On Multi-Period Risk Functionals

Georg Ch. Pflug

September 25, 2008

In longer term planning such as

- portfolio planning,
- pension fund management,
- electricity portfolio management,
- gas portfolio management,

we have to find decision strategies in a random environment. A good decision aims at maximizing the expected return among all acceptable decisions.

What is the overall expected return is clear. The overall acceptability is measured by a functional $\mathcal{A}(Y_1, \ldots, Y_T)$ from which we require that is a larger than some threshold.

A typical multi-period problem

$$\begin{split} \xi &= (\xi_1, \dots, \xi_T) \\ x &= (x_0, \dots, x_{T-1}) \\ Y_t &= H_t(x_0, \dots, x_{t-1}; \xi_1, \dots, \xi_t) \end{split}$$

a scenario process the decision process the generated income process

What is a single -period risk/acceptability measure?

A mapping $\mathcal{A} : L_p(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is called *acceptability functional* if it satisfies the following conditions for all $Y, \ \tilde{Y} \in \mathcal{Y}, \ c \in \mathbb{R}, \lambda \in [0, 1]$:

(A1) A(Y + c) = A(Y) + c (translation-equivariance),

(A1') There is a linear subspace $\mathcal{W} \subseteq L_p$ and a function $Z^* \in L_q(\mathcal{F})$ (1/p + 1/q = 1) such that for $W \in \mathcal{W}$

$$\mathcal{A}(W) = \mathbb{E}(W Z^*).$$

It then follows that

 $\mathcal{A}(Y+W) = \mathcal{A}(Y) + \mathbb{E}(W Z^*), \quad (the (W, Z^*) \text{ translation property})$ (A2) $\mathcal{A}(\lambda Y + (1-\lambda)\tilde{Y}) \ge \lambda \mathcal{A}(Y) + (1-\lambda)\mathcal{A}(\tilde{Y}) \text{ (concavity)},$ (A3) $Y \le \tilde{Y}$ implies $\mathcal{A}(Y) \le \mathcal{A}(\tilde{Y}) \text{ (monotonicity)}.$

An acceptability functional ${\mathcal A}$ is called

version-independent (law-invariant) if

 $\mathcal{A}(Y)$ depends only on the distribution function $G_Y(u) = \mathbb{P}\{Y \le u\}$ Given an acceptability functional \mathcal{A} , the mappings

$$ho:=-\mathcal{A}$$
 and $\mathcal{D}:=\mathbb{E}-\mathcal{A}$

are called risk capital and deviation risk functional, respectively.

By the Fenchel-Moreau Theorem, every concave upper semicontinuous (u.s.c.) functional ${\cal A}$ on ${\cal Y}$ has a representation of the form

$$\mathcal{A}(Y) = \inf\{\mathbb{E}(YZ) - \mathcal{A}^+(Z) : Z \in \mathcal{Z}\},\tag{1}$$

where $\mathcal{A}^+(Z) = \inf \{ \mathbb{E}(YZ) - \mathcal{A}(Y) : Y \in \mathcal{Y} \}$. We call (1) a *dual* representation. Let $dom(\mathcal{A}^+) = \{ Z : \mathcal{A}^+(Z) > -\infty \}$. Then

- \mathcal{A} is monotonic, iff $dom(\mathcal{A}^+) \subseteq L_q^+$
- A has the (W, Z*) translation property (A1'), iff dom(A⁺) ⊆ W[⊥] + Z*
- A is positively homogeneous, iff A⁺ takes only the values 0 and −∞

- The expectation. $\mathcal{A}(Y) = \mathbb{E}(Y)$.
- The Average Value-at-Risk. $\mathbb{A}V@R_{\alpha}(Y) = \frac{1}{\alpha} \int_{0}^{\alpha} G_{Y}^{-1}(p) dp.$
- The distortion functional. $\mathcal{A}(Y) = \int_0^1 G_Y^{-1}(p) k(p) dp$.
- Risk corrected expectation.

