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Overview

• Motivating problem: ALM for a pension fund with minimum

guarantee.

• The model: a stochastic control problem with state constraints

and delay terms.

• The case with no surplus (i.e. no delay): regular solutions to

HJB and feedback control strategies.

• The case with delay: some partial results on the infinite dimen-

sional HJB.

• Further research and work in progress.
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.

Motivating problem: ALM for a pension fund

with minimum guarantee
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Starting point: an italian insurance company (INA) asking for a
model of optimal management of a defined contribution pension
fund with a minimum guarantee.

First outcame: a paper where a discrete time model containing
all the features required by the company are present (number and
type of assets, transaction costs, objective function, demographic
variables, various constraints required by the law or by the company,
etc.):

(2003) Sbaraglia, S.; Papi, M.; Briani, M.; Bernaschi, M.; Gozzi, F., A
model for the optimal asset-liability management for insurance
companies, Int. J. Theor. Appl. Finance , 6, No. 3, 277-299.

Model unsolvable with the known techniques.

Paper above devoted to present the model and some simulation by
scenario generation and static optimization methods.
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Present Goal: formulate and study a continuous time stochastic

model of optimal allocation for a defined contribution pension fund

with a minimum guarantee that still contains some key features of

the applied model above:

• The manager invests in a Black-Scholes market and maximizes

the discounted utility from wealth over an infinite horizon.

• There is a stationary flow of contributions and benefits.

• The wealth process x(·) that must stay above a solvency level l

(state constraint).

• The benefits depend on the past performance of the fund (delay

term in the state equation).
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THE LITERATURE
Some papers on defined contribution pension fund without minimum guarantee:

(2000) Gerber H.U., and Shiu E.S.W., Investing for retirement: optimal capital
growth and dynamic asset allocation, North American Actuarial Journal, 4,
1, 42–62

(2000) Cairns A.J G. , Blake D., and Dowd K., Optimal dynamic asset allocation
for defined-contribution pension plans, Proceedings of the 10th AFIR Inter-
national Colloquium, 131–154

(2001) Vigna E., and Haberman S., Optimal investment strategy for defined contri-
bution pension schemes, Insurance: Mathematics and Economics, 28, 233–
262

(2002) Haberman S., and Vigna E., Optimal investment strategies and risk mea-
sures in defined contribution pension schemes, Insurance: Mathematics and
Economics, 31, 35–69

(2004) Battocchio P., and Menoncin F., Optimal pension management in a stochas-
tic framework, Insurance: Mathematics and Economics, 34, 79–95
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Defined contribution pension fund with minimum guarantee:

(2001) Boulier J.F., Huang S.J., and Taillard G., Optimal management

under stochastic interest rates: the case of a protected pension

fund, Insurance: Mathematics and Economics, 28, 173-179.

(2003) Deelstra G., Grasselli M., and Koehl P.F., Optimal investment

strategies in the presence of a minimum guarantee, Insurance:

Mathematics and Economics, 33, 189–207.

• Others?
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In particular [Boulier et al., 2001] and [Deelstra et al., 2003] study
the optimal management over the accumulation phase:

• in a complete financial market

• in a continuous and finite time horizon

• assuming as terminal date the time of retirement of a represen-
tative agent (i.e. single cohort)

• by considering the guarantee as a contingent claim

• by applying a martingale and duality approach

• by using the CRRA utility function

They find explicit solutions by maximizing the expected utility func-
tion of the terminal wealth under the constraint that the terminal
wealth must exceed the minimum guarantee
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Moreover [Boulier et al., 2001] consider

• the contribution flow is a deterministic process

• the guarantee has a very specific form

• the Vasiček model for the term structure of interest rates

On the contrary [Deelstra et al., 2003] assume that

• the contribution flow is a stochastic process but generated by

the market (since the market is complete)

• the guarantee is a general process

• the interest rates follow the affine dynamics in the one-dimensional

version, which include as a special case the CIR model and the

Vasiček model
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The model: a stochastic control problem with

state constraints and delay terms
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A - SECURITY MARKET

• The security market is a standard Black & Scholes market: one

riskless asset and one risky asset

• Randomness is described by a one-dimensional standard Brow-

nian motion B(t), t ≥ 0, defined on a filtered probability space

(Ω, F , {FBt }t≥0, P)

• The interest rate is constant: this restriction is done for sim-

plicity to focus on the other features of the model.
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B - DYNAMICS OF WEALTH

Let X(t), t ≥ 0, be the process giving the amount of fund wealth

(State variable).

