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Control in Insurance

Active research area with objectives: minimizing ruin
probability, or maximizing dividend payment, or else;
with control of

investment,
reinsurance,
new business,
premia,
more than one of these.

a) in the classical Lundberg model or
b) in diffusion approximations.
Asmussen, Hoejgaard, Taksar with (b), Schmidli,
Schachermeyer, H. and Plum, Vogt, Schmidli, with (a).
Good problems.
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Simplest model for insurance

Lundberg’s risk model (1905):

R(t) = s + ct − X1 − ...− XN(t),

s initial surplus,
c constant premium rate,
N(t) homogeneous Poisson prozess for occurence of
claims,
X1,X2, ... iid claim sizes,
N(t), t ≥ 0, and X1,X2, ... independent.
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Capital market

Logarithmic Brownian motion for stock, index or similar:

dZ (t) = µZ (t)dt + σZ (t)dW (t),

independence between Z (t) and R(t), t ≥ 0, with µ, σ > 0.
riskless asset (still existing?)

dB(t) = rB(t)dt , r ≥ 0.
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Simplifications

Simplifying assumptions are:
short selling allowed;
arbitrary sizes;
equal interest rate for borrowing and lending;
leverage possible;
no transaction costs;
no tax;
...
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r = 0, leverage, investment in index

Minimize ruin probability by dynamic investment in index. If
θ(t)Z (t) = A(t) is invested at time t then the total position of the
insurer has the dynamics

dY (t) = cdt−dS(t)+dG(t) = (c+A(t)µ)dt−dS(t)+A(t)σdW (t),

with claims process

S(t) = X1 + ...+ XN(t), t ≥ 0,

and investment gains (again existing?)

G(t) =

∫ t

0
θ(u)dZ (u) =

∫ t

0
A(u)/Z (u)dZ (u).
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General solution procedure

HJB equation
Existence of a smooth solution
Verification argument
numerical calculation of optimal strategy
qualitative properties of optimal strategy

Different degrees of difficulty!
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HJB equation

The HJB equation is

0 = sup
A
{λE [V (s−X )−V (s)] + (c + Aµ)V ′(s) +

1
2

A2σ2V ′′(s)}.

Possible norming: µ = σ = 1.
Maximizer

A(s) = − V ′(s)

V ′′(s)

defines the optimal strategy in feedback form: invest A(s) when
you are in state s.
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Equivalent system of equations

With U(s) = (V ′(s)/V ′′(s))2 = A(s)2 equivalent to the following
system of interacting differential equations:

V ′(s) =
λ(V (s)− g(s))

c + 1
2

√
U(s)

(1)

1
4

U ′(s) =
√

U(s)

[
λ+ 1/2− λ g′(s)

V ′(s)

]
+ c, (2)

where
g(s) = E [V (s − X )].

With boundary values U(0) = 0,V (∞) = 1 this produces a
stable and fast numerical algorithm for A(s).
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Exponentially distributed claim sizes

If X ∼ Exp(a) with density f (x) = a exp(−ax), x > 0,a > 0, we
have

g′(s) = a(V (s)− g(s))

and thus the equations separate with one equation being

1
4

U ′(s) =
√

U(s)
[
λ+ 1/2− ac − a

2

√
U(s)

]
+ c.
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Exponentially distributed claim sizes, λ+ 1/2 = ac

In this special case

U ′(s) = −2aU(s) + 4c.

U(s) =
2c
a

(1− exp(−2as)),

or
A(s) =

√
2c/a

√
1− exp(−2as).
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Typical behaviour for small claims distributions

A(s) ∼ C
√

s, s → 0;
V (s) ≥ 1− exp(−Rs), where R = adjustment coefficient;
R > 0 unique positive solution of

λ+ rc +
µ2

2σ2 = E [exp(−rX )];

fast convergence of A(s)→ 1/R;
V (s) ∼ 1− K exp(−Rs), s →∞.
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Investment without leverage

Leverage

Leverage A(s)/s is unbounded for s → 0 :

lim
s→0

A(s)/s = lim
s→0

K
√

s/s =∞.

