A Semigroup Approach for Weak Approximations
with
an Application to Infinite Activity Lévy Driven SDEs

Hideyuki Tanaka1 and Arturo Kohatsu-Higa2

November 20, 2008

1Mitsubishi UFJ
2Osaka University.
Abstract

Weak approximations have been developed to calculate the expectation value of functionals of stochastic differential equations, and various numerical discretization schemes (Euler, Milshtein) have been studied by many authors. We present an operator decomposition method applicable to jump driven SDE’s.

Setting & Goals

Ideas from semigroup operators

The algebraic structure

First example: Coordinate processes

General framework

Weak approximation result

Combination of ”coordinates”

Examples: Diffusion, Levy driven SDE (Example: Tempered stable case)
Setting & Goals

Setting

\[X_t(x) = x + \int_0^t \tilde{V}_0(X_{s-}(x))ds + \int_0^t V(X_{s-}(x))dB_s + \int_0^t h(X_{s-}(x))dY_s. \]

(1)

with \(C^\infty \) coefficients
\(\tilde{V}_0 : \mathbb{R}^N \to \mathbb{R}^N, \ V = (V_1, \ldots, V_d), h : \mathbb{R}^N \to \mathbb{R}^N \otimes \mathbb{R}^d \)

\(B_t \) is a \(d \)-dim. BM and \(Y_t \) is an \(d \)-dim. Lévy with triplet \((b, 0, \nu)\) satisfying the condition

\[\int_{\mathbb{R}_0^d} (1 \wedge |y|^p)\nu(dy) < \infty. \]

for any \(p \in \mathbb{N} \).

Goal

Our purpose is to find discretization schemes \((X^{(n)}_t(x))_{t=0, T/n, \ldots, T}\) for given \(T > 0 \) such that

\[|E[f(X_T(x))] - E[f(X^{(n)}_T(x))]| \leq \frac{C(T, f, x)}{n^m}. \]
Remarks

Adaptive Weak Approximation of Diffusions with Jumps E. Mordecki, A. Szepessy, R. Tempone and G. E. Zouraris
Remarks

Adaptive Weak Approximation of Diffusions with Jumps E. Mordecki, A. Szepessy, R. Tempone and G. E. Zouraris

- Questions (We are interested in stable like Lévy measures.):
 1a. Proof for Asmussen-Rosinski type approach
 1b. Do we need to simulate all jumps if one wants an approximation of order 1 or 2?
 1c. Limiting the number of jumps
Remarks

Adaptive Weak Approximation of Diffusions with Jumps E. Mordecki, A. Szepessy, R. Tempone and G. E. Zouraris

2. Questions (We are interested in stable like Lévy measures.):
 1a. Proof for Asmussen-Rosinski type approach
 1b. Do we need to simulate all jumps if one wants an approximation of order 1 or 2?
 1c. Limiting the number of jumps

2. Proof through a ”semigroup type approach”
Remarks

 Adaptive Weak Approximation of Diffusions with Jumps E. Mordecki, A. Szepessy, R. Tempone and G. E. Zouraris

- Questions (We are interested in stable like Lévy measures.):
 1a. Proof for Asmussen-Rosinski type approach
 1b. Do we need to simulate all jumps if one wants an approximation of order 1 or 2?
 1c. Limiting the number of jumps

- 2. Proof through a "semigroup type approach"

- 3. Ideas come from Kusuoka type approximations
Set-up for the proof of weak approximation

Define:

\[P_t f(x) = E[f(X_t(x))] \]

\[Q_t \equiv Q^n_t : \text{operator such that the semigroup property is satisfied in } \{kT/n; k = 0, \ldots, n\}. \]

\[Q_t \approx P_t \text{ in the sense that } (P_t - Q_t)f(x) = O(t^{m+1}). \]

Then the idea of the proof is

\[
P_T f(x) - \left(Q_T/n \right)^n f(x) = \sum_{k=0}^{n-1} (Q_T/n)^k (P_T/n - Q_T/n) P_{T-k+1} n^{1/T} f(x).
\]

For the proof to work we essentially need:

Assumption \(\mathcal{R}(m, \delta_m) \): The local difference \(P_T/n - Q_T/n \) has to be a "small" operator.

Assumption \(\mathcal{M} \): The operators \((Q_T/n)^k \) and \(P_{T-k+1} n^{1/T} \) have to be stable.

Next; We need to find a stochastic representation for \(Q \) and interpret the composition.
Simulation (stochastic characterization): Let $M = M_t(x)$ s.t. $Q_t f(x) = E[f(M_t(x))]$. Then

$$Q_T f(x) = (Q_{T/n})^n f(x) = E[f(M_{T/n}^1 \circ \cdots \circ M_{T/n}^n(x))]$$

Example: Euler-Maruyama scheme:
$M_t(x) := x + \tilde{V}_0(x)t + V(x)B_t + h(x)Y_t$ satisfies

Assumption $\mathcal{R}(m, \delta_m)$: The local difference $P_{T/n} - Q_{T/n}$ has to be a "small" operator.

Assumption (\mathcal{M}): The operators $(Q_{T/n})^k$ and $P_{T-k+1/n}$ have to be stable.

