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Why to measure risk/acceptability

In longer term planning such as

I portfolio planning,

I pension fund management,

I electricity portfolio management,

I gas portfolio management,

we have to find decision strategies in a random environment. A
good decision aims at maximizing the expected return among all
acceptable decisions.
What is the overall expected return is clear. The overall
acceptability is measured by a functional A(Y1, . . . ,YT ) from
which we require that is is larger than some threshold.
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A typical multi-period problem

ξ = (ξ1, . . . , ξT ) a scenario process
x = (x0, . . . , xT−1) the decision process
Yt = Ht(x0, . . . , xt−1; ξ1, . . . , ξt) the generated income process

Maximize E[
T∑

t=1

Yt ]

subject to At(Y1, . . . , Yt) ≥ qt t = 1, . . . ,T

x ¢ FF
x ∈ X

? ? ? ?
decision decision decision decision
x0 x1 x2 x3

t = 0 t = t1 t = t2 t = t3

observation of observation of observation of

the r.v. ξ1 the r.v. ξ2 the r.v. ξ3
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What is a single -period risk/acceptability measure?

A mapping A : Lp(Ω,F ,P) → R is called acceptability functional if
it satisfies the following conditions for all Y , Ỹ ∈ Y, c ∈ R,
λ ∈ [0, 1]:

(A1) A(Y + c) = A(Y ) + c (translation-equivariance),

(A1’) There is a linear subspace W ⊆ Lp and a function
Z ∗ ∈ Lq(F) (1/p + 1/q = 1) such that for W ∈ W

A(W ) = E(W Z ∗).

It then follows that

A(Y +W ) = A(Y )+E(W Z ∗), (the (W, Z ∗) translation property).

(A2) A(λY + (1− λ)Ỹ ) ≥ λA(Y ) + (1− λ)A(Ỹ ) (concavity),

(A3) Y ≤ Ỹ implies A(Y ) ≤ A(Ỹ ) (monotonicity).
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An acceptability functional A is called

I version-independent (law-invariant) if

A(Y ) depends only on the distribution function GY (u) = P{Y ≤ u} of Y .

Given an acceptability functional A, the mappings

ρ := −A and D := E−A

are called risk capital and deviation risk functional, respectively.
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By the Fenchel-Moreau Theorem, every concave upper
semicontinuous (u.s.c.) functional A on Y has a representation of
the form

A(Y ) = inf{E(Y Z )−A+(Z ) : Z ∈ Z}, (1)

where A+(Z ) = inf{E(Y Z )−A(Y ) : Y ∈ Y}. We call (1) a dual
representation. Let dom(A+) = {Z : A+(Z ) > −∞}. Then

I A is monotonic, iff dom(A+) ⊆ L+
q

I A has the (W, Z ∗) translation property (A1’), iff
dom(A+) ⊆ W⊥ + Z ∗

I A is positively homogeneous, iff A+ takes only the values 0
and −∞
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Examples for acceptability functionals

I The expectation. A(Y ) = E(Y ).

I The Average Value-at-Risk. AV@Rα(Y ) = 1
α

∫ α
0 G−1

Y (p) dp.

I The distortion functional. A(Y ) =
∫ 1
0 G−1

Y (p) k(p) dp.
I Risk corrected expectation.

I E(Y )− δStd−(Y )
I E(Y )− δGini(Y )
I E(Y )− δMad(Y )
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Examples for dual representations

Let h be a convex, nonnegative function satisfying h(0) = 0 and let
h∗(v) = sup{uv − h(u) : u ∈ R} be its Fenchel dual.

primal dual
A(Y ) = EY − E[h(Y − EY )] A(Y ) = inf{E(Y Z) + Dh∗ (Z) : EZ = 1}

Dh∗ (Z) = inf{E[h∗(Z − a)] : a ∈ R}

A(Y ) = EY − inf{E[h(Y − a)] : a ∈ R} A(Y ) = inf{E(Y Z) + E(h∗(1− Z)) : E(Z) = 1}

A(Y ) = E(Y )− Mh(Y − EY ) A(Y ) = inf{E(Y Z) : E(Z) = 1, infa{D∗h∗ (Z − a)} ≤ 1}
Mh(Y ) = inf{a ≥ 0 : E[h( Y

a
)] ≤ h(1)} D∗h∗ (Z) = sup{E(Z V ) : E[h∗(V )] ≤ h∗(1)}.