•
$$\mathbb{E}(Y) - \delta \mathbb{S} \mathsf{td}^{-}(Y)$$

•
$$\mathbb{E}(Y) - \delta \text{Gini}(Y)$$

$$\blacktriangleright \mathbb{E}(Y) - \delta \mathsf{Mad}(Y)$$

Let *h* be a convex, nonnegative function satisfying h(0) = 0 and let $h^*(v) = \sup\{uv - h(u) : u \in \mathbb{R}\}$ be its Fenchel dual.

primal	dual
$\mathcal{A}(Y) = \mathbb{E}Y - \mathbb{E}[h(Y - \mathbb{E}Y)]$	$\mathcal{A}(Y) = \inf \{ \mathbb{E}(Y Z) + D_{h^*}(Z) : \mathbb{E}Z = 1 \}$ $D_{h^*}(Z) = \inf \{ \mathbb{E}[h^*(Z - a)] : a \in \mathbb{R} \}$
$\mathcal{A}(Y) = \mathbb{E}Y - \inf \{\mathbb{E}[h(Y - a)] : a \in \mathbb{R}\}$	$\mathcal{A}(Y) = \inf \{ \mathbb{E}(Y Z) + \mathbb{E}(h^*(1-Z)) : \mathbb{E}(Z) = 1 \}$
$\begin{aligned} \mathcal{A}(Y) &= \mathbb{E}(Y) - M_h(Y - \mathbb{E}Y) \\ M_h(Y) &= \inf\{a \geq 0 : \mathbb{E}[h(\frac{Y}{a})] \leq h(1)\} \end{aligned}$	$ \begin{aligned} \mathcal{A}(Y) &= \inf \{ \mathbb{E}(Y Z) : \mathbb{E}(Z) = 1, \inf_{a} \{ D_{h^*}^*(Z - a) \} \le 1 \} \\ D_{h^*}^*(Z) &= \sup \{ \mathbb{E}(Z V) : \mathbb{E}[h^*(V)] \le h^*(1) \}. \end{aligned} $
$\mathcal{A}(Y) = \int_0^1 G_Y^{-1}(p) k(p) dp$ k nonnegative, monotonic, bounded	$\mathcal{A}(Y) = \inf \{ \mathbb{E}(Y Z) : \mathbb{E}(\phi(Z)) \leq \int \phi(k(u)) du, \phi \text{ convex }, \phi(0) = 0 \},$

A special case is the Average Value-at-Risk $\mathbb{A}\mathsf{V}\mathtt{@}\mathsf{R}_{\alpha}$

primal:
$$\mathbb{A} \mathsf{V} \otimes \mathsf{R}_{\alpha}(Y) = \frac{1}{\alpha} \int_{0}^{1} G_{Y}^{-1}(p) dp = \max\{a - \mathbb{E}([Y-a]^{-}) : a \in \mathbb{R}\}$$

dual: $\mathbb{A} \mathsf{V} \otimes \mathsf{R}_{\alpha}(Y) = \inf\{E(YZ) : 0 \le Z \le 1/\alpha, \mathbb{E}(Z) = 1\}.$

Let \mathcal{F}_1 be a σ -field contained in \mathcal{F} . A mapping $\mathcal{A}_{\mathcal{F}_1}: L_p(\mathcal{F}) \to L_p(\mathcal{F}_1)$ is called *conditional acceptability mapping* if the following conditions are satisfied for all $Y, \lambda \in [0, 1]$: (CA1) $\mathcal{A}_{\mathcal{F}_1}(Y + Y^{(1)}) = \mathcal{A}_{\mathcal{F}_1}(Y) + Y^{(1)}$ for $Y^{(1)} \lhd \mathcal{F}_1$ (*predictable translation-equivariance*); (CA2) $\mathcal{A}_{\mathcal{F}_1}(\lambda Y + (1 - \lambda)\tilde{Y}) \ge \lambda \mathcal{A}_{\mathcal{F}_1}(Y) + (1 - \lambda)\mathcal{A}_{\mathcal{F}_1}(\tilde{Y})$ (concavity), (CA3) $Y \le \tilde{Y}$ implies $\mathcal{A}_{\mathcal{F}_1}(Y) \le \mathcal{A}_{\mathcal{F}_1}(\tilde{Y})$ (monotonicity). **Theorem.** A mapping $\mathcal{A}_{\mathcal{F}_1}$ is a conditional acceptability mapping if and only if for all $B \in \mathcal{F}_1$ the functional $Y \mapsto \mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y)\mathbb{1}_B)$ is an acceptability functional, which has the $(L_p(\mathcal{F}_1), \mathbb{1}_B)$ translation property, that is

$$\mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y+Y^{(1)})1\!\!1_B) = \mathbb{E}(\mathcal{A}_{\mathcal{F}_1}(Y)1\!\!1_B) + \mathbb{E}(Y^{(1)}1\!\!1_B)$$
for all $Y^{(1)} \in L_p(\mathcal{F}_1)$.