Next: One has to be able to find stochastic representations for Q.
The algebraic structure

\[P_t = e^{tL} = \sum_{k=0}^{m} \frac{t^k}{k!} L^k + O(t^{m+1}) \]

Note that \(L = \sum_{i=1}^{d+1} L_i \).

\[e^{tL_i} = \sum_{k=0}^{m} \frac{t^k}{k!} L_i^k + O(t^{m+1}) \]

Goal: Approximate \(e^{tL} \), through a combination of \(L_i \)'s s.t.

\[e^{tL} - \sum_{j=1}^{k} \xi_j e^{t_{1,j}A_{1,j}} \ldots e^{t_{\ell,j}A_{\ell,j}} = O(t^{m+1}) \]

with some \(t_{i,j} > 0, A_{i,j} \in \{L_0, L_1, \ldots, L_{d+1}\} \) and weights \(\{\xi_j\} \subset [0, 1] \) with \(\sum_{j=1}^{k} \xi_j = 1 \). This will correspond to an \(m \)-th order discretization scheme.
First example: Coordinate processes

Define the coordinate processes $X_{i,t}(x)$, $i = 0, \ldots, d + 1$, solutions of

$$X_{0,t}(x) = x + \int_0^t V_0(X_{0,s}(x))ds$$

$$X_{i,t}(x) = x + \int_0^t V_i(X_{i,s}(x)) \circ dB^i_s \quad 1 \leq i \leq d$$

$$X_{d+1,t}(x) = x + \int_0^t h(X_{d+1,s}(x))dY_s.$$

Define

$$Q_{i,t}f(x) := E[f(X_{i,t}(x))]$$

whose generators are

$$L_0f(x) := (V_0f)(x), \quad L_if(x) := \frac{1}{2}(V^2_if)(x), \quad 1 \leq i \leq d$$

$$L_{d+1}f(x) := \nabla f(x)h(x)b + \int (f(x + h(x)y) - f(x) - \nabla f(x)h(x)\tau(y))\nu(dy)$$
How does the algebraic argument work?

For simplicity let $d + 1 = 2$ then

$$e^{tL} = I + tL + \frac{t^2}{2}L^2 + O(t^3)$$

$$e^{\frac{t}{2}L_1}e^{\frac{t}{2}L_2} \approx (I + tL_1 + \frac{t^2}{2}L_1^2 + ...)(I + tL_2 + \frac{t^2}{2}L_2^2 + ...)$$

$$= I + tL + \frac{t^2}{2} (L_2^2 + L_1^2 + L_1L_2) + O(t^3)$$

then

$$e^{tL} - e^{\frac{t}{2}L_1}e^{\frac{t}{2}L_2} = O(t^2)$$

$$e^{tL} - \frac{1}{2}e^{\frac{t}{2}L_1}e^{\frac{t}{2}L_2} - \frac{1}{2}e^{\frac{t}{2}L_2}e^{\frac{t}{2}L_1} = O(t^3)$$

finally one needs to obtain a stochastic representation for

$$\frac{1}{2}e^{\frac{t}{2}L_1}e^{\frac{t}{2}L_2} + \frac{1}{2}e^{\frac{t}{2}L_2}e^{\frac{t}{2}L_1}.$$
Examples of schemes:

Ninomiya-Victoir (a):

\[
\frac{1}{2} e^{\frac{t}{2} L_0} e^{t L_1} \cdots e^{t L_{d+1}} e^{\frac{t}{2} L_0} + \frac{1}{2} e^{\frac{t}{2} L_0} e^{t L_{d+1}} \cdots e^{t L_1} e^{\frac{t}{2} L_0}
\]

Ninomiya-Victoir (b):

\[
\frac{1}{2} e^{t L_0} e^{t L_1} \cdots e^{t L_{d+1}} + \frac{1}{2} e^{t L_{d+1}} \cdots e^{t L_1} e^{t L_0}
\]

Splitting method:

\[
e^{\frac{t}{2} L_0} \cdots e^{\frac{t}{2} L_d} e^{t L_{d+1}} e^{\frac{t}{2} L_d} \cdots e^{\frac{t}{2} L_0}
\]

So the idea is

\[
P_t f = e^{t L} f \approx \sum_{j=1}^{k} \xi_j e^{t_{1,j} A_{1,j}} \cdots e^{t_{\ell,j} A_{\ell,j}} f
\]

\[
\approx \sum_{j=1}^{k} \xi_j E \left[f \left(M_1(t_{1,j}, \ldots, M_l(t_{l,j}, \cdot)) \ldots \right) \right]
\]
General framework

Assumptions \(\mathcal{M} \)

- If \(f \in C_p \) with \(p \geq 2 \), then \(Q_t f \in C_p \) and

\[
\sup_{t \in [0, T]} \| Q_t f \|_{C_p} \leq K \| f \|_{C_p}
\]

for \(K > 0 \) independent of \(n \). Furthermore, we assume \(0 \leq Q_t f(x) \leq Q_t g(x) \) whenever \(0 \leq f \leq g \).
General framework

Assumptions \mathcal{M}

- If $f \in C_p$ with $p \geq 2$, then $Q_t f \in C_p$ and

$$\sup_{t \in [0, T]} \|Q_t f\|_{C_p} \leq K \|f\|_{C_p}$$

for $K > 0$ independent of n. Furthermore, we assume $0 \leq Q_t f(x) \leq Q_t g(x)$ whenever $0 \leq f \leq g$.

- For $f_p(x) := |x|^{2p} (p \in \mathbb{N})$,

$$Q_t f_p(x) \leq (1 + K t) f_p(x) + K' t$$

for $K = K(T, p), K' = K'(T, p) > 0$.
General framework

Assumptions \mathcal{M}

- If $f \in C_p$ with $p \geq 2$, then $Q_t f \in C_p$ and
 \[
 \sup_{t \in [0, T]} \| Q_t f \|_{C_p} \leq K \| f \|_{C_p}
 \]
 for $K > 0$ independent of n. Furthermore, we assume $0 \leq Q_t f(x) \leq Q_t g(x)$ whenever $0 \leq f \leq g$.

- For $f_p(x) := |x|^{2p}$ ($p \in \mathbb{N}$),
 \[
 Q_t f_p(x) \leq (1 + K t) f_p(x) + K' t
 \]
 for $K = K(T, p)$, $K' = K'(T, p) > 0$.