A(Y ) =
∫ 1
0 G−1

Y
(p) k(p) dp A(Y ) = inf{E(Y Z) : E(φ(Z)) ≤ ∫

φ(k(u)) du, φ convex , φ(0) = 0},
k nonnegative, monotonic, bounded
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A special case is the Average Value-at-Risk AV@Rα

primal: AV@Rα(Y ) =
1

α

∫ 1

0
G−1

Y (p) dp = max{a−E([Y−a]−) : a ∈ R}

dual: AV@Rα(Y ) = inf{E (Y Z ) : 0 ≤ Z ≤ 1/α,E(Z ) = 1}.
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Conditional acceptability functionals

Let F1 be a σ-field contained in F . A mapping
AF1 : Lp(F) → Lp(F1) is called conditional acceptability mapping
if the following conditions are satisfied for all Y , λ ∈ [0, 1]:

(CA1) AF1(Y + Y (1)) = AF1(Y ) + Y (1)

for Y (1) ¢ F1 ( predictable translation-equivariance);

(CA2) AF1(λY + (1− λ)Ỹ ) ≥ λAF1(Y ) + (1− λ)AF1(Ỹ )
(concavity),

(CA3) Y ≤ Ỹ implies AF1(Y ) ≤ AF1(Ỹ ) (monotonicity).
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Theorem. A mapping AF1 is a conditional acceptability mapping
if and only if for all B ∈ F1 the functional Y 7→ E(AF1(Y )1lB) is
an acceptability functional, which has the (Lp(F1), 1lB) translation
property, that is

E(AF1(Y + Y (1))1lB) = E(AF1(Y )1lB) + E(Y (1)1lB)

for all Y (1) ∈ Lp(F1).
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The conditional Average Value-at-Risk.

For Y ∈ L1, AV@Rα(Y |F1) is defined on L1(F) by the relation

E(AV@Rα(Y |F1)1lB) = inf{E(Y Z 1lB) : 0 ≤ Z ≤ 1

α
,E(Z |F1) = 1}.

(B ∈ F1). There is a version such that α 7→ AV@Rα(Y |F1) is
monotonically increasing a.s. for α ∈ (0, 1].
The L1 space is an order complete Banach lattice, which implies
that every set of elements from L1, which is bounded from below
has an infimum. Denote this infimum by inf. We may also write

AV@Rα(Y |F1) = inf{E(Y Z |F1) : 0 ≤ Z ≤ 1

α
,E(Z |F1) = 1}.
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From unconditional to conditional functionals

By considering the trivial σ-algebra F0 = (∅,Ω) one may specialize
every conditional acceptability mapping to an ordinary
acceptability measure.
Conversely, one may lift version-independent acceptability
functionals to conditional acceptability mappings: Assume that A
is defined by

A(Y ) = inf{E(Y Z )−A+(Z ) : E(Z ) = 1, Z ≥ 0,Z ∈ Z},

where
A+ is the conjugate functional and
Z is the set of subgradients.
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Conditional subgradient sets and conjugates

Assume that the subgradient set of A is defined by

Z = {Z : Z ≥ 0, Z ∈ Aa.s., sup
c∈C

E(φc(Z )) ≤ 0, inf
d∈D

E(ψd(Z )) ≤ 0}

where C and D are countable index sets. Then the conditional
subgradient set is

Z(F1) = {Z : E(Z |F1) = 1, Z ≥ 0, Z ∈ Aa.s.,

sup
c∈C

E(φc(Z )|F1) ≤ 0, a.s., inf
d∈D

E(ψd(Z )|F1) ≤ 0, a.s.}.

In many cases the conditional conjugate A+(·|F1) may be found in
a direct way.
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Examples for conditional acceptability functionals

unconditional: A(Y ) = inf{E(Y Z) + inf{E[h∗(Z − a)] : a ∈ R} : EZ = 1}
conditional: A(Y |F1) = inf{E(Y Z |F1) + inf{E[h∗(Z − a)|F1] : a ¢ F1} : E(Z |F1) = 1}

unconditional: A(Y ) = inf{E(Y Z) + E(h∗(1− Z)) : E(Z) = 1}
conditional: A(Y |F1) = inf{E(Y Z |F1) + E(h∗(1− Z)|F1) : E(Z) = 1}

unconditional:A(Y ) = inf{E(Y Z) : E(Z) = 1, infa{sup{E[(Z − a) V ] : E[h(V )|F1] ≤ h(1)} ≤ 1}
conditional:
A(Y |F1) = inf{E(Y Z |F1) : E(Z |F1) = 1, infa{sup{E[(Z − a) V |F1] : E[h(V )|F1] ≤ h(1)} ≤ 1}

unconditional:A(Y ) = inf{E(Y Z) : E(φ(Z)) ≤ ∫
φ(k(u)) du, φ convex , φ(0) = 0}

conditional: A(Y |F1) = inf{E(Y Z |F1) : E(φ(Z)|F1) ≤ ∫
φ(k(u)) du, φ convex , φ(0) = 0}
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Multi-period acceptability functionals