For $Y \in L_1$, $\mathbb{A}V@R_{lpha}(Y | \mathcal{F}_1)$ is defined on $L_1(\mathcal{F})$ by the relation

$$\mathbb{E}(\mathbb{A}\mathsf{VeR}_{\alpha}(Y|\mathcal{F}_1)\mathbb{1}_B) = \inf\{\mathbb{E}(Y Z \mathbb{1}_B) : 0 \leq Z \leq \frac{1}{\alpha}, \mathbb{E}(Z|\mathcal{F}_1) = 1\}.$$

 $(B \in \mathcal{F}_1)$. There is a version such that $\alpha \mapsto \mathbb{A}V@R_{\alpha}(Y | \mathcal{F}_1)$ is monotonically increasing a.s. for $\alpha \in (0, 1]$.

The L_1 space is an order complete Banach lattice, which implies that every set of elements from L_1 , which is bounded from below has an infimum. Denote this infimum by **inf**. We may also write

$$\mathbb{A} \mathsf{VeR}_{lpha}(Y | \mathcal{F}_1) = \inf \{ \mathbb{E}(Y Z | \mathcal{F}_1) : 0 \leq Z \leq rac{1}{lpha}, \mathbb{E}(Z | \mathcal{F}_1) = 1 \}.$$

By considering the trivial σ -algebra $\mathcal{F}_0 = (\emptyset, \Omega)$ one may specialize every conditional acceptability mapping to an ordinary acceptability measure.

Conversely, one may lift version-independent acceptability functionals to conditional acceptability mappings: Assume that ${\cal A}$ is defined by

$$\mathcal{A}(Y) = \inf \{ \mathbb{E}(Y Z) - \mathcal{A}^+(Z) : \mathbb{E}(Z) = 1, Z \geq 0, Z \in \mathcal{Z} \},$$

where

 \mathcal{A}^+ is the conjugate functional and \mathcal{Z} is the set of subgradients.

Assume that the subgradient set of \mathcal{A} is defined by

$$\mathcal{Z} = \{Z : Z \ge 0, Z \in A \text{ a.s.}, \sup_{c \in C} \mathbb{E}(\phi_c(Z)) \le 0, \inf_{d \in D} \mathbb{E}(\psi_d(Z)) \le 0\}$$

where C and D are countable index sets. Then the conditional subgradient set is

$$\begin{aligned} \mathcal{Z}(\mathcal{F}_1) &= \{ Z : \mathbb{E}(Z|\mathcal{F}_1) = 1, Z \geq 0, Z \in A \text{ a.s.}, \\ \sup_{c \in C} \mathbb{E}(\phi_c(Z)|\mathcal{F}_1) \leq 0, \text{ a.s.}, \quad \inf_{d \in D} \mathbb{E}(\psi_d(Z)|\mathcal{F}_1) \leq 0, \text{ a.s.} \}. \end{aligned}$$

In many cases the conditional conjugate $\mathcal{A}^+(\cdot|\mathcal{F}_1)$ may be found in a direct way.

Examples for conditional acceptability functionals

 $\begin{array}{l} \text{unconditional:} \ \mathcal{A}(Y) = \inf\{\mathbb{E}(Y \, Z) + \inf\{\mathbb{E}[h^*(Z - a)] : a \in \mathbb{R}\} : \mathbb{E}Z = 1\} \\ \text{conditional:} \ \mathcal{A}(Y|\mathcal{F}_1) = \inf\{\mathbb{E}(Y \, Z|\mathcal{F}_1) + \inf\{\mathbb{E}[h^*(Z - a)|\mathcal{F}_1] : a \triangleleft \mathcal{F}_1\} : \mathbb{E}(Z|\mathcal{F}_1) = 1\} \end{array}$