Let θ(t), t ≥ 0, be the {FBt }t≥0-adapted process giving the proportion

of wealth invested in the risky asset (Control variable).

The fund starts at t = 0 but we may look at it when it is already

working. So we are given initial data t0 ≥ 0, x0 ≥ 0 and we assume

that the wealth process satisfies the equation:dX(t) =
{

[θ(t)σλ+ r]X(t) + c(t)− b(t)
}
dt+ θ(t)σX(t)dB(t), t ≥ t0

X(t0) = x0

This the standard wealth equation with the extra terms given by

the flow of contributions c(·) and benefits b(·).
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C - CONTRIBUTIONS AND BENEFITS

Assuming demographic stationarity we have:

Hypothesis 1 The flow of aggregate contributions is given by:

c(t) :=
t ∧ T
T

αN w, 0 < α < 1, ∀t ≥ 0,

where

• α is the average contribution rate;

• T is the average time spent in the fund by members;

• N ∈ N is the average number of members after T .

• w > 0 is the average per capita wage bill earned by the fund

members (see [Boulier et al., 2001])
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Hypothesis 2 The flow of aggregate benefits is given by:

b(t) :=


0 if 0 ≤ t < T

g(t) + s
(
t,X (·) |

[t−T,t]

)
if t ≥ T

where

• g(·) is the flow of minimum guarantee;

• s(·, ·) is the ‘surplus’ function. At time t ≥ T it depends on the

fund wealth level in the time period [t− T, t].
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The minimum guarantee

Hypothesis 3 The flow of minimum guarantee is, for t ≥ T :

g(t) :=

∫ t

t−T
c̄(t)eδ(t−u)du, η ≥ 0,

where δ ∈ [0, r] is the instantaneous guaranteed rate of return and

c̄(t) is flow of contributions of new members per unit of time. By

demographic stationarity c̄(t) = 1
TαNw.

It follows:

g(t) = αNw
eδT − 1

δT
> αNw, ∀t ≥ T
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The surplus A reasonable choice of the surplus is a two variables

function f(X(t), X(t− T )) or, more precisely,

f1

(
X(t)

X(t− T )

)
or f2(X(t)− kX(t− T ))

for suitable functions f1, f2 : R+ −→ R+ increasing and convex.

Taking a nonzero surplus function the state equation becomes a

delay differential equation and the related problem becomes more

complex as it requires techniques of stochastic control in infinite

dimension.
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We look at the stationary phase (the accumulation phase is studied

in a forthcoming paper of S. Federico) i.e. t0 = T . The equation

for the wealth becomes

(1)


dX(t) = [(r + σλθ(t))X(t)−A] dt− f (X(t), X(t− T )) dt

+σθ(t)X(t) dB(t)

X(T ) = η0, X(T + ζ) = η1(ζ), ζ ∈ [−T, 0),

where η = (η0, η1(·)) ∈ R× L2(−T, 0) is the initial datum and

A = αNw

[
eδT − 1

δT
− 1

]
> 0

is the balance between benefits and contributions flow.
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D - SOLVENCY CONSTRAINT

Hypothesis 4 The process X is subject to the following constraint:

X(t) ≥ l(t) P− a.s., ∀t ≥ 0,

where l is nonnegative and constant after T .

Remark 1 The function l gives a solvency level set up by the au-

thority to avoid ”improper” behavior of the fund manager. It does

not need to be constant after T . This is done for simplicity.
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A possible choice of l.

A startup level l0 plus a ”share” of the due minimum guarantee in
a unit of time:

l(t) = l0 + ζ

∫ t

(t−T )∧0
c̄(u)eδ(t−u)du t ≥ 0,

where l0 ≥ 0 and 0 ≤ ζ ≤ T .

Note that for t ≥ T l(t) is constant and

l(t) = l(T ) = ζαNw
eδT − 1

δT

Another possible choice (treatable in our setting with some more
work) is that l(t) = l0 plus a share of the contributions of active
workers, evaluated at the rate of return of minimum guarantee δ.

In this case we would put c(u) instead of c̄(u) in the above integral.