- For $m \in \mathbb{N}$, $\delta_m : [0, T] \rightarrow \mathbb{R}_+$ denotes a decreasing function s.t.
 \[
 \limsup_{t \rightarrow 0^+} \frac{\delta_m(t)}{t^{m-1}} = 0.
 \]
 Usually, we have $\delta_m(t) = t^m$.

Main hypothesis $\mathcal{R}(m, \delta_m)$

For $p \geq 2$, there exists $q = q(m, p) \geq p$ and linear operators $e_k : C^{2k}_p \to C_{p+2k}$ ($k = 0, 1, \ldots, m$) s.t.

(A): For every $f \in C^{2(m'+1)}_p$ with $1 \leq m' \leq m$, the operator Q_t satisfies

$$Q_t f(x) = \sum_{k=0}^{m'} (e_k f)(x) t^k + (\text{Err}^{(m')}_t f)(x), \quad t \in [0, T], \quad (2)$$

where $\text{Err}^{(m')}_t f \in C_q$, and satisfies the following condition:

(B): If $f \in C^{m''}_p$ with $m'' \geq 2k$, then $e_k f \in C^{m''-2k}_{p+2k}$ and there exists a constant constant $K = K(T, m) > 0$ such that

$$\|e_k f\|_{C^{m''-2k}_{p+2k}} \leq K \|f\|_{C^{m''}_p} \quad k = 0, 1, \ldots, m. \quad (3)$$

Furthermore if $f \in C^{m''}_p$ with $m'' \geq 2m' + 2$,

$$\|\text{Err}^{(m')}_t f\|_{C_q} \leq \begin{cases} K t^{m'+1} \|f\|_{C^{m''}_p} & \text{if } m' < m \\ K t \delta_m(t) \|f\|_{C^{m''}_p} & \text{if } m' = m \end{cases} \quad \text{for all } 0 \leq t \leq T.$$
Weak approximation result

\((C)\): For every \(0 \leq k \leq m\) and \(j \geq 2k + 2\), if \(f \in C^{1,j}_p([0, T] \times \mathbb{R}^N)\), then \(e_k f \in C^{1,j-2k}_{p+2k}([0, T] \times \mathbb{R}^N)\).

Define \(J_{\leq m}(Q_t)(f)(x) = \sum_{k=0}^{m} (e_k f)(x) t^k\)

Theorem

Assume \((\mathcal{M})\) and \(\mathcal{R}(m, \delta_m)\) for \(P_t\) and \(Q_t\) with \(J_{\leq m}(P_t - Q_t) = 0\).
Then for any \(f \in C^{2(m+1)}_p\), there exists a constant \(K = K(T, x) > 0\) such that

\[
\left| P_T f(x) - (Q_{T/n})^n f(x) \right| \leq K \delta_m \left(\frac{T}{n} \right) \| f \|_{C^{2(m+1)}_p}. \tag{4}
\]

Theorem

Assume \((\mathcal{M})\) and \(\mathcal{R}(m + 1, \delta_{m+1})\) for \(Q_t\) with \(J_{\leq m}(P_t - Q_t) = 0\).
Then for each \(f \in C^{2(m+3)}_p\), we have

\[
P_T f(x) - (Q_{T/n})^n f(x) = \frac{K}{n^m} + \mathcal{O}\left(\left(\frac{T}{n} \right)^{m+1} \vee \delta_{m+1} \left(\frac{T}{n} \right) \right). \tag{5}
\]
Properties for algebraic construction

Lemma

Let $Q^{Y_1}_t$ and $Q^{Y_2}_t$ associated with independent processes Y^{1}_t, Y^{2}_t and let $Q^{Y_1}_t Q^{Y_2}_t$ be the composite operator associated with the process $(Y^{2} \circ Y^{1})_t(x) = Y^{2}_t(Y^{1}_t(x))$. Then

(i) If \mathcal{M} holds for $Q^{Y_1}_t$, $Q^{Y_2}_t$, then it also holds for $Q^{Y_1}_t Q^{Y_2}_t$.

(ii) If $\mathcal{R}(m, \delta_m)$ holds for $Q^{Y_1}_t$, $Q^{Y_2}_t$, then it also holds for $Q^{Y_1}_t Q^{Y_2}_t$.

Next: Approximating the coordinate semigroups.
Combination of "coordinates" and their approximation

Theorem
Assume \((\mathcal{M}) \) and \(\mathcal{R}(2, \delta_2) \) are satisfied for \(Q_t \bar{X}_i \)
\((i = 0, 1, \ldots, d + 1)\) associated with indep. processes \(\bar{X}_0, \ldots, \bar{X}_{d+1} \)
with \(J_{\leq 2}(Q_{i,t} - Q_t \bar{X}_i) = 0 \). Then all the following operators satisfy
\((\mathcal{M})\) and \(\mathcal{R}(2, \delta_2) \):

\[
\text{N-V(a)} \quad Q_t^{(a)} = \frac{1}{2} Q_t^{\bar{X}_0} \prod_{i=1}^{d+1} Q_t \bar{X}_i Q_t^{\bar{X}_0} + \frac{1}{2} Q_t^{\bar{X}_0} \prod_{i=1}^{d+1} Q_t^{\bar{X}_{d+2-i}} Q_t^{\bar{X}_0} \\
\text{N-V(b)} \quad Q_t^{(b)} = \frac{1}{2} \prod_{i=0}^{d+1} Q_t^{\bar{X}_i} + \frac{1}{2} \prod_{i=0}^{d+1} Q_t^{\bar{X}_{d+1-i}} \\
\text{Splitting} \quad Q_t^{(sp)} = Q_t^{\bar{X}_0} \cdots Q_t^{\bar{X}_d} Q_t^{\bar{X}_{d+1}} Q_t^{\bar{X}'_d} \cdots Q_t^{\bar{X}'_0} \\
\]