 $\begin{array}{l} \text{unconditional: } \mathcal{A}(Y) = \inf \{ \mathbb{E}(Y \, Z) + \mathbb{E}(h^*(1 - Z)) : \mathbb{E}(Z) = 1 \} \\ \text{conditional: } \mathcal{A}(Y | \mathcal{F}_1) = \inf \{ \mathbb{E}(Y \, Z | \mathcal{F}_1) + \mathbb{E}(h^*(1 - Z) | \mathcal{F}_1) : \mathbb{E}(Z) = 1 \} \end{array}$

$$\begin{split} &\text{unconditional:} \mathcal{A}(Y) = \inf \{ \mathbb{E}(Y \, Z) : \mathbb{E}(Z) = 1, \inf_a \{ \sup \{ \mathbb{E}[(Z - a) \, V] : \mathbb{E}[h(V) | \mathcal{F}_1] \leq h(1) \} \leq 1 \} \\ &\text{conditional:} \\ &\mathcal{A}(Y | \mathcal{F}_1) = \inf \{ \mathbb{E}(Y \, Z | \mathcal{F}_1) : \mathbb{E}(Z | \mathcal{F}_1) = 1, \inf_a \{ \sup \{ \mathbb{E}[(Z - a) \, V | \mathcal{F}_1] : \mathbb{E}[h(V) | \mathcal{F}_1] \leq h(1) \} \leq 1 \} \end{split}$$

unconditional: $\mathcal{A}(Y) = \inf \{ \mathbb{E}(Y Z) : \mathbb{E}(\phi(Z)) \leq \int \phi(k(u)) \, du, \phi \text{ convex }, \phi(0) = 0 \}$ conditional: $\mathcal{A}(Y|\mathcal{F}_1) = \inf \{ \mathbb{E}(Y Z|\mathcal{F}_1) : \mathbb{E}(\phi(Z)|\mathcal{F}_1) \leq \int \phi(k(u)) \, du, \phi \text{ convex }, \phi(0) = 0 \}$ Let $Y = (Y_1, \ldots, Y_T)$ be an income process on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{F} = (\mathcal{F}_0, \ldots, \mathcal{F}_T)$ denote a filtration which models the available information over time, where $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_T = \mathcal{F}, \ \mathcal{F}_t \subseteq \mathcal{F}_{t+1} \subseteq \mathcal{F}, \ \text{and} \ Y_t \text{ is } \mathcal{F}_t \text{ measurable for every}$ $t = 1, \ldots, T$. Let $\mathcal{Y} \subseteq \times_{t=1}^T L_1(\Omega, \mathcal{F}, \mathbb{P})$ be a linear space of income processes $Y = (Y_1, \ldots, Y_T)$, which are all adapted to \mathcal{F} . **Definition.** A multi-period functional \mathcal{A} with values $\mathcal{A}(Y; \mathcal{F})$ is called *multi-period acceptability functional*, if satisfies

(MA0) Information monotonicity. If $Y \in \mathcal{Y}$ and $\mathcal{F}_t \subseteq \mathcal{F}'_t$, for all t, then

$$\mathcal{A}(Y; \mathcal{F}_0, \dots, \mathcal{F}_{T-1}) \leq \mathcal{A}(Y; \mathcal{F}'_0, \dots, \mathcal{F}'_{T-1}).$$

(MA1) Predictable translation-equivariance. If $W \in \mathcal{Y}$ such that W_t is \mathcal{F}_{t-1} measurable for all t, then

$$\mathcal{A}(Y+W; \mathcal{F}) = \sum_{t=1}^{T} \mathbb{E}(W_t) + \mathcal{A}(Y; \mathcal{F}).$$
(2)

(MA2) **Concavity.** The mapping $Y \mapsto \mathcal{A}(Y; \mathcal{F})$ is concave on \mathcal{Y} for all filtrations \mathcal{F} .

(MA3) Monotonicity. If $Y_t \leq \tilde{Y}_t$ holds a.s. for all t, then

$$\mathcal{A}(Y; \mathcal{F}) \leq \mathcal{A}(\tilde{Y}; \mathcal{F}).$$

 $(MA1)^*$ (π, \mathcal{W}) -translation-equivariance. There exists a linear subspace \mathcal{W} of $\times_{t=1}^{T} \mathcal{L}_1(\Omega, \mathcal{F}_{t-1}, \mathbb{P})$ and a linear continuous functional $\pi: \mathcal{W} \to \mathbb{R}$ such that for all $\mathcal{W} \in \mathcal{W}, \ Y \in \mathcal{Y}$

$$\mathcal{A}(Y + W; \mathcal{F}) = \pi(W) + \mathcal{A}(Y; \mathcal{F}).$$

Recall that our functionals are defined on pairs of processes and filtrations. For illustration, we use a tree representation.