19



E - MAXIMIZING THE OBJECTIVE

We want to maximize the objective

J(T, η; θ(·))=E
[∫ +∞

T
e−ρtU(X(t;T, η, θ)) dt

]
where

• U : [lT ,+∞) −→ R ∪ {−∞} is strictly increasing, strictly concave,
belongs to C2 ((0,+∞)) and satisfies, for suitable C > 0 and
β ∈ [0, 1),

U(x) ≤ C(1 + xβ), x ≥ lT ;

• the discount rate ρ satisfies

ρ > βr +
λ2

2
·

β

1− β
.

This ensures finiteness of the value function.
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Why infinite horizon?

• In the papers on this subject one maximizes the final wealth at

time T (single cohort).

• Here we take the horizon of the manager that can be different,

finite of infinite.

See on this e.g. Starks 1997 and Goetzmann et al 2001 (con-

tract design for managers to incentive them to undertake risky

investments).

• We take infinite horizon as it simplify the mathematical treat-

ment.
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Admissible strategies

The set of admissible strategies is

Θad(T, η) :=
{
θ : [lT ,+∞)× Ω −→ [0, 1] adapted to

{FBt }t≥T s.t. X(t;T, η, θ) ∈ [lT ,+∞), t ≥ T
}

This set is nonempty for every η such that η0 ≥ lT if and only if

the null strategy is admissible.

In the case when f ≡ 0 this is equivalent to:

rlT ≥ A.

We will assume this from now on.
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The case with no surplus (i.e. no delay):

regular solutions to HJB and feedback control

strategies (Di Giacinto, Federico, G.)
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THE VALUE FUNCTION

Here f ≡ 0 and the initial datum is only the present η0 =: x.

Since the problem is autonomous we define the value function in-

dependent of t:

V (x) := sup
θ(·)∈Θad(T,x)

J (T, x; θ (·)) , x ≥ lT .

Dynamic Programming: main problems

A - Prove that V is a classical solution of the Hamilton-Jacobi-

Bellman (HJB) equation.

B - Apply a verification theorem to get the optimal strategies in

feedback form.
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θ(·) −→ state equation x(·) −→
input output

dX=z(θ,X)dt+Z(θ,X)dB

output feedback map input

θ(·)←− ←− x(·)
θ(t) = G(x(t)), t ≥ t0
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The associated HJB equation is given by:

ρv(x)−H
(
x,Dv(x), D2v(x)

)
= 0, ∀x ∈ [lT ,+∞),

where

H
(
x,Dv(x), D2v(x)

)
:= sup

θ∈[0,1]
Hcv

(
x,Dv(x), D2v(x); θ

)

= sup
θ∈[0,1]

{
U(x) +

[
(θσλ+ r)x−A

]
Dv(x) +

1

2
θ2σ2x2D2v(x)

}

= U(x) + (rx−A)Dv(x) + sup
θ∈[0,1]

{
θσλxDv(x) +

1

2
θ2σ2x2D2v(x)

}
It is similar to the equations for optimal portfolio studied in various
papers (e.g. Zariphopolou, Duffie - Fleming - Soner - Zariphopolou,
Choulli - Taksar - Zhou, Sethi - Taksar, etc.).

The main issue here is the presence of the state constraint to-
gether with the degeneracy.
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PROPERTIES OF THE VALUE FUNCTION

We show that V is

• concave,

• strictly increasing,

• continuous on the interval (lT ,+∞) (also in lT if it is finite in
lT ).

Then, studying the HJB equation, we prove the

THEOREM 1

• V is the unique concave viscosity solution of the HJB equation,

• V belongs to C
(
[lT ,+∞); R

)
∩ C2

(
(lT ,+∞); R

)
.

=⇒ We can find optimal feedback control policies
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Remarks on the HJB equation.

• We use the concept of constrained viscosity solution (Soner,

Katsoulakis): solution in the interior and subsolution up to the

boundary. This provide the appropriate boundary conditions.

• The C1 regularity is proven as in the paper of Choulli - Taksar

- Zhou.

• The C2 regularity is more difficult and we could not use the

arguments of other papers. So we prove ad hoc estimates for

the second derivative and get the regularity form them.

The estimates are based on the idea that the optimal θ should

be bounded away from 0 in the interior of the state region.
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OPTIMAL FEEDBACK STRATEGIES

The candidate optimal feedback map in the interior of the state

region is

G(x) := G0

(
x,DV (x), DV 2(x)

)
, x > lT ,

where

G0(x,DV (x), DV 2(x)) = arg max
θ∈[0,1]

Hcv
(
x,DV (x), D2V (x); θ

)
= min

{
1,−

λ

σ

DV (x)

xD2V (x)

}

while at the boundary we must have G(lT ) = 0 (the only way to

satisfy the constraint).