where \((\bar{X}_0', \ldots, \bar{X}_d')\) is a further indep. copy of \((\bar{X}_0, \ldots, \bar{X}_d)\).
Moreover, we have \(J_{\leq 2}(Q_t^{(a)}) = J_{\leq 2}(Q_t^{(b)}) = J_{\leq 2}(Q_t^{(sp)}) = \sum_{k=0}^{2} \frac{t^k}{k!} L^k \). In particular,
the above schemes define a second order approximation scheme.
Theorem
Let $m = 1$ or 2. Assume (\mathcal{M}) and $\mathcal{R}(2m, t^{2m})$ for $Q_t^{[i]}$ ($i = 1, \ldots, \ell$). Furthermore, we assume

1. $J_{\leq 2m} \left(P_t - \sum_{i=1}^{\ell} \xi_i Q_t^{[i]} \right) = 0$ for some real numbers $\{\xi_i\}_{i=1,\ldots,\ell}$ with $\sum_{i=1}^{\ell} \xi_i = 1$

2. There exists a constant $q = q(m, p) > 0$ such that for every $f \in C_{p}^{m'}$ with $m' \geq 2(m + 1)$, $(P_t - Q_t^{[i]})f \in C_{q}^{m' - 2(m + 1)}$ and

$$\sup_{t \in [0, T]} \| (P_t - Q_t^{[i]})f \|_{C_{p}^{m' - 2(m + 1)}} \leq C_T \| f \|_{C_{q}^{m'}} t^{m+1}.$$

Then we have for any $f \in C_{p}^{4(m+1)}$,

$$\left| P_T f(x) - \sum_{i=1}^{\ell} \xi_i (Q_t^{[i]})^n f(x) \right| \leq \frac{C(T, f, x)}{n^{2m}}.$$

Note that $\sum_{i=1}^{\ell} \xi_i Q_t^{[i]}$ does not satisfy the semigroup property or the monotonic property.
Example

Example: The following modified Ninomiya-Victoir scheme

\[
\frac{1}{2} \left(e^{\frac{T}{2n}L_0} \prod_{i=1}^{d+1} e^{\frac{T}{n}L_i} e^{\frac{T}{2n}L_0} \right)^n + \frac{1}{2} \left(e^{\frac{T}{2n}L_0} \prod_{i=1}^{d+1} e^{\frac{T}{n}L_{d+2-i}} e^{\frac{T}{2n}L_0} \right)^n
\]

is also of order 2.

Example

Fujiwara gives a proof of a similar version of the above theorem and some examples of 4th and 6th order. We introduce the examples of 4th order:

\[
\frac{4}{3} \left(\frac{1}{2} \left(\prod_{i=0}^{d+1} e^{\frac{t}{2}L_i} \right)^2 + \frac{1}{2} \left(\prod_{i=0}^{d+1} e^{\frac{t}{2}L_{d+1-i}} \right)^2 \right) - \frac{1}{3} \left(\prod_{i=0}^{d+1} e^{tL_i} + \frac{1}{2} \prod_{i=0}^{d+1} e^{tL_{d+1-i}} \right)
\]
Example (Diffusion coordinate)

Theorem
Let $V : \mathbb{R}^N \rightarrow \mathbb{R}^N \in C_b^\infty$. The exponential map is defined as $\exp(V)x = z_1(x)$ where z satisfies the ode

$$\frac{dz_t(x)}{dt} = V(z_t(x)), \quad z_0(x) = x.$$ \hfill (6)

Lemma
For $i = 0, 1, \ldots, d$, the sde

$$X_{i,t}(x) = x + \int_0^t V_i(X_{i,s}(x)) \circ dB_s^i$$ \hfill (7)

has a unique solution given by

$$X_{i,t}(x) = \exp(B_t^i V_i)x.$$
Proposition

Let \(f \in C_p^{m+1} \). Then we have for \(i = 0, 1, \ldots, d \),

\[
f(\exp(tV_i)x) = \sum_{k=0}^{m} \frac{t^k}{k!} V_i^k f(x) + \int_0^t \frac{(t-u)^m}{m!} V_i^{m+1} f(\exp(uV_i)x) \, du
\]

such that

\[
|\int_0^t \frac{(t-u)^m}{m!} V_i^{m+1} f(\exp(uV_i)x) \, du| \leq C_m \| f \|_{C_p^{m+1}} e^{K|t|} (1 + |x|^{p+m+1}) t^{m+1}.
\]

Based on this result, we define the approximation to the solution of the coordinate equation as follows

\[
b_{m}^{i}(t, V)x = \sum_{k=0}^{m} \frac{t^k}{k!} (V^k e_j)(x), \quad j = 1, \ldots, N.
\]

Define \(\tilde{X}_{i,t}(x) = b_{2m+1}(B_t^i, V_i)x \) for \(i = 0, \ldots, d \). Then we have the following approximation result.
Proposition

(i) For every \(p \geq 1 \),
\[
\| X_{i,t}(x) - \bar{X}_{i,t}(x) \|_{L^p} \leq C(p, m, T)(1 + |x|^{2(m+1)})t^{m+1}.
\]

(ii) Let \(f \in C^1_p \). Then we have
\[
E[|f(X_{i,t}(x)) - f(\bar{X}_{i,t}(x))|] \leq C(m, T)\| f \|_{C^1_p}(1 + |x|^{p+2(m+1)})t^{m+1}.
\]