Let Y = (Y1, . . . ,YT ) be an income process on some probability
space (Ω,F ,P) and let FF = (F0, . . . ,FT ) denote a filtration which
models the available information over time, where F0 = {∅,Ω},
FT = F , Ft ⊆ Ft+1 ⊆ F , and Yt is Ft measurable for every
t = 1, . . . ,T . Let Y ⊆ ×T

t=1L1(Ω,F ,P) be a linear space of
income processes Y = (Y1, . . . ,YT ), which are all adapted to FF .
Definition. A multi-period functional A with values A(Y ;FF) is
called multi-period acceptability functional, if satisfies

(MA0) Information monotonicity. If Y ∈ Y and Ft ⊆ F ′t , for all t,
then

A(Y ;F0, . . . ,FT−1) ≤ A(Y ;F ′0, . . . ,F ′T−1).
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(MA1) Predictable translation-equivariance. If W ∈ Y such that
Wt is Ft−1 measurable for all t, then

A(Y + W ;FF) =
T∑

t=1

E(Wt) +A(Y ;FF). (2)

(MA2) Concavity. The mapping Y 7→ A(Y ;FF) is concave on Y for
all filtrations FF .

(MA3) Monotonicity. If Yt ≤ Ỹt holds a.s. for all t, then

A(Y ;FF) ≤ A(Ỹ ;FF).

(MA1)∗ (π,W)-translation-equivariance. There exists a linear
subspace W of ×T

t=1L1(Ω,Ft−1,P) and a linear continuous
functional π : W → R such that for all W ∈ W, Y ∈ Y

A(Y + W ;FF) = π(W ) +A(Y ;FF).
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When is a multi-period functional version-independent?

Recall that our functionals are defined on pairs of processes and
filtrations. For illustration, we use a tree representation.
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The two value processes are identical in distribution, but differ in
the information.

Definition. ν is a tree process, iff the σ-fields generated by νt

form a filtration (an increasing sequence of σ-fields)
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Equivalence and Invariance

We assume that the filtration FF is generated by a tree process ν
with values in a Polish space and that the income process Y is
adapted to it. We call

(Y ,FF) resp. (Y , ν)

a process-and-information pair. Notice that there are functions ft
such that Yt = ft(νt) a.e.
Definition. Two process-and-information pairs (Y , ν) and (Ȳ , ν̄)
(which are defined on possibly different probability spaces) are
equivalent, if there are bijective measurable functions kt such that

(i) ν̄t has the same distribution as kt(νt).

(ii) Yt = ft(νt) and Ȳt = ft(kt(ν̄t)).

Important observation. The solutions of stochastic optimization
problems with version-independent objective are invariant w.r.t.
the choice of equivalent process-and-information pairs.
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An Example for Equivalence

νt ν̄t

Yt = ft(νt) Ȳt = ft(k
−1
t (ν̄t))

kt
-

@
@

@@

¡
¡µ

@
@R

©©*
HHj

HHj
©©*

»»:XXz
»»:XXz

»»:XXz

»»:XXz

H 0

T 0

H,H 0

H,T 0

T,H 0

T,T 0

H,H,H 1
H,H,T 1
H,T,H 1
H,T,T 0
T,H,H 1
T,H,T 0
T,T,H 0
T,T,T 0

¡
¡µ

@
@R

©©*
HHj

HHj
©©*

»»:XXz
»»:XXz

»»:XXz

»»:XXz

a 0

b 0

c 0

d 0

e 0

f 0
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h 1
i 0
j 0
k 1
` 1
m 1
n 0

Equivalent process-and-information pairs.
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Nested distributions

Let (Ξ, d) be a Polish space, i.e. complete separable metric space
and let P1(Ξ, d) be the family of all Borel probability measures P
on (Ξ, d) such that