Problem: regularity of G up to the boundary.
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Closed loop equation:


dX(t) = [(r + σλG(X(t)))X(t)−A] dt+ σG(X(t))X(t) dB(t)

x(T ) = x,

To find a strong solution to it we need at least G to be continuous

and 1/2 Hölder continuous up to the boundary.

The two cases rlT > A and rlT = A are structurally different:

- when rlT > A we expect to reach the boundary with positive

probability and to leave it immediately applying the control zero;

- when rlT = A then lT is an absorbing point and we expect that

is never reached as in the standard portfolio problems.
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Case rlT > A with U(lT ), U ′(lT ) both finite:

the boundary condition (V subsolution up to the boundary) implies

lim
x−→l+T

V ′′(x) = −∞ lim
x−→l+T

(x− l)[V ′′(x)]2 =
λ2

2

[V ′(l+T )]2

rlT −A

This implies that G is 1/2 Hölder continuous up to the boundary.

THEOREM 2

Assume that rlT > A and U(lT ), U ′(lT ) be both finite.

Then there exists a unique optimal strategy given by the feedback

map G above.

The proof is nontrivial since the boundary is reached and left and

since V ′′ is −∞ at the boundary −→ approximation procedure.
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EXPLICIT SOLUTION WHEN rlT = A

Case rlT = A: we consider an explicit example with power utility:

U(x) =
(x− lT )γ

γ
, γ ∈ (−∞, 0) ∪ (0, 1)

Given suitable constraints on the solvency level l, our HJB equation
is solved by

V (x) =

(
x− A

r

)γ
γ
[
ρ− γ

(
r + λ2

2(1−γ)

)], ρ− γ

(
r +

γλ2

2(1− γ)

)
> 0

The optimal feedback map becomes:

G(x) = min

{
1,

λ

σ (1− γ)x

(
x−

A

r

)}
.

and 0 is an absorbing boundary that is never reached.
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EXPLICIT SOLUTION WHEN rlT > A?

In the case rl > A take again, for x ≥ l > A
r

U(x) =

(
x−

A

r

)γ
γ

, γ ∈ (0, 1)

In this case, given suitable constraints on l, our HJB equation is

solved, for x > l, by the function:

W (x) =

(
x− A

r

)γ
γ
[
ρ− γ

(
r + λ2

2(1−γ)

)], ρ− γ

(
r +

γλ2

2(1− γ)

)
> 0

However this function is not the value function as it does not

satisfy the boundary condition at x = l. We have V < W .
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The case with delay: some partial results on

the infinite dimensional HJB
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DELAY EQUATIONS

A delay equation is a differential equation in which the knowledge

of the future depends also on the past of the state:

x′(t) = f
(
x(t), x(t+ ξ)|ξ∈[−T,0]

)
.

In general for stating the evolution of the system such an equation

requires as initial datum the knowledge of the whole past trajectory

x(·)|[−T,0].

Thus the problem is basically infinite-dimensional.
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DELAY EQUATIONS: A SPECIAL CASE

There are some special case for which the evolution of the system

can be reduced to a finite dimensional system. For example:

x′(t) = f

(
x(t),

∫ 0

−∞
eλξx(t+ ξ)dξ

)
, λ ≥ 0.

In this case the variable

y(t) :=

∫ 0

−∞
eλξx(t+ ξ)dξ

is like a ”sufficient statistics” for the system, which could be rewrit-

ten as a bi-dimensional system{
x′(t) = f (x(t), y(t)) ,

y′(t) = −λy(t) + x(t).

See e.g. papers of Elsanosi, Larssen, Risebro, Oksendal,... where

this is exploited in various control problems.
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DELAY EQUATIONS: THE INFINITE
DIMENSIONAL REPRESENTATION

A classical approach to treat the delay equations, which applies

quite in general, consists in rewriting them as evolution equations

in a suitable Hilbert spaces.

The idea behind is to consider as state not only the present, but

also the past, i.e. to define a new state variable representing the

present and the past of the old state variable.