As a result of this proposition we can see that \(\mathcal{R}(m, t^m) \) holds for the operators associated with \(b_m(t, V_0)x \) and \(b_{2m+1}(B_i^t, V_i)x, \) \(1 \leq i \leq d \). Indeed, we have for \(m' \leq m \),
\[
E[f(\bar{X}_{i,t}(x))] = Q_{i,t}f(x) + E[f(\bar{X}_{i,t}(x)) - f(X_{i,t}(x))]
\]
\[
= \sum_{k=0}^{m'} \frac{t^k}{k!} L_i^k f(x) + (E_{t^m}^m f)(x)
\]

where \((E_{t^m}^m f)(x) \)
where
\[
(E_t^{m'} f)(x) := (\text{Err}_t^{(m')} f)(x) + E[f(\bar{X}_{i,t}(x)) - f(X_{i,t}(x))]
\]
and \((\text{Err}_t^{(m')} f)(x)\) is defined through a previous proposition using \(L_i\) and \(Q_i\) instead of \(L\) and \(P\). Furthermore, using (ii), we have that the error term \(E_t^{m'}\) satisfies (B) in assumption \(\mathcal{R}(m, t^m)\).
where
\[
(E^m_t f)(x) := (\text{Err}^m_t f)(x) + E[f(\bar{X}_{i,t}(x)) - f(X_{i,t}(x))]
\]

and \((\text{Err}^m_t f)(x)\) is defined through a previous proposition using \(L_i\) and \(Q_i\) instead of \(L\) and \(P\). Furthermore, using (ii), we have that the error term \(E^m_t\) satisfies (B) in assumption \(R(m, t^m)\).

Proposition Assume that \((V_i^k e_j) (2 \leq k \leq m, 0 \leq i \leq d, 1 \leq j \leq N)\) satisfies the linear growth condition then \((\mathcal{M})\) holds for \(\bar{X}_{i,t}(x), i = 0, \ldots, d\).

Theorem

Assume that \((V_i^k e_j) (2 \leq k \leq m, 0 \leq i \leq d, 1 \leq j \leq N)\) satisfies the linear growth condition. Let \(\bar{X}_{i,t}(x)\) be defined by

\[
\bar{X}_{i,t}(x) = b_{2m+1}(B_t^i, V_i)x = \sum_{k=0}^{2m+1} \frac{1}{k!} (V_i^k I)(x) \int_{0 < t_1 < \cdots < t_k < t} 1 \circ dB_{t_1}^i \cdots \circ dB_{t_k}^i.
\]

Denote by \(Q^\bar{X}_i\) the semigroup associated with \(\bar{X}_{i,t}(x)\). Then \(Q^\bar{X}_i\) satisfies \((\mathcal{M})\) and \(\mathcal{R}(m, t^m)\). Furthermore \(J_{\leq m}(Q_{i,t} - Q^\bar{X}_i) = 0\).
Runge-Kutta methods:

We say here that c_m is an s-stage explicit Runge-Kutta method of order m for the ODE (6) if it can be written in the form

$$c_m(t, V)x = x + t \sum_{i=1}^{s} \beta_i k_i(t, V)x$$

where $k_i(t, V)x$ defined inductively by

$$k_1(t, V)x = V(x),$$

$$k_i(t, V)x = V\left(x + t \sum_{j=1}^{i-1} \alpha_{i,j} k_j(t, V)x\right), \quad 2 \leq i \leq s,$$

and satisfies

$$|\exp(tV)x - c_m(t, V)x| \leq C_m e^{K|t|}(1 + |x|^{m+1})|t|^{m+1}$$

for some constants $((\beta_i, \alpha_{i,j})_{1 \leq j < i \leq s})$. Runge-Kutta formulas of order less than or equal to 7 are well known.
Proposition

(i) For every $p \geq 1$,

$$
\|X_{i,t}(x) - c_{2m+1}(B^i_t, V_i)x\|_{L^p} \leq C(p, m, T)(1+|x|^{2(m+1)})t^{m+1}
$$

(ii) Let $f \in C^1_p$. Then we have

$$
E[|f(X_{i,t}(x)) - f(c_{2m+1}(B^i_t, V_i)x)|] \leq C(m, T)\|f\|_{C^1_p}(1+|x|^{2(m+1)})t^{m+1}
$$

Next we show that \mathcal{M} still holds for the Runge-Kutta schemes. **Proposition** \mathcal{M} holds for $c_m(B^i_t, V_i)x, \; i = 0, \ldots, d$.

Consequently, as in the Taylor scheme, $\mathcal{R}(m, t^m)$ and \mathcal{M} hold for the operators associated with $c_m(t, V_0)x$ and $c_{2m+1}(B^i_t, V_i)x, \; 1 \leq i \leq d$.
Example: Compound Poisson

\[Y_t = \sum_{i=1}^{N_t} J_i \]

where \((N_t)\) : Poisson \((\lambda)\) and \((J_i)\) are i.i.d. \(\mathbb{R}^d\)-r.v. indep. of \((N_t)\) with \(J_i \in \bigcap_{p \geq 1} L^p\).

In this case \(Y_t\) is a Lévy process with generator of the form

\[\int_{\mathbb{R}^d_0} (f(x + y) - f(x)) \nu(dy) \]

where \(\tau \equiv 0, b = 0, \nu(\mathbb{R}^d_0) = \lambda < \infty\) and \(\nu(dy) = \lambda P(J_1 \in dy)\).

Then in this case

\[X_t^{d+1}(x) = x + \int_0^t h(X_{s-}^{d+1}(x))dY_s, \quad t \in [0, T] \]

which can be solved explicitly.
Indeed, let \((G_i(x)) \) be defined by recursively

\[
G_0 = x \\
G_i = G_{i-1} + h(G_{i-1})J_i.
\]

Then the solution can be written as \(X_t^{d+1}(x) = G_{N_t}(x) \). Define for fixed \(M \in \mathbb{N} \), the approximation process \(\tilde{X}_{d+1,t} = G_{N_t \wedge M}(x) \). This approximation requires the simulation of at most \(M \) jumps. In fact, the rate of convergence is fast as the following result shows.