The two value processes are identical in distribution, but differ in the information.

Definition. ν is a tree process, iff the σ -fields generated by ν_t form a filtration (an increasing sequence of σ -fields)

We assume that the filtration \mathcal{F} is generated by a tree process ν with values in a Polish space and that the income process Y is adapted to it. We call

$$(Y, \mathcal{F})$$
 resp. (Y, ν)

a process-and-information pair. Notice that there are functions f_t such that $Y_t = f_t(\nu_t)$ a.e. **Definition.** Two process-and-information pairs (Y, ν) and $(\bar{Y}, \bar{\nu})$

(which are defined on possibly different probability spaces) are equivalent, if there are bijective measurable functions k_t such that

(i)
$$\bar{\nu}_t$$
 has the same distribution as $k_t(\nu_t)$.

(ii)
$$Y_t = f_t(\nu_t)$$
 and $\overline{Y}_t = f_t(k_t(\overline{\nu}_t))$.

Important observation. The solutions of stochastic optimization problems with version-independent objective are invariant w.r.t. the choice of equivalent process-and-information pairs.

An Example for Equivalence

Equivalent process-and-information pairs.

Nested distributions

Let (Ξ, d) be a Polish space, i.e. complete separable metric space and let $\mathcal{P}_1(\Xi, d)$ be the family of all Borel probability measures Pon (Ξ, d) such that

$$\int d(u,u_0)\,dP(u)<\infty$$

for some $u_0 \in \Xi$.

For two Borel probabilities, P and Q in $\mathcal{P}_1(\Xi, d)$, let d(P, Q) denote the Kantorovich distance

$$d(P,Q) = \sup\{\int h(u) \, dP(u) - \int h(u) \, dQ(u) : |h(u) - h(v)| \le d(u,v)\}$$

d metrizises the weak topology on \mathcal{P}_1 .

 \mathcal{P}_1 is a complete separable metric space (Polish space) under d. Iterate the argument: $\mathcal{P}_1(\mathcal{P}_1(\Xi, d), d)$ is a Polish space, a space of distributions over distributions (i.e. what Bayesians would call a hyperdistribution). If (Ξ_1, d_1) and (Ξ_2, d_2) are Polish spaces then so is the Cartesian product $(\Xi_1 \times \Xi_2)$ with metric

$$d^{2}((u_{1}, u_{2}), (v_{1}, v_{2})) = d_{1}(u_{1}, v_{1}) + d_{2}(u_{2}, v_{2}).$$

Consider some metric d on \mathbb{R}^m , which makes it Polish (it needs not to be the Euclidean one). Then we define the following spaces

$$\begin{split} \Xi_1 &= (\mathbb{R}^m, d) \\ \Xi_2 &= (\mathbb{R}^m \times \mathcal{P}_1(\Xi_1, d), d^2) = (\mathbb{R}^m \times \mathcal{P}_1(\mathbb{R}^m, d), d^2) \\ \Xi_3 &= (\mathbb{R}^m \times \mathcal{P}_1(\Xi_2, d), d^2) = (\mathbb{R}^m \times \mathcal{P}_1(\mathbb{R}^m \times \mathcal{P}_1(\mathbb{R}^m, d), d^2), d^2) \\ &\vdots \\ \Xi_T &= (\mathbb{R}^m \times \mathcal{P}_1(\Xi_{T-1}, d), d^2) \end{split}$$

All spaces Ξ_1, \ldots, Ξ_T are Polish spaces and they may carry probability distributions.

Definition. A Borel probability distribution \mathbb{P} with finite first moment on Ξ_T is called a *nested distribution of depth* T. For any nested distribution \mathbb{P} , there is an embedded multivariate distribution P. The projection from the nested distribution to the embedded distribution is not injective. Notation for discrete distributions:

probabilities: values:	0.3	0.4	0.3	[0.4	0.3	0.3		0.1	0.2	0.4	0.3
Left: A	valid	distr	ibution.	Mi	ddle:	the	e san	ne di	strib	utio	1. R	ight:
Not a valid distribution												

Examples for nested distributions

The embedded multivariate, but non-nested distribution of the scenario process can be gotten from it:

0.08	3 0.04	0.08	0.3	0.3	0.2
3.0	3.0	3.0	3.0	2.4	2.4
6.0	4.7	3.3	2.8	1.0	5.1

Minimal filtrations

Left: Not a valid nested distribution. Right: A valid one

This fact leads to the concept of minimal filtrations.