The HJB for the case without leverage and short selling:
(normed)

0 = sup
0≤A≤s

{λE [V (s − X )− V (s)] + (c + A)V ′(s) +
1
2

A2V ′′(s)}.

attained at A = 0 or A = s or at A = −V ′(s)/V ′′(s).
Here, V (s) need not be concave, V ′′(s) = 0 possible, even for
exponential claims.
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Investment without leverage
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Tatjana Belkina,
Moscow (2008): exponential claims, with r > 0.
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Investment without leverage

Just after my presentation I learned from Stefan Thonhauser
that the leverage problem has been solved completely by Pablo
Azcue and Nora Muler in a paper which is accepted for
publication in Insurance: Mathematics and Economics with title
Optimal investment strategy to minimize the ruin probability of
an insurance company under borrowing constraints.
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General setup

Risk sharing between insurer and reinsurer: X is divided as

X = g(X ) + X − g(X ),

with 0 ≤ g(x) ≤ x the payment of the first insurer. Reinsurer
charges a premium h.
Optimization problem: find the optimal dynamic reinsurance
cover, given a set g(x ,a),a ∈ A, of possible reinsurance
contracts with prices h(a),a ∈ A, to minimize ruin probability.
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HJB equation

for maximal survival probability V (s)

V ′(s) = min
h(a)<c

λE [V (s)− V (s − g(X ,a))]

c − h(a)
, s ≥ 0.

Existence and uniqueness of a solution V (s) satisfying
V (∞) = 1 and cV ′(s) = λV (s) is easy. Numerical computation
cumbersome.
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Unlimited XL reinsurance

Unlimited XL (excess of loss) reinsurance with A = [0,∞] and
g(x ,a) = min(x ,a). First: reinsurance price according to
expectation principle:

h(a) = ρλE [(X − a)+],a ≥ 0,

with ρλE [X ] > c (expensive reinsurance). Optimal strategy in
feedback form: If we are in state s, then choose a∗(s), where
a∗(s) is the minimizer in HJB equation.
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Three cases

HJB:

V ′(s) = min
h(a)<c

λE [V (s)− V (s −min(X ,a))]

c − h(a)
, s ≥ 0.

For a > s we obtain from V (x) = 0, x < 0, the equation

E [V (s −min(X ,a))] = E [V (s − X )]

which does not depend on a, so the minimum is at a minimizing
h(a) which is at h(a) = 0 (no reinsurance) or a =∞. So the
optimal value for a is either a =∞, or a = s or a < s.
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Exponential distribution
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Limited XL reinsurance

Expectation principle

On the market only limited XL contracts are liquid or affordable:

g(x ,a) = min(x ,M) + (x −M − L)+,

or
x − g(x ,a) = min{(x −M)+,L}.

Here a = (M,L) ∈ [0,∞]× [0,∞].
L = 0 is no reinsurance.
For an expectation pricing formula for reinsurance premia we
obtain the strategies from above: L =∞ is always optimal.
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Limited XL reinsurance

Variance principle

Under the variance principle the tail of the distribution gets
more weight and so the first insurer will accept a limit and will
take the tail risk himself. In this case the reinsurer’s pricing
formula will be:

h(a) = λE [X − g(X ,a)] + αE [(X − g(X ,a))2],

with λE [X ] + αE [X 2] > c (expensive reinsurance).
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Limited XL reinsurance

Exponential distribution
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Optimal (M,L) strategy for exponential claims, variance principle
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Limited XL reinsurance

Exponential distribution
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Optimal (M,L) strategy for exponential claims, variance principle
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Limited XL reinsurance

Pareto distribution
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Optimal (M,L) strategy for Pareto(3) claims, variance principle
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Limited XL reinsurance

Crude discretisation

Only crude discretization because of computational complexity
M and L discretized with 200 points;
s discretized with 500 points;
in each of 40.000 tests an integral is computed numerical,
yielding a sum with at most 500 terms;
computation for all the 500 s: 1010 multiplications.