Formally in H = R× L2([−T, 0]; R):

X ′(t) = AX(t) + F (X(t)),

where

X(·) := (X0(·), X1(·)) =
(
x(·), x(·+ ξ)|ξ∈[−T,0]

)
,

A is a first order operator and F “translate” f in the infinite dimen-

sional setting.
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PENSION FUNDS: THE STATE EQUATION

In a general pension fund model the state equation has to take in

account two types of added cashflows:

• Contributions paid by the members who are adhering to the

fund;

• Benefits which the fund has to pay to the members who have

accrued the right to the pension and are leaving the fund.

dx(t) = [(r + σλθ(t))x(t)] dt+ σθ(t)x(t)dB(t)

+ [ c(t) − b(t) ] dt.

↓ ↓
Contributions Benefits
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THE STATE EQUATION IN A PENSION

FUND MODEL WITH SURPLUS

In our model the state equation is
dx(t) = [(r + σλθ(t))x(t)] dt+ σθ(t)x(t)dB(t)

−f0 (x(t)− x(t− T )) dt,

x(0) = η0, x(ζ) = η1(ζ), ζ ∈ [−T, 0),

(1)

• (η0, η(·)) is the initial (functional) datum;

• f0 is a suitable function containing the surplus term.

This is a stochastic delay differential equation and it is treated by

the infinite-dimensional approach.

(e.g. Vinter & Kwong, 1981; Da Prato & Zabczyk, 1996; Gozzi &

Marinelli, 2006)
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CONSTRAINTS

We impose the following constraints for the variables:

• Control constraint: θ(·) is a [0, 1]-valued adapted process;

• State Constraint: x(t) ≥ l ≥ 0 (solvency level), for each t ≥ 0.
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THE OPTIMIZATION PROBLEM

We want to maximize the functional

E

[∫ +∞

0
e−ρtU(x(t)) dt

]
,

over the set of the admissible strategies.

• ρ > 0 is the discount rate;

• U : [l,+∞) −→ R is continuous, increasing and concave.

41



THE (FORMALLY) EQUIVALENT INFINITE

DIMENSIONAL PROBLEM

We pass from the SDDE to an infinite dimensional SDE. We define

the Hilbert space

H = R× L2([−T, 0]; R), 〈η, ζ〉 = η0ζ0 +

∫ 0

−T
η1(ξ)ζ1(ξ)dξ,

and the infinite dimensional SDE{
dX(t) = AX(t)dt+ σλθ(t)ΦX(t)dt− F (X(t))dt+ σθ(t)ΦX(t)dB(t),

X(0) = η ∈ E,
(2)

where E is a suitable subset of H.
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In the previous equation:

• A : D(A) ⊂ H → H is the closed unbounded defined by

(η0, η1(·)) 7→ (rη0, η
′
1(·)),

with

D(A) = {(η0, η1(·)) ∈ H | η1(·) ∈W 1,2([−T, 0]; R), η0 = η1(0)};

A is the generator of a C0-semigroup S(·) on H.

• F : E → H is the nonlinear map(
η0
η1(·)

)
7→
(
f(η0, η1(·))

0

)
:=

(
f0(η0 − η1(−T ))

0

)
.

• Φ : H → H is the bounded linear operator defined by

(η0, η1(·)) 7→ (η0, 0).



.

Unfortunately the infinite dimensional equation obtained
above is non standard.

=⇒ we had to prove everything almost from scratch.

First of all the well posedness of the state equation:
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SPACE OF SOLUTIONS

We have to give sense to the term F (X(·)) in the equation. There-

fore we choose as space on which look for a solution the space

CP
(

[0,+∞); L2(Ω;E)
)
,

where E is the Banach space

E =
{

(η0, η1(·)) ∈ H
∣∣ η1 ∈ C([−T, 0]; R), η0 = η1(0)

}
.

A mild solution for the SDE (2) is a process X ∈ CP ( [0,+∞); L2(Ω;E) )

which satisfies, for t ≥ 0, the integral equation

X(t) = S(t)x+

∫ t

0
σλθ(τ)S(t) [ΦX(τ)] dτ −

∫ t

0
S(t)F (X(τ))dτ

+

∫ t

0
σθ(τ)S(t) [ΦX(τ)] dB(τ).
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THE EQUIVALENCE BETWEEN THE

PROBLEMS

The equation (2) is not covered by the classical literature. Therefore
S. Federico (2008, submitted) proved:

Theorem 1 For each η ∈ E, the equation (2) admits a unique mild
solution.

To give sense to the infinite-dimensioal approach one has to prove
an equivalence result:

Proposition 1 [S. Federico] Let x(·) be the unique solution of the
one-dimensional SDDE (1) and let X(·) be the unique mild solution
of the infinite-dimensional SDE (2). Then

X(t) = (x(t), x(t+ ζ)|ζ∈[−T,0)).
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PROPERTIES OF THE VALUE FUNCTION

• The time dependence of the value function is

V (t, η) = e−ρtV (0, η).