∫
d(u, u0) dP(u) < ∞

for some u0 ∈ Ξ.
For two Borel probabilities, P and Q in P1(Ξ, d), let d(P ,Q)
denote the Kantorovich distance

d(P, Q) = sup{
∫

h(u) dP(u)−
∫

h(u) dQ(u) : |h(u)−h(v)| ≤ d(u, v)}

d metrizises the weak topology on P1.
P1 is a complete separable metric space (Polish space) under d .
Iterate the argument: P1(P1(Ξ, d), d) is a Polish space, a space of
distributions over distributions (i.e. what Bayesians would call a
hyperdistribution).
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If (Ξ1, d1) and (Ξ2, d2) are Polish spaces then so is the Cartesian
product (Ξ1 × Ξ2) with metric

d2((u1, u2), (v1, v2)) = d1(u1, v1) + d2(u2, v2).

Consider some metric d on Rm, which makes it Polish (it needs
not to be the Euclidean one). Then we define the following spaces

Ξ1 = (Rm, d)

Ξ2 = (Rm ×P1(Ξ1, d), d2) = (Rm × P1(Rm, d), d2)

Ξ3 = (Rm ×P1(Ξ2, d), d2) = (Rm × P1(Rm × P1(Rm, d), d2), d2)
...

ΞT = (Rm ×P1(ΞT−1, d), d2)

All spaces Ξ1, . . . ,ΞT are Polish spaces and they may carry
probability distributions.
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Definition. A Borel probability distribution P with finite first
moment on ΞT is called a nested distribution of depth T .
For any nested distribution P, there is an embedded multivariate
distribution P. The projection from the nested distribution to the
embedded distribution is not injective. Notation for discrete
distributions:

probabilities:
values:

[
0.3 0.4 0.3

3.0 1.0 5.0

] [
0.4 0.3 0.3

1.0 5.0 3.0

] [
0.1 0.2 0.4 0.3

3.0 3.0 1.0 5.0

]

Left: A valid distribution. Middle: the same distribution. Right:
Not a valid distribution
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Examples for nested distributions

¶
¶

¶¶7

³³³1

@
@@R

³³³1
PPPq

-

´
´́3
-

Q
QQs

2.4

3.0

3.0

5.1

1.0

2.8

3.3

4.7

6.0

0.5

0.3

0.4

0.6

1.0

0.2
0.4

0.2

0.4




0.2 0.3 0.5

3.0 3.0 2.4[
0.4 0.2 0.4

6.0 4.7 3.3

] [
1.0

2.8

] [
0.6 0.4

1.0 5.1

]




The embedded multivariate, but non-nested distribution of the
scenario process can be gotten from it:




0.08 0.04 0.08 0.3 0.3 0.2

3.0 3.0 3.0 3.0 2.4 2.4
6.0 4.7 3.3 2.8 1.0 5.1
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Minimal filtrations




0.5 0.5

0 0[
0.5 0.5

0.0 1.0

] [
0.5 0.5

0.0 1.0

]







1.0

1.0[
0.5 0.5

0.0 1.0

]




Left: Not a valid nested distribution. Right: A valid one

This fact leads to the concept of minimal filtrations.
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Example
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This process-and-information pair is already minimal.
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Left: the original process-and-information pair, Right: the
pertaining minimal pair.
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Theorems

Theorem. Two minimal process-and-information pairs are
equivalent, if and only if they induce the same nested distribution.
Theorem. If a multiperiod stochastic optimization problem is
based on compound convex acceptability functionals, then the
optimal solution can be chosen as measurable w.r.t the minimal
filtration.
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Version-independent acceptability functionals

If a process Y = (Y1, . . . ,YT ) is defined on a probability space
(Ω,FF ,P) with filtration FF = (F0,F1, . . . ,FT ), it generates a
nested distribution.
Definition. An acceptability functional
A(Y1, . . . , YT ,F0, . . . ,FT−1) is called version-independent
(law-invariant), if it depends only on the nested distribution of the
process-and-information pair.
All functionals in this talk are version-independent. I do not know
of any reasonable functional, which is not version-independent in
this sense.
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Construction of multi-period risk functionals

(a) Separable multi-period acceptability functionals:

A(Y ;FF) :=
T∑

t=1

At(Yt),

where At are single-period acceptability functionals, satisfy
(MA1)’, (MA2) and (MA3), but do not depend on FF .

(b) Scalarization:
A(Y ;FF) := A0(s(Y ))

where A0 is a (single-period) acceptability functional and
s : Y → L1(Ω,F ,P) a mapping satisfying concavity,
monotonicity and s(Y1 + r ,Y2, . . . ,YT ) := s(Y1, . . . , YT ) + r
for all Y ∈ Y and r ∈ R. Examples:
(i) s(Y ) =

∑T
t=1 Yt .

