Control for the Lundberg process Reinsurance and investment

Christian Hipp

Institute for Finance, Banking and Insurance University of Karlsruhe

OeAW workshop Stochastics with Emphasis on Finance Linz, October 20, 2008

University of Karlsruhe

Christian Hipp

Contents

1 Intro

- 2 Optimal investment for insurers
 - Problem for beginners
 - Investment without leverage
- 3 Optimal reinsurance programs
 - Unlimited XL reinsurance
 - Limited XL reinsurance
 - Verification argument

4 Optimal investment and XL reinsurance

University of Karlsruhe

Christian Hipp

Control in Insurance

Active research area with objectives: minimizing ruin probability, or maximizing dividend payment, or else; with control of

- investment,
- reinsurance,
- new business,
- premia,
- more than one of these.
- a) in the classical Lundberg model or
- b) in diffusion approximations.
- Asmussen, Hoejgaard, Taksar with (b), Schmidli,

Schachermeyer, H. and Plum, Vogt, Schmidli, with (a).

Good problems.

Christian Hipp

Simplest model for insurance

Lundberg's risk model (1905):

$$R(t) = s + ct - X_1 - \dots - X_{N(t)},$$

- s initial surplus,
- *c* constant premium rate,
- N(t) homogeneous Poisson prozess for occurrence of claims,
- X_1, X_2, \dots iid claim sizes,
- $N(t), t \ge 0$, and $X_1, X_2, ...$ independent.

University of Karlsruhe

Christian Hipp

Capital market

Logarithmic Brownian motion for stock, index or similar:

$$dZ(t) = \mu Z(t) dt + \sigma Z(t) dW(t),$$

independence between Z(t) and R(t), $t \ge 0$, with $\mu, \sigma > 0$. riskless asset (still existing?)

$$dB(t) = rB(t)dt, r \ge 0.$$

Sartarshe Institute el Technology

Christian Hipp

Control for the Lundberg process

University of Karlsruhe

Simplifications

Simplifying assumptions are:

- short selling allowed;
- arbitrary sizes;
- equal interest rate for borrowing and lending;
- leverage possible;
- no transaction costs;
- no tax;

...

University of Karlsruhe

Control for the Lundberg process

Christian Hipp

r = 0, leverage, investment in index

Minimize ruin probability by dynamic investment in index. If $\theta(t)Z(t) = A(t)$ is invested at time *t* then the total position of the insurer has the dynamics

$$dY(t) = cdt - dS(t) + dG(t) = (c + A(t)\mu)dt - dS(t) + A(t)\sigma dW(t),$$

with claims process

$$S(t) = X_1 + ... + X_{N(t)}, t \ge 0,$$

and investment gains (again existing?)

$$G(t) = \int_0^t \theta(u) dZ(u) = \int_0^t A(u)/Z(u) dZ(u).$$

University of Karlsruhe

Christian Hipp

General solution procedure

HJB equation

- Existence of a smooth solution
- Verification argument
- numerical calculation of optimal strategy
- qualitative properties of optimal strategy

Different degrees of difficulty!

Christian Hipp

Control for the Lundberg process

University of Karlsruhe

University of Karlsruhe

HJB equation

The HJB equation is

$$0 = \sup_{A} \{\lambda E[V(s-X) - V(s)] + (c + A\mu)V'(s) + \frac{1}{2}A^{2}\sigma^{2}V''(s)\}.$$

Possible norming: $\mu = \sigma = 1$. Maximizer

$$A(s) = -rac{V'(s)}{V''(s)}$$

defines the optimal strategy in feedback form: invest A(s) when you are in state *s*.

Christian Hipp

Equivalent system of equations

With $U(s) = (V'(s)/V''(s))^2 = A(s)^2$ equivalent to the following system of interacting differential equations:

$$V'(s) = \frac{\lambda(V(s) - g(s))}{c + \frac{1}{2}\sqrt{U(s)}}$$
(1)
$$\frac{1}{4}U'(s) = \sqrt{U(s)} \left[\lambda + 1/2 - \lambda \frac{g'(s)}{V'(s)}\right] + c,$$
(2)

where

$$g(s)=E[V(s-X)].$$

With boundary values U(0) = 0, $V(\infty) = 1$ this produces a stable and fast numerical algorithm for A(s).