This process-and-information pair is already minimal.

Left: the original process-and-information pair, Right: the pertaining minimal pair.

Theorem. Two minimal process-and-information pairs are equivalent, if and only if they induce the same nested distribution. **Theorem.** If a multiperiod stochastic optimization problem is based on compound convex acceptability functionals, then the optimal solution can be chosen as measurable w.r.t the minimal filtration.

If a process $Y = (Y_1, \ldots, Y_T)$ is defined on a probability space (Ω, \mathcal{F}, P) with filtration $\mathcal{F} = (\mathcal{F}_0, \mathcal{F}_1, \ldots, \mathcal{F}_T)$, it generates a nested distribution.

Definition. An acceptability functional

 $\mathcal{A}(Y_1, \ldots, Y_T, \mathcal{F}_0, \ldots, \mathcal{F}_{T-1})$ is called version-independent (law-invariant), if it depends only on the nested distribution of the process-and-information pair.

All functionals in this talk are version-independent. I do not know of any reasonable functional, which is not version-independent in this sense.

Construction of multi-period risk functionals

(a) Separable multi-period acceptability functionals:

$$\mathcal{A}(Y; \mathcal{F}) := \sum_{t=1}^{T} \mathcal{A}_t(Y_t),$$

where A_t are single-period acceptability functionals, satisfy (MA1)', (MA2) and (MA3), but do not depend on F.
(b) Scalarization:

$$\mathcal{A}(Y; \mathcal{F}) := \mathcal{A}_0(s(Y))$$

where \mathcal{A}_0 is a (single-period) acceptability functional and $s: \mathcal{Y} \to \mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P})$ a mapping satisfying concavity, monotonicity and $s(Y_1 + r, Y_2, \dots, Y_T) := s(Y_1, \dots, Y_T) + r$ for all $Y \in \mathcal{Y}$ and $r \in \mathbb{R}$. Examples: (i) $s(Y) = \sum_{t=1}^{T} Y_t$. (ii) $s(Y) := \min_{t=1,\dots,T} \sum_{\tau=1}^{t} Y_{\tau}$. (c) Separable expected conditional (SEC) multi-period acceptability functionals:

$$\mathcal{A}(Y; \mathcal{F}) := \sum_{t=1}^T \mathbb{E}(\mathcal{A}_t(Y_t | \mathcal{F}_{t-1}))$$

where $\mathcal{A}_t(\cdot | \mathcal{F}_{t-1})$, t = 1, ..., T, are conditional (single-period) acceptability functionals, satisfy (MA0)–(MA3).

Remark. If $\mathcal{A}(Y; \mathcal{F})$ is SEC functional, then also its conjugate of $\mathcal{A}^+(\cdot; \mathcal{F})$ is SEC. **Example.** (Multi-period Average Value-at-Risk)

$$\begin{split} m \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(Y; \mathcal{F}) &:= \sum_{t=1}^{T} \mathbb{E}(\mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(Y_{t} | \mathcal{F}_{t-1})) \\ &= \inf \left\{ \sum_{t=1}^{T} \mathbb{E}(Y_{t} Z_{t}) : Z_{t} \in [0, \frac{1}{\alpha}], \mathbb{E}(Z_{t} | \mathcal{F}_{t-1}) = 1, t = 1, \dots, T \right\} \end{split}$$

The multi-period average value-at-risk is Lipschitz w.r.t. the nested distance.

Let a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a filtration $\mathcal{F} = (\mathcal{F}_0, \ldots, \mathcal{F}_T)$ of σ -fields \mathcal{F}_t , t = 0, ..., T, with $\mathcal{F}_T = \mathcal{F}$ be given. Let, for each $t = 1, \ldots, T$, conditional acceptability mappings $\mathcal{A}_{t-1} := \mathcal{A}(\cdot | \mathcal{F}_{t-1})$ from \mathcal{Y}_T to \mathcal{Y}_{t-1} be given. We introduce a multi-period probability functional \mathcal{A} on $\mathcal{Y} := \times_{t=1}^T \mathcal{Y}_t$ by compositions of the conditional acceptability mappings \mathcal{A}_{t-1} , $t = 1, \ldots, T$, namely,

$$\begin{aligned} \mathcal{A}(Y; \mathcal{F}) &:= & \mathcal{A}_0[Y_1 + \dots + \mathcal{A}_{T-2}[Y_{T-1} + \mathcal{A}_{T-1}(Y_T)] \cdot] \\ &= & \mathcal{A}_0 \circ \mathcal{A}_1 \circ \dots \circ \mathcal{A}_{T-1}(\sum_{t=1}^T Y_t) \end{aligned}$$

for every $Y_t \in \mathcal{Y}_t$. (Ruszczynski and Shapiro)

