{N}_\infty.$ Let $(\mathcal{H}, \mathcal{Y})$ satisfy Conditions (INT) and (WCS).

Set
$$\mathcal{Z}_{\mathcal{Y}} := \{ \frac{dQ^Y}{dP} | Y \in \mathcal{Y} \}$$
:

Proposition. $\mathcal{Z}_{\mathcal{Y}}$ satisfies property (EMM). I.e. the insurance market described by $\{W_v^H | v \in L^p(\mathcal{F}_0), H \in \mathcal{H}\}$ satisfies the **no-domination** condition.

Irreversible Contracts

 Y^{-H} does in general not equal $Y^{-H1}[0,t]$ on [0,t].

Change of contract not possible.

Pricing in general not compatible with starting and stopping.

Decomposability

Definition. We say that \mathcal{Y} is \mathcal{P} -decomposable if $\mathcal{Y} \neq \emptyset$ and for all $A \in \mathcal{P}$ and $Y, \tilde{Y} \in \mathcal{Y}$, $\mathbf{1}_A Y + \mathbf{1}_{A^c} \tilde{Y} \in \mathcal{Y}$ holds.

Set $\mathcal{Y}_H := \left\{ Y^H \in \mathcal{Y} | \langle H, Y^H \rangle_K = \operatorname{essinf}_{Y \in \mathcal{Y}} \langle H, Y \rangle_K > -\infty \right\}$ for all $H \in \mathcal{H}$.

Proposition. If $\mathcal{H} \subseteq L^p$ and \mathcal{Y} is \mathcal{P} -decomposable and weakly compact in L^q , then it satisfies Condition (WCS) and $\mathcal{Y}_H \neq \emptyset$ for all $H \in \mathcal{H}$. Furthermore, under Condition (INT) no-arbitrage holds.

Dynamic Insurance Markets

Assume \mathcal{Y} to be \mathcal{P} -decomposable weakly compact in L^q .

For $(v, H) \in L^p(\mathcal{F}_0) \times L^p$ choose $Y^{-H} \in \mathcal{Y}_{-H}$ and define the semimartingale value process

$$V^{v,H} := v + H * \mu - (HY^{-H}) * \widehat{\mu}$$

= $v + H * \mu - \left(\int_E HY^{-H} dK\right) \cdot \widehat{N}.$

Starting and Stopping

Proposition. Assume \mathcal{Y} to be \mathcal{P} -decomposable, weakly compact in L^q . Then for all $(v, H) \in L^p(\mathcal{F}_0) \times L^p$ and all stopping times $\tau_0 \leq \tau_1$,

 $V^{v,H} - V^{v,H}_{\tau_0}$ equals $V^{0,H1}_{(\tau_0,\tau_1]}$ on $[\tau_0,\tau_1]$.

Robustness and Uniqueness

Assume $(\mathcal{H}, \mathcal{Y})$ to satisfy (INT), and \mathcal{Y} to be \mathcal{P} -decomposable, weakly compact in L^q .

Theorem. For all $(v, H) \in L^p(\mathcal{F}_0) \times \mathcal{H}$, $V^{v,H}$ is a local Q^Y -supermartingale for all $Y \in \mathcal{Y}$ and there exists a $Y \in \mathcal{Y}$ such that $V^{v,H}$ is a uniformly integrable Q^Y -martingale. No-arbitrage holds and uniqueness: $V_{\infty}^{v,H} = V_{\infty}^{\tilde{v},\tilde{H}}$ for $(v,H), (\tilde{v},\tilde{H}) \in L^p(\mathcal{F}_0) \times \mathcal{H}$ implies $V^{v,H} = V^{\tilde{v},\tilde{H}}$.

Robust Compensator

Define a time-additive/spatially super-additive random measure $\mathcal{Y}\cdot\hat{\mu}$ by

$$H * (\mathcal{Y} \cdot \hat{\mu}) := essinf_{Y \in \mathcal{Y}} \langle H, Y \rangle_K \cdot \hat{N}, \quad H \in \mathcal{H}.$$

 $\mathcal{Y} \cdot \hat{\mu}$ can be interpreted as a **robust** compensator for μ w.r.t. the probability measures in the closed convex hull of $\{Q^Y | Y \in \mathcal{Y}\}$.

 $V^{v,H} = v + H * \mu - H * (\mathcal{Y} \cdot \hat{\mu})$ is a local Q^Y -super-martingale for all $Y \in \mathcal{Y}$, resp. a uniformly integrable Q^Y -martingale for all $Y \in \mathcal{Y}_H$.

Example

Assume insurance contracts, described by $H^i \in \mathcal{H}, 1 \leq i \leq N$, to be given. Consider a market where trading in $V^i := V^{0,H^i}$ is possible under a **short-sale restriction**:

We assume for all $W^i \in L^{\infty}_+$, that $V := \sum_{i=1}^N W^i \cdot V^i$ is an attainable value process. Since $V = \sum_{i=1}^N V^{0,W^iH^i} \leq V^{0,H}$ for $H := \sum_{i=1}^N W^i H^i$, the resulting market is still arbitrage free, an investor never loses and possibly gains, buying the insurance H instead of trading in the single contracts V^i .