Proposition Let \(M \in \mathbb{N} \). Then the process \(G_{N_t \wedge M}(x) \) satisfies \((\mathcal{M})\) and \(R(M, t^{M-\kappa}) \) for arbitrary small \(\kappa > 0 \). Furthermore \(J_{\leq M}(Q_{d+1,t} - Q_t \tilde{X}_{d+1}) = 0 \).
Infinite activity approximated by a process with no small jumps

Define for $\varepsilon > 0$ Lévy proc. (Y_t^ε) with Lévy triplet $(b, 0, \nu^\varepsilon)$

$$\nu^\varepsilon(E) := \nu(E \cap \{ y : |y| > \varepsilon \}), \ E \in \mathcal{B}(\mathbb{R}_0^d). \quad (11)$$

Consider the approximate coordinate SDE

$$\tilde{X}_{d+1,t}(x) = x + \int_0^t h(\tilde{X}_{d+1,s-}(x)) dY_s^\varepsilon,$$

$$L^1_{d+1,f}(x) = \nabla f(x) h(x) b + \int (f(x+h(x)y)-f(x)-\nabla f(x) h(x) \tau(y)) \nu^\varepsilon(dy).$$

Now we derive the error estimate for $\tilde{X}_{d+1,t}$.

Theorem
Assume that $\sigma^2(\varepsilon) := \int_{|y| \leq \varepsilon} |y|^2 \nu(dy) \leq t^{M+1}$ for $\varepsilon \equiv \varepsilon(t) \in (0, 1]$. Then we have that $Q_t^{\tilde{X}_{d+1}}$ satisfies (\mathcal{M}) and $\mathcal{R}(M, t^M)$.
Furthermore $J_{\leq M}(Q_{d+1,t} - Q_t^{\tilde{X}_{d+1}}) = 0$.
Asmussen-Rosinski type approximation

Consider the new approximate SDE

\[\tilde{X}_{d+1,t}(x) = x + \int_0^t h(\tilde{X}_{d+1,s}(x))\Sigma_\varepsilon^{1/2} dW_s + \int_0^t h(\tilde{X}_{d+1,s-}(x))dY_s^\varepsilon \]

where \(W_t \) is a new \(d \)-dim.BM indep. of \(B_t \) and \(Y_t^\varepsilon \), and \(\Sigma_\varepsilon \) is the symmetric and semi-positive definite \(d \times d \) matrix defined as

\[\Sigma_\varepsilon = \int_{|y|\leq\varepsilon} yy^*\nu(dy). \]

(12)

Since the above SDE is also driven by a jump-diffusion process, we can also simulate it using the second order discretization schemes.

Theorem

Assume that \(0 < \varepsilon \equiv \varepsilon(t) \leq 1 \) is chosen as to satisfy that

\[\int_{|y|\leq\varepsilon} |y|^3\nu(dy) \leq t^{M+1}. \]

Then we have that \(Q_{t\tilde{X}_{d+1}} \) satisfies \(\mathcal{M} \) and \(\mathcal{R}(M, t^M) \). Furthermore \(J_{\leq M}(Q_{d+1,t} - Q_{t\tilde{X}_{d+1}}) = 0. \)
Idea of the proof: One dimension

\[
Q_{d+1,t} f(x) - Q_t^\bar{X}_{d+1} f(x)
\]

\[
= \sum_{k=1}^{M} \frac{t^k}{k!} \left((L_{d+1})^k - \left(L_{d+1}^{1,\varepsilon} \right)^k \right) f(x)
\]

\[
+ \int_0^t \frac{(t-u)^M}{M!} \left(Q_{d+1,u} (L_{d+1})^{M+1} - Q_{u}^\bar{X}_{d+1} \left(L_{d+1}^{1,\varepsilon} \right)^{M+1} \right) f(x) du.
\]

It is enough to prove:

\[
|(L_{d+1} - L_{d+1}^{1,\varepsilon}) f(x)| \leq C \|f\|_{C^2_p} (1 + |x|^{p+2}) t^{M+1}.
\]

Change of triplets

\[
(b, 0, \nu), \tau \Rightarrow (b\varepsilon, 0, \nu), \tau_{\varepsilon}
\]

\[
(b, 0, \nu^{\varepsilon}), \tau \Rightarrow (b\varepsilon, 0, \nu^{\varepsilon}), \tau_{\varepsilon}
\]

where \(\tau_{\varepsilon}(y) = y 1_{\{|y| \leq \varepsilon\}} \). Then
\[(L_{d+1} - L_{d+1}^{1,\varepsilon}) f(x)\]
\[\leq \left| \int \nabla f(x) h(x) (y - \tau_{\varepsilon}(y)) (\nu(dy) - \nu^{\varepsilon}(dy)) \right| \]
\[+ \left| \int \int_0^1 (1 - \theta)f''(x + \theta h(x)y) h(x)^2 y^2 d\theta (\nu(dy) - \nu^{\varepsilon}(dy)) \right| \].