Efficient algorithm in MatLab via matrices:
Form a matrix H with all point probabilities of discretized
g(X ,a);
The vector of all needed integrals computed by the command

V(k:-1,1)*H(1:k,:)’;
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Limited XL reinsurance

Simplification

g(s,M,L) = E [V (s − X ∧M − (X −M − L)+)]

gs(s,M,L) = gs(s,M,∞)

+
1− F (M + L)

F (M + L)− F (M)
gM(s,M,L)

−gL(s,M,L).
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Limited XL reinsurance

Simplification

Notation:

v(i) = V (i∆),M = m∆,L = l∆, s = k∆,

p(i) = P{(i − 1)∆ < X < i∆}

g(s,M,L) =

∫ M

0
V (s − x)f (x)dx

+ V (s −M)P{M ≤ X ≤ M + L}

+

∫ s

M
V (s − x))f (x + L)dx ,
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Limited XL reinsurance

Simplification

approximated by
m∑

i=1

v(k − i)p(i) + v(k −m)(pp(m + l)− pp(m))

+
k∑

i=m+1

v(k − i)p(i + l),

with pp(i) = P{X > i∆}.
Can be represented with the quantities

c(k , l ,m) =
m∑

i=0

v(k − i)p(i + l).

These can be computed recursively (in k )
Christian Hipp University of Karlsruhe

Control for the Lundberg process



Intro Investment Reinsurance Optimal investment and XL reinsurance

Limited XL reinsurance

Recursive computation of c(k , l ,m) :

l = 0, ...,L− 1,m = 1, ..., k :

c(k + 1, l ,m) = c(k , l + 1,m − 1) + p(l)v(k + 1);

c(k + 1, l ,0) = v(k + 1)p(l);

c(k + 1,L,m) = v(k + 1)p(L) +
m∑

i=0

v(k − i)p(i + M + 1).

initialize with:
c(0, l ,0) = v(0)p(l).
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Limited XL reinsurance

Recursion

former Ck + D
B

A

MatLab command: Ck+1 = [B, [Ck + D ∗ e′; A]].
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Verification argument

The verification theorem

A smooth solution to HJB solves the optimization problem
needs that for arbitrary admissible control, the reserve process
either goes to ruin, or it takes arbitrarily large values. A simple
proof for this which is due to Freddy Delbaen, here for the case
of a diffusion process:

Theorem: dX (t) = a(t)dt − b(t)dW (t),X (0) = x0,
with predictable processes a,b satisfying |a|+ |b| < M.
Assume that there exist ε, δ for which

a < −δ whenever |b| < ε.

Then for all N > 0 with τ = inf{t : X (t) /∈ [0,N]} P{τ <∞} = 1.
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Verification argument

Proof: For large enough K > 0 consider Y (t) = exp(−KX (t)).
Then

dY (t) = KY (t)[−a(t) +
1
2

Kb(t)2)dt − b(t)dW (t),

1 ≥ E
[∫ τ

0
K exp(−KX (s))[

1
2

Kb2(s)− a(s)]ds
]
.

Using
1
2

Kb2(s)− a(s) > δ

we obtain that X (t) is unbounded on {τ =∞}.
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Optimal investment and XL reinsurance

This problem has been solved completely – using ideas of
Schmidli – by Ming Fang and Fei Wang. HJB after norming:

0 = sup
A,M
{λE [V (s−X∧M)−V (s)]−(c−h(M)+A)V ′(s)+

1
2

A2V ′′(s)}

with h(M) = ρE [(X −M)+].
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Optimal investment and XL reinsurance

is equivalent for M < s to:

V ′(s) = inf
M

λV (s)− λE [V (s − X ∧M)]√
U(s)/2 + c − h(M)

,

1
4

U ′(s) =
√

U(s)

(
λ+

1
2
− h(a)− Gs(s,M)

V ′(s)

)
+c − h(M) + h(M)

√
U(s −M),

where G(s,M) = E [V (s − X ∧M)] and M is the minimizer in
the first equation.
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Optimal reinsurance strategy Pareto claims
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Optimal investment strategy Pareto claims
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