University of Karlsruhe

Christian Hipp

Exponentially distributed claim sizes

If $X \sim Exp(a)$ with density $f(x) = a \exp(-ax), x > 0, a > 0$, we have

$$g'(s) = a(V(s) - g(s))$$

and thus the equations separate with one equation being

$$\frac{1}{4}U'(s) = \sqrt{U(s)}\left[\lambda + 1/2 - ac - \frac{a}{2}\sqrt{U(s)}\right] + c.$$

University of Karlsruhe

Christian Hipp

Exponentially distributed claim sizes, $\lambda + 1/2 = ac$

In this special case

$$U'(s) = -2aU(s) + 4c.$$

 $U(s) = rac{2c}{a}(1 - \exp(-2as)),$

or

$$A(s) = \sqrt{2c/a}\sqrt{1 - \exp(-2as)}.$$

University of Karlsruhe

ъ

Christian Hipp

Christian Hipp

University of Karlsruhe

Typical behaviour for small claims distributions

•
$$A(s) \sim C\sqrt{s}, s \rightarrow 0;$$

- $V(s) \ge 1 \exp(-Rs)$, where R = adjustment coefficient;
- **\square** R > 0 unique positive solution of

$$\lambda + \mathbf{rc} + \frac{\mu^2}{2\sigma^2} = \mathbf{E}[\exp(-\mathbf{rX})];$$

fast convergence of A(s) → 1/R;
 V(s) ~ 1 - K exp(-Rs), s → ∞.

University of Karlsruhe

< < >> < </p>

Christian Hipp

Leverage

Leverage A(s)/s is unbounded for $s \rightarrow 0$:

$$\lim_{s\to 0} A(s)/s = \lim_{s\to 0} K\sqrt{s}/s = \infty.$$

The HJB for the case without leverage and short selling: (normed)

$$0 = \sup_{0 \le A \le s} \{\lambda E[V(s - X) - V(s)] + (c + A)V'(s) + \frac{1}{2}A^2V''(s)\}.$$

attained at A = 0 or A = s or at A = -V'(s)/V''(s). Here, V(s) need not be concave, V''(s) = 0 possible, even for exponential claims.

Christian Hipp

Control for the Lundberg process

University of Karlsruhe

	Investment ○○○○○○○○○○ ○○●○	Reinsurance 000000 00000000000 000	Optimal investment and XL reinsurar
lini in atma a int i vitta i			

Investment without leverage

Moscow (2008): exponential claims, with r > 0.

University of Karlsruhe

Control for the Lundberg process

Christian Hipp

Investment without leverage

Just after my presentation I learned from Stefan Thonhauser that the leverage problem has been solved completely by Pablo Azcue and Nora Muler in a paper which is accepted for publication in Insurance: Mathematics and Economics with title *Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints.*

Christian Hipp

Control for the Lundberg process

University of Karlsruhe

General setup

Risk sharing between insurer and reinsurer: X is divided as

$$X = g(X) + X - g(X),$$

with $0 \le g(x) \le x$ the payment of the first insurer. Reinsurer charges a premium *h*.

Optimization problem: find the optimal dynamic reinsurance cover, given a set $g(x, a), a \in A$, of possible reinsurance contracts with prices $h(a), a \in A$, to minimize ruin probability.

Image: A matrix

University of Karlsruhe

HJB equation

for maximal survival probability V(s)

$$V'(s) = \min_{h(a) < c} rac{\lambda E[V(s) - V(s - g(X, a))]}{c - h(a)}, s \ge 0.$$

Existence and uniqueness of a solution V(s) satisfying $V(\infty) = 1$ and $cV'(s) = \lambda V(s)$ is easy. Numerical computation cumbersome.

Christian Hipp

Unlimited XL reinsurance

Unlimited XL (excess of loss) reinsurance with $A = [0, \infty]$ and $g(x, a) = \min(x, a)$. First: reinsurance price according to expectation principle:

$$h(a) = \rho \lambda E[(X - a)^+], a \ge 0,$$

with $\rho\lambda E[X] > c$ (expensive reinsurance). Optimal strategy in feedback form: If we are in state *s*, then choose $a^*(s)$, where $a^*(s)$ is the minimizer in HJB equation.