We first obtain that for \(\varepsilon > 0\),
\[
\int (y - \tau_{\varepsilon}(y)) (\nu(dy) - \nu^{\varepsilon}(dy)) = 0
\]
since the support of the measure \((\nu - \nu^{\varepsilon})\) is \(|y| \leq \varepsilon\). Also
\[
\left| \int \int_0^1 f''(x + \theta h(x)y) d\theta h(x)^2 y^2 (\nu(dy) - \nu^{\varepsilon}(dy)) \right| \leq C \|f\| \|C^2_p(1 + |x|^{p+2})\sigma^2(\varepsilon)\]
and hence as \(\sigma^2(\varepsilon) \leq t^{M+1}\), one obtains that
\(J_{\leq M}(Q_{d+1,t} - Q_{t}^{\tilde{X}_{d+1}}) = 0\) and that \(Q_{t}^{\tilde{X}_{d+1}}\) satisfies \((\mathcal{M})\) and \(\mathcal{R}(M, t^M)\).
Example: Other decompositions with at most one jump per interval

\[\tau(y) = y^1_{|y|<1}, \text{ assume that } \int_{|y|<1} |y| \nu(dy) < \infty. \]

Then we decompose the operator

\[
L_{d+1} = L_{d+1}^1 + L_{d+1}^2 + L_{d+1}^3
\]

\[
L_{d+1}^1 f(x) := \nabla f(x) h(x) \left(b - \int_{\varepsilon<|y|\leq 1} \tau(y) \nu(dy) \right)
\]

\[
L_{d+1}^2 f(x) := \int_{|y|\leq \varepsilon} (f(x + h(x)y) - f(x) - \nabla f(x) h(x) \tau(y)) \nu(dy)
\]

\[
L_{d+1}^3 f(x) := \int_{\varepsilon<|y|} f(x + h(x)y) - f(x) \, (dy).
\]

The operator \(L_{d+1}^1 \) can be exactly generated using

\[
\bar{X}_{d+1,t}^1 = x + \left(b - \int_{\varepsilon<|y|\leq 1} \tau(y) \nu(dy) \right) \int_0^t h \left(\bar{X}_{d+1,s}^1 \right) \, ds.
\]

Therefore we only need to approximate \(L_{d+1}^2 \) and \(L_{d+1}^3 \).
Approximation for \(L^2_{d+1} \). Define the dist. fct. \(F_\varepsilon(dy) = \lambda_\varepsilon^{-1} |y|^r 1_{|y| \leq \varepsilon} \nu(dy) \) with \(\lambda_\varepsilon = \int_{|y| \leq \varepsilon} |y|^r \nu(dy) < \infty \).

Let \(Y_\varepsilon \sim F_\varepsilon \). Define \(\bar{X}_t^{2,\varepsilon}(x) = x + h(x) W_t \sqrt{\lambda_\varepsilon} \), where \(W \) is a \(d \)-dim. BM with cov. matrix given by \(\Sigma_{ij} = |Y_\varepsilon|^{-r} Y_i \varepsilon Y_j \varepsilon \) which is indep. of everything else.

Lemma

\((*)1.\) Assume that \(\int_{|y| \leq \varepsilon} |y|^3 \nu(dy) \leq C t \) and

\[\sup_{\varepsilon \in (0,1]} \int_{|y| \leq \varepsilon} |y|^{4-r} \nu(dy) < \infty \] then

\[\left| E \left[f(\bar{X}_t^{2,\varepsilon}) \right] - f(x) - tL^2_{d+1} f(x) \right| \leq \| f \|_{C^2_p} (1 + |x|^{p+2}) t^2. \]

That is, condition \(R(2, t^2) \) is satisfied.

2. Assume that \(\sup_{\varepsilon \in (0,1]} \int_{|y| \leq \varepsilon} |y|^{2+\frac{(2-r)(p-2)}{2}} \nu(dy) < \infty \), then assumption \((M)\) is satisfied with

\[E \left[\left| \bar{X}_{d+1}^{2,\varepsilon}(x) \right|^p \right] \leq (1 + Kt)|x|^p + K't \]

for all \(p \geq 2 \).
The approximation for L_{d+1}^3 is defined as follows. Let $G_\varepsilon(dy) = C_\varepsilon^{-1}1_{|y|>\varepsilon} \nu(dy)$, $C_\varepsilon = \int_{|y|>\varepsilon} \nu(dy)$ and let $Z^\varepsilon \sim G_\varepsilon$ and let S^ε be a Bernoulli r.v. indep. of Z^ε. If $S^\varepsilon = 0$ define $ar{X}_t^{3,\varepsilon}(x) = x$, otherwise $ar{X}_t^{3,\varepsilon}(x) = x + h(x)Z^\varepsilon$.

Lemma

(\textbf{**})1. Assume that $|C_\varepsilon^{-1}P[S^\varepsilon = 1] - t| \leq Ct^2$ then

$$
\left| E \left[f(\bar{X}_t^{3,\varepsilon}) \right] - f(x) - tL_{d+1}^3 f(x) \right| \leq Ct^2 \|f\|_{C^1_p} (1+|x|^{p+1}) \int_{|y|>\varepsilon} |y| \nu(dy)
$$

That is, condition $\mathcal{R}(2, t^2)$ is satisfied.

2. If $C_\varepsilon^{-1}P[S^\varepsilon = 1] \leq Ct$ then assumption (\textbf{M}) is satisfied with

$$
E \left[\left| \bar{X}_{d+1}^{3,\varepsilon}(x) \right|^p \right] \leq (1 + Kt)|x|^p + K't
$$

for all $p \geq 2$.

Weighted version / (Importance sampling)

Weight \(l : \mathbb{R}^d \rightarrow \mathbb{R} \). Let \(F_\epsilon(dy) = \lambda_\epsilon l(y)1_{|y|\leq \epsilon} \nu(dy) \) with \(\lambda_\epsilon^{-1} = \int_{|y|\leq \epsilon} l(y) \nu(dy) \). Let \(Y_\epsilon \sim F_\epsilon \). Define \(\bar{X}^{2,\epsilon}_t(x) = x + h(x) W_t \sqrt{\lambda_\epsilon} \), where \(W \) is a \(d \)-dim. BM with cov. matrix given by \(\Sigma_{ij} = l(Y_\epsilon)^{-1} Y_\epsilon^i Y_\epsilon^j \) which is indep. of everything else.