Main Result

Assume $\mathcal{Y} \subseteq G_1^{++}$ to be \mathcal{P} -decomposable and $\mathcal{Z}_{\mathcal{Y}}$ (or $\mathcal{Q}^{\mathcal{Y}} := \{Q^Y | Y \in \mathcal{Y}\}$) to be weakly compact in $L^1(\Omega)$, and

 $(\mathcal{F}_t)_{t \in \mathbf{R}_+}$ to equal the internal filtration generated by μ and \mathcal{F}_0 :

Theorem. μ has the robust predictable martingale representation property for $L^{\infty}(\mathcal{F}_{\infty})$ with respect to the closed convex hull of $\mathcal{Q}^{\mathcal{Y}}$.

Hedging in Dynamic Insurance Markets.

Definition. We say that \mathcal{Y} is \mathcal{P} -additive if \mathcal{Y} is \mathcal{P} -decomposable and if the predictable process $\Lambda := \langle 1, Y \rangle_K$ does not depend on $Y \in \mathcal{Y}$.

 \mathcal{P} -additive $\mathcal{Y} \subseteq G_1^+$, Q^Y -compensator of N:

$$\widehat{N}^{Q^Y} = \Lambda \cdot \widehat{N}, \quad Y \in \mathcal{Y}.$$

The law of N, resp. $(T_i)_{i\geq 1}$, under Q^Y does not depend on $Y \in \mathcal{Y}$.

Coherent Risk Measures

 \mathcal{Y} \mathcal{P} -additive, weakly compact in G_q^{++} , $H \in G_p$: $\rho.(H) := -\operatorname{essinf}_{Y \in \mathcal{Y}} \langle H, Y \rangle_K \Lambda^{-1} \in L^1(\widehat{\Omega}),$ $(v, H) \in L^p(\mathcal{F}_0) \times G_p$: $V^{v,H} = v + H * \mu - \rho.(-H) \cdot (\Lambda \cdot \widehat{N}).$

Random Set Theory:

$$H_{\cdot}(x) := H(\cdot; x), x \in E, \ \tilde{\rho}_t : L^p(dK_t) \to \mathbf{R}:$$

 $\tilde{\rho}_{\cdot}(H_{\cdot}) = \rho_{\cdot}(H).$

E.g. law invariant risk measure:

$$\tilde{\rho}_{\cdot}(H_{\cdot}) := -\int_0^1 F_{\cdot}^{\leftarrow}(u)g_{\cdot}(1-u)du,$$

Representation: Finite Jump Case

$$\mathcal{H} \times \mathcal{Y} \subseteq L^{\infty}(\tilde{\Omega}) \times G_1^{++}$$
. $v \in L^{\infty}(\mathcal{F}_0)$ and $H \in L^{\infty}(\tilde{\Omega})$

Consider the following SDE:

$$V = v + (H - V_{-}) * \mu + \operatorname{essinf}_{Y \in \mathcal{Y}} \langle V_{-} - H, Y \rangle_{K} \cdot \hat{N}.$$
(1)
with terminal condition $V_{\infty} = Z \in L^{\infty}.$

Translation invariance of ρ implies $Y^{-H} = Y^{V_{-}-H}$!

Linear Inhomogeneous ODE

On $[T_i, T_{i+1}]$, wlog i = 0, $(T, X) := (T_1, X_1)$: $V = v + (H - V_-) * \mu - \langle H, Y^{-H} \rangle_K \cdot \hat{N} + V_- \cdot (\Lambda \cdot \hat{N})$ $= v + (H - V_-) * \mu - (\rho \cdot (-H) - V_-) \cdot (\Lambda \cdot \hat{N}).$

 $V_T = V_{T-} + \Delta V_T = H(T, X)$ on $\{T < \infty\}$.

We can try to choose v such that $V_{\infty} = Z$ on $\{T = \infty\}$ too !

Internal Filtration

Condition $(\mathcal{F}_t)_{t>0}$ generated by \mathcal{F}_0 and μ : $Z \in L^{\infty}(\mathcal{F}_T)$

$$Z = \tilde{H}(T, X) \mathbf{1}_{\{T < \infty\}} + \tilde{H}_{\infty} \mathbf{1}_{\{T = \infty\}},$$

for $\tilde{H} : \tilde{\Omega} \to \mathbf{R}$ is uniformly bounded and $\mathcal{F}_0 \otimes \mathcal{B}_+ \otimes \mathcal{B}$ -measurable and $H_\infty : \Omega \to \mathbf{R}$ is uniformly bounded and \mathcal{F}_0 -measurable.

Explicit Solution

$$v := \frac{\tilde{H}_{\infty}}{\mathcal{E}(\tilde{\Lambda} \cdot \tilde{N})_{\infty}} + \frac{\langle \tilde{H}, \tilde{Y}^{-H} \rangle_{\tilde{K}}}{\mathcal{E}(\tilde{\Lambda} \cdot \tilde{N})} \cdot \tilde{N}_{\infty}.$$
 (2)

Define

$$R := v - \frac{\langle \tilde{H}, \tilde{Y}^{-H} \rangle_{\tilde{K}}}{\mathcal{E}(\tilde{\Lambda} \cdot \tilde{N})} \cdot \tilde{N}.$$
 (3)

For $\tilde{V} := \mathcal{E}(\tilde{\Lambda} \cdot \tilde{N})R$, we have on [0,T):

 $V = \tilde{V}.$

Applications

- Term structure of (defaultable) zero bonds,
- Time-Discretized versions can be applied to CDS-pricing, risk transfer problems.