Image: A matrix

University of Karlsruhe

Christian Hipp

Three cases

HJB:

$$V'(s) = \min_{h(a) < c} rac{\lambda E[V(s) - V(s - \min(X, a))]}{c - h(a)}, s \ge 0.$$

For a > s we obtain from V(x) = 0, x < 0, the equation

$$E[V(s-\min(X,a))] = E[V(s-X)]$$

which does not depend on *a*, so the minimum is at *a* minimizing h(a) which is at h(a) = 0 (no reinsurance) or $a = \infty$. So the optimal value for *a* is either $a = \infty$, or a = s or a < s.

University of Karlsruhe

Christian Hipp

Reinsurance

Exponential distribution

Christian Hipp

University of Karlsruhe

Intro

nvestment

Limited XL reinsurance

Expectation principle

On the market only limited XL contracts are liquid or affordable:

$$g(x,a)=\min(x,M)+(x-M-L)^+,$$

or

Christian Hipp

$$x - g(x, a) = \min\{(x - M)^+, L\}.$$

Here $a = (M, L) \in [0, \infty] \times [0, \infty]$. L = 0 is no reinsurance.

For an expectation pricing formula for reinsurance premia we obtain the strategies from above: $L = \infty$ is always optimal.

Image: A matrix

Reinsurance

Limited XL reinsurance

Variance principle

Under the variance principle the tail of the distribution gets more weight and so the first insurer will accept a limit and will take the tail risk himself. In this case the reinsurer's pricing formula will be:

$$h(a) = \lambda E[X - g(X, a)] + \alpha E[(X - g(X, a))^2],$$

with $\lambda E[X] + \alpha E[X^2] > c$ (expensive reinsurance).

Image: A matrix

Control for the Lundberg process

Christian Hipp

Limited XL reinsurance

Exponential distribution

Control for the Lundberg process

Christian Hipp

University of Karlsruhe

Reinsurance

Limited XL reinsurance

Exponential distribution

Optimal (M,L) strategy for exponential claims, variance principle

University of Karlsruhe

Christian Hipp

Reinsurance 000000

Limited XL reinsurance

Pareto distribution

University of Karlsruhe

Control for the Lundberg process

Christian Hipp

Intro

nvestment 00000000000 0000 Reinsurance

Limited XL reinsurance

Crude discretisation

Only crude discretization because of computational complexity

- *M* and *L* discretized with 200 points;
- s discretized with 500 points;
- in each of 40.000 tests an integral is computed numerical, yielding a sum with at most 500 terms;
- computation for all the 500 s: 10¹⁰ multiplications.

Efficient algorithm in MatLab via matrices:

Form a matrix *H* with all point probabilities of discretized g(X, a);

The vector of all needed integrals computed by the command

V(k:-1,1)*H(1:k,:)';

University of Karlsruhe

Intro

nvestment

Reinsurance

Limited XL reinsurance

$$g(s, M, L) = E[V(s - X \land M - (X - M - L)^{+})]$$

$$g_{s}(s, M, L) = g_{s}(s, M, \infty)$$

$$+ \frac{1 - F(M + L)}{F(M + L) - F(M)}g_{M}(s, M, L)$$

$$-g_{L}(s, M, L).$$

University of Karlsruhe

ъ

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Christian Hipp

Reinsurance

Limited XL reinsurance

Simplification

Notation:

$$\begin{aligned} v(i) &= V(i\Delta), M = m\Delta, L = I\Delta, s = k\Delta, \\ p(i) &= \mathbb{P}\{(i-1)\Delta < X < i\Delta\} \end{aligned}$$

$$g(s, M, L) = \int_0^M V(s-x)f(x)dx + V(s-M)P\{M \le X \le M+L\} + \int_M^s V(s-x))f(x+L)dx,$$