Lemma

1. Assume that \(\int_{|y|\leq \epsilon} |y|^3 \nu(dy) \leq C t \) and \(\sup_{\epsilon \in (0,1]} \int_{|y|\leq \epsilon} |y|^4 l(y)^{-1} \nu(dy) < \infty \) then

\[
\left| E \left[f(\bar{X}^{2,\epsilon}_t) \right] - f(x) - t L^2_{d+1} f(x) \right| \leq C \| f \|_{C^2_p} (1 + |x|^{p+2}) t^2.
\]

That is, condition \(R(2, t^2) \) is satisfied.

2. Assume that \(\sup_{\epsilon \in (0,1]} \int_{|y|\leq \epsilon} |y|^p l(y)^{-\frac{p-2}{2}} \nu(dy) < \infty \), then assumption (\(M \)) is satisfied with

\[
E \left[\left| \bar{X}^{2,\epsilon}_{d+1}(x) \right|^p \right] \leq (1 + K t)|x|^p + K't.
\]
One can also use localization functions for $|y| > \varepsilon$ as follows. Let

$$G_{\varepsilon,l}(dy) = C_{\varepsilon,l}^{-1}l(y)1_{|y|>\varepsilon}\nu(dy), \quad C_{\varepsilon,l} = \int_{|y|>\varepsilon} l(y)\nu(dy)$$

and let $Z_{\varepsilon,l} \sim G_{\varepsilon,l}$ and let S^ε be a Bernoulli r.v. indep. of $Z_{\varepsilon,l}$. Then consider the following two subcases. If $S^\varepsilon = 0$ define

$$\tilde{X}^{3,\varepsilon}_t(x) = x,$$

otherwise $\tilde{X}^{3,\varepsilon,l}_t(x) = x + h(x)l(Z_{\varepsilon,l})^{-1}Z_{\varepsilon,l}$.

Lemma

1. Assume that

$$\int_{|y|>\varepsilon} |y|^2(l(y)^{-1} - 1) + |y|^{p+3}|l(y)^{-1} - 1|^p|\nu(dy) \leq Ct \quad \text{and}$$

$$\left| C_{\varepsilon,l}^{-1} P [S_{\varepsilon,l} = 1] - t \right| \leq Ct^2$$

then

$$\left| E \left[f(\tilde{X}^{3,\varepsilon,l}_t) \right] - f(x) - tL_{d+1}^3 f(x) \right| \leq Ct^2 \| f \|_{C^2_p} (1 + |x|^{p+2}).$$

That is, condition $\mathcal{R}(2, t^2)$ is satisfied.

2. Assume that

$$\sup_{\varepsilon \in (0,1]} \max_{j=1,...,p} \int_{|y|>\varepsilon} l(y)^{1-j} |y|^j \nu(dy) < \infty.$$ Then assumption (M) is satisfied with

$$E \left[\left| \tilde{X}^{3,\varepsilon}_{d+1} (x) \right|^p \right] \leq (1 + Kt)|x|^p + K't.$$

Example: Tempered stable

Let a Lévy measure ν defined on \mathbb{R}_0 be given by

$$\nu(dy) = \frac{1}{|y|^{1+\alpha}} \left(c_+ e^{-\lambda_+ |y|} 1_{y>0} + c_- e^{-\lambda_- |y|} 1_{y<0} \right) dy$$

- **Gamma:** $\lambda_+, c_+ > 0$, $c_- = 0$, $\alpha = 0$.
- **Variance gamma:** $\lambda_+, \lambda_-, c_+, c_- > 0$, $\alpha = 0$.
- **Tempered stable:** $\lambda_+, \lambda_-, c_+, c_- > 0$, $0 < \alpha < 2$.

Then, we have that for $\alpha \in [0, 1)$

$$\int_{|y| \leq \varepsilon} |y|^k \nu(dy) \sim \varepsilon^{k-\alpha}, \quad k \geq 1.$$

Therefore $\sup_{\varepsilon \in (0,1]} \int_{|y| \leq \varepsilon} |y| \nu(dy) < \infty$, then the conditions of the approximation Lemma (*) are satisfied if $r \geq \alpha$, $r + \alpha \leq 4$ and $\varepsilon = t^{\frac{1}{3-\alpha}}$. approximation Lemma (***) is satisfied for example in the following case. Let $P \left[S^\varepsilon = 1 \right] = e^{-C_\varepsilon a(\varepsilon,t)}$ where $a(\varepsilon, t) = -\varepsilon^\alpha \log \left((t^2 + t) \varepsilon^{-\alpha} \right)$ as $\varepsilon = t^{\frac{1}{3-\alpha}}$ then we have that $a(\varepsilon(t), t) = -t^{\frac{\alpha}{3-\alpha}} \log \left((t + 1)t^{\frac{3-2\alpha}{3-\alpha}} \right)$.
Comments:

- Design other approximation schemes
Comments:

- Design other approximation schemes
- One can also do this for $h(x, y)$
Comments:

- Design other approximation schemes
- One can also do this for $h(x, y)$
Comments:

- Design other approximation schemes
- One can also do this for $h(x,y)$
- Simulating pure jump processes at random times. joint work with P. Tankov.
Comments:

- Design other approximation schemes
- One can also do this for $h(x, y)$
- Simulating pure jump processes at random times. joint work with P. Tankov.
- Irregular functions f: Consider the right stochastic representation and concatenate. But there is a technical problem with jump type processes!
A. Alfonsi: High order discretization schemes for the CIR process: application to Affine Term Structure and Heston models, Juin 2008.