Example. We consider the conditional Average Value-at-Risk (of level $\alpha \in (0, 1]$) as conditional acceptability mapping

$$\mathcal{A}_{t-1}(Y_t) := \mathbb{A}\mathsf{VoR}_{lpha}(\cdot | \mathcal{F}_{t-1})$$

for every t = 1, ..., T. Then the multi-period probability functional

$$n \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(Y; \mathcal{F}) = \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{0}) \circ \cdots \circ \mathbb{A} \mathsf{V} @ \mathsf{R}_{\alpha}(\cdot | \mathcal{F}_{T-1})(\sum_{t=1}^{T} Y_{t})$$

satisfies (MA0), (MA1'), (MA2), (MA3) according to the Proposition. It is called the *nested Average Value-at-Risk*.

Proposition. Suppose that for every *t* the conditional acceptability functional $A_t(\cdot|\mathcal{F}_t)$ maps $L_p(\mathcal{F}_t)$ to $L_p(\mathcal{F}_{t-1})$ and is defined by

$$egin{array}{rcl} \mathcal{A}_t(Y|\mathcal{F}_t) &=& \inf\{\mathbb{E}(Y|\mathcal{Z}|\mathcal{F}_t) - \mathcal{A}^+(Z|\mathcal{F}_t): Z \geq 0, \ && \mathbb{E}(Z|\mathcal{F}_t) = 1, Z \in \mathcal{Z}_t(\mathcal{F}_t)\}. \end{array}$$

Then the nested acceptability functional $\mathcal{A}(Y; \mathcal{F}) = \mathcal{A}^{(T)}(Y_1 + \cdots + Y_T)$ has the dual representation

$$\mathcal{A}(Y; \mathcal{F}) = \inf \{ \mathbb{E}[(Y_1 + \dots + Y_T)M_T] - \sum_{t=1}^T \mathbb{E}[\mathcal{A}_t^+(Z_t|\mathcal{F}_t)M_{t-1}] :$$

 $\mathbb{E}(Z_t|\mathcal{F}_t) = 1, Z_t \ge 0, Z_t \in \mathcal{Z}_t(\mathcal{F}_t) \}$

where $M_t = \prod_{s=1}^t Z_t$ and $M_0 = 1$. Notice that (M_t) is a martingale w.r.t. \mathcal{F} with $\mathbb{E}(|M_t|^q) < \infty$.

Example. The nested AV@R has the following dual representation:

$$n\mathbb{A} \mathsf{VeR}_{\alpha}(Y; \mathcal{F}) = \inf\{\mathbb{E}[(Y_1 + \dots + Y_T)M_T] : 0 \le M_t \le \frac{1}{\alpha}M_{t-1}, \mathbb{E}(M_t | \mathcal{F}_{t-1}) = M_{t-1}, M_0 = 1, t = 1, \dots, T\}.$$

The nested average value-at-risk $n \mathbb{A} V \otimes \mathbb{R}$ is given by a linear stochastic optimization problem containing functional constraints. The nested average value-at-risk $n \mathbb{A} V \otimes \mathbb{R}$ is Lipschitz w.r.t. the nested distance.

Dynamic programming solution?

Not every problem of the form

$$\begin{array}{ll} \mathsf{Maximize} & \mathbb{E}[\sum_{t=1}^{T}Y_t] - \sum_{t=1}^{T}\mathcal{A}_t(Y_1, \dots, Y_t) \\ \mathsf{subject to} & x \triangleleft \mathcal{F} \\ & x \in \mathbb{X} \end{array}$$

allows a dynamic programming solution in the sense that one may solve subproblems on subtrees from right to left until the root is reached. Some authors call this property *time consistency*. However, all nested acceptability functionals and all SEC functionals are time consistent in this sense.

Example: dynamic portfolio management

An efficient frontier using the (negative) multi-period AV@R as risk Georg Ch. Pflug On Multi-Period Risk Functionals