University of Karlsruhe

ъ

Christian Hipp

Limited XL reinsurance

Simplification

approximated by

$$\sum_{i=1}^{m} v(k-i)p(i) + v(k-m)(pp(m+l) - pp(m)) + \sum_{i=m+1}^{k} v(k-i)p(i+l),$$

with $pp(i) = \mathbb{P}\{X > i\Delta\}$. Can be represented with the quantities

$$c(k,l,m) = \sum_{i=0}^{m} v(k-i)p(i+l).$$

These can be computed recursively (in k)

Christian Hipp

Control for the Lundberg process

University of Karlsruhe

A = A = A = A

Intro

nvestment

Reinsurance

Limited XL reinsurance

Recursive computation of c(k, l, m):

$$l = 0, ..., L - 1, m = 1, ..., k :$$

$$c(k + 1, l, m) = c(k, l + 1, m - 1) + p(l)v(k + 1);$$

$$c(k + 1, l, 0) = v(k + 1)p(l);$$

$$c(k + 1, L, m) = v(k + 1)p(L) + \sum_{i=0}^{m} v(k - i)p(i + M + 1).$$

initialize with:

$$c(0, l, 0) = v(0)p(l).$$

Sartarshe institute of Technology

University of Karlsruhe

-

< 口 > < 🗗

Christian Hipp

Intro

nvestment

Reinsurance ○○○○○○ ○○○○○○○○○○○○○○○

Limited XL reinsurance

MatLab command: $C_{k+1} = [B, [C_k + D * e'; A]].$

University of Karlsruhe

Control for the Lundberg process

Christian Hipp

Verification argument

The verification theorem

A smooth solution to HJB solves the optimization problem needs that for arbitrary admissible control, the reserve process either goes to ruin, or it takes arbitrarily large values. A simple proof for this which is due to Freddy Delbaen, here for the case of a diffusion process:

Theorem: $dX(t) = a(t)dt - b(t)dW(t), X(0) = x_0$, with predictable processes *a*, *b* satisfying |a| + |b| < M. Assume that there exist ε , δ for which

 $a < -\delta$ whenever $|b| < \varepsilon$.

Then for all N > 0 with $\tau = \inf\{t : X(t) \notin [0, N]\} \mathbb{P}\{\tau < \infty\} = 1$

Control for the Lundberg process

Christian Hipp

Verification argument

Proof: For large enough K > 0 consider $Y(t) = \exp(-KX(t))$. Then

Reinsurance

$$dY(t) = KY(t)[-a(t) + \frac{1}{2}Kb(t)^2)dt - b(t)dW(t),$$

$$1 \geq E\left[\int_0^ au \mathsf{K}\exp(-\mathsf{K}\mathsf{X}(s))[rac{1}{2}\mathsf{K}b^2(s)-a(s)]ds
ight].$$

Using

$$\frac{1}{2}Kb^2(s) - a(s) > \delta$$

we obtain that X(t) is unbounded on $\{\tau = \infty\}$.

Christian Hipp

Control for the Lundberg process

Optimal investment and XL reinsurance

This problem has been solved completely – using ideas of Schmidli – by Ming Fang and Fei Wang. HJB after norming:

$$0 = \sup_{A,M} \{\lambda E[V(s - X \wedge M) - V(s)] - (c - h(M) + A)V'(s) + \frac{1}{2}A^2V''(s)\}$$

with $h(M) = \rho E[(X - M)^+]$.

Christian Hipp

Optimal investment and XL reinsurance

is equivalent for M < s to:

$$V'(s) = \inf_{M} \frac{\lambda V(s) - \lambda E[V(s - X \land M)]}{\sqrt{U(s)}/2 + c - h(M)},$$

$$\frac{1}{4}U'(s) = \sqrt{U(s)} \left(\lambda + \frac{1}{2} - h(a) - \frac{G_s(s, M)}{V'(s)}\right)$$
$$+ c - h(M) + h(M)\sqrt{U(s - M)},$$

where $G(s, M) = E[V(s - X \land M)]$ and *M* is the minimizer in the first equation.

University of Karlsruhe

Christian Hipp

Optimal reinsurance strategy Pareto claims

Optimal investment strategy Pareto claims

Christian Hipp

University of Karlsruhe