(ii) s(Y ) := mint=1,...,T
∑t

τ=1 Yτ .
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(c) Separable expected conditional (SEC) multi-period
acceptability functionals:

A(Y ;FF) :=
T∑

t=1

E(At(Yt |Ft−1))

where At(· |Ft−1), t = 1, . . . , T , are conditional
(single-period) acceptability functionals, satisfy
(MA0)–(MA3).
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Remark. If A(Y ;FF) is SEC functional, then also its conjugate of
A+(·;FF) is SEC.
Example. (Multi-period Average Value-at-Risk )

mAV@Rα(Y ;FF) :=
T∑

t=1

E(AV@Rα(Yt |Ft−1))

= inf

{
T∑

t=1

E(YtZt) : Zt ∈ [0,
1

α
],E(Zt |Ft−1) = 1, t = 1, . . . ,T

}

The multi-period average value-at-risk is Lipschitz w.r.t. the
nested distance.
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Composition of conditional acceptability mappings

Let a probability space (Ω,F ,P) and a filtration FF = (F0, . . . ,FT )
of σ-fields Ft , t = 0, ...,T , with FT = F be given.
Let, for each t = 1, . . . ,T , conditional acceptability mappings
At−1 := A(· |Ft−1) from YT to Yt−1 be given. We introduce a
multi-period probability functional A on Y := ×T

t=1Yt by
compositions of the conditional acceptability mappings At−1,
t = 1, . . . ,T , namely,

A(Y ;FF) := A0[Y1 + · · ·+AT−2[YT−1 +AT−1(YT )]·]

= A0 ◦ A1 ◦ · · · ◦ AT−1(
T∑

t=1

Yt)

for every Yt ∈ Yt . (Ruszczynski and Shapiro)
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Example. We consider the conditional Average Value-at-Risk (of
level α ∈ (0, 1]) as conditional acceptability mapping

At−1(Yt) := AV@Rα(· |Ft−1)

for every t = 1, . . . ,T . Then the multi-period probability
functional

nAV@Rα(Y ;FF)=AV@Rα(· |F0) ◦ · · · ◦AV@Rα(· |FT−1)(
∑T

t=1
Yt)

satisfies (MA0), (MA1’), (MA2), (MA3) according to the
Proposition. It is called the nested Average Value-at-Risk.
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Proposition. Suppose that for every t the conditional acceptability
functional At(·|Ft) maps Lp(Ft) to Lp(Ft−1) and is defined by

At(Y |Ft) = inf{E(Y Z |Ft)−A+(Z |Ft) : Z ≥ 0,

E(Z |Ft) = 1, Z ∈ Zt(Ft)}.

Then the nested acceptability functional
A(Y ;FF) = A(T )(Y1 + · · ·+ YT ) has the dual representation

A(Y ;FF) = inf{E[(Y1 + · · ·+ YT )MT ]−
T∑

t=1

E[A+
t (Zt |Ft)Mt−1] :

E(Zt |Ft) = 1, Zt ≥ 0, Zt ∈ Zt(Ft)}

where Mt =
∏t

s=1 Zt and M0 = 1. Notice that (Mt) is a
martingale w.r.t. FF with E(|Mt |q) < ∞.
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Example. The nested AV@R has the following dual representation:

nAV@Rα(Y ;FF) = inf{E[(Y1 + · · ·+ YT )MT ] : 0 ≤ Mt ≤ 1

α
Mt−1,

E(Mt |Ft−1) = Mt−1, M0 = 1, t = 1, . . . ,T}.

The nested average value-at-risk nAV@R is given by a linear
stochastic optimization problem containing functional constraints.
The nested average value-at-risk nAV@R is Lipschitz w.r.t. the
nested distance.
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Dynamic programming solution?

Not every problem of the form

Maximize E[
T∑

t=1

Yt ]−
T∑

t=1

At(Y1, . . . , Yt)

subject to x ¢ FF
x ∈ X

allows a dynamic programming solution in the sense that one may
solve subproblems on subtrees from right to left until the root is
reached. Some authors call this property time consistency.
However, all nested acceptability functionals and all SEC
functionals are time consistent in this sense.
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Example: dynamic portfolio management
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An efficient frontier using the (negative) multi-period AV@R as risk
functional
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