Thus the problem reduces to study V0(η) := V (0, η).

• The value function V0 is concave.

• Under good financial assumptions, the (E, ‖ · ‖H)-interior part V
of the effective domain of the value function V0 is not empty. In

particular it contains the points with financial meaning.

Proposition 2 (S. Federico) The value function V0 is ‖·‖H-continuous

on V. Moreover, if some condition on the paramaters of the model

are satisfied, then V0 is continuous up to the boundary.
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THE HJB EQUATION

The Hamilton-Jacobi-Bellman equation associated with the value

function V0 in the space H is

ρv(η) = 〈η,A∗∇v(η)〉+ U(η0)− f(η)vη0(η) +H
(
η0, vη0(η), vη0η0(η)

)
,

where, for p0, q0 ∈ R,

H(η0, p0, q0) := sup
θ∈[0,1]

(
1

2
σ2 η2

0 q0 θ
2 + σ λ η0 p0 θ

)
.
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State of the art

• Strong solution approach: initiated first by Barbu and Da Prato

(1981) and then developped by various authors (Cannarsa - Da

Prato, G., Goldys - Maslowski, G. - Rouy, Cerrai, Da Prato -

Debussche, G. - Goldys, Chow - Menaldi, etc).

– Uses regularisation properties of the Ornstein Uhlenbeck tran-

sition semigroup associated to the uncontrolled problem.

– Finds regular solutions (at least C1 or W 1 in space) so the

optimal sinthesis is “possible”.
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Not applicable here since

– No regularizing properties of O-U semigroup (since A is of

first order and the equation is fully nonlinear).

– Without these difficulties G. - Goldys (SPA 07) works but

needs no delay in the control.



• Backward SDE approach: series of papers by Fuhrman, Tessi-

tore, Masiero, etc.

- Represents the solution of HJB using a suitable forward - back-

ward system and finds regular solutions.

Not applicable here since

- it needs semilinear HJB equations



• Viscosity solutions approach: initiated by Crandall and Lions in

’80 for finite dimensional PDE’s. Infinite dimensional second

order HJB first studied by Lions ’88 and then by various authors

(Swiech, G., Rouy, Sritharan, Kelome, etc).

– More general theory of existence and uniqueness.

– No regularity results (the solutions are continuous but no

more: no space derivatives so sinthesis is much more com-

plicated).

Not devloped for our case but seems applicable here.



THE HJB EQUATION: SPECIFIC FEATURES

• It is a fully nonlinear equation.

• It is defined on the points of E, due to the presence of f .

• The linear term is unbounded.

• The term f(·) is not continuous with respect to ‖ · ‖H.

• The nonlinear term involves only the derivatives with respect to

the real component.
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THE VALUE FUNCTION AS VISCOSITY SOLUTION

OF THE HJB EQUATION

Theorem 2 (S. Federico) The value function is a viscosity solu-
tion of the equation HJB on V. Moreover, if it is continuous up
to the boundary, then it is a viscocosity subsolution also at the
boundary.

• The subsolution viscosity property of the value function at the
boundary plays the role of a boundary condition.

• When this happens in a finite-dimensional framework, the value
function is said a constrained viscosity solution of the HJB equa-
tion.

• In the finite-dimensional framework very often this boundary
condition is strong enough to guarantee a uniqueness result for
the solution.

50



.

Further research and work in progress
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NATURAL FUTURE TARGETS FOR THE

INFINITE DIMENSIONAL HJB

• Proving a uniqueness result for viscosity solutions which would
give a full characterization for the value function.

• Proving the existence of the directional (along the ”present”
component) first and second derivatives for the value function.

• Proving a verification theorem in order to be able to find optimal
feedback control strategies for the problem.

All these are very difficult: we then started to look at simpler prob-
lems to extend the existing theory. (Federico, Goldys, Gozzi work
in progress).
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OPTIMAL CONSUMPTION WITH

DELAY IN THE STATE

State equation:x
′(t) = rx(t) + f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0).

• a is a weighting function satisfying a ∈ W 1,2([−T, 0]; R), a(·) > 0

and a(−T ) = 0;

• f0 : R+ × R → R is concave, Lipschitz, increasing on both the
variables and f0(0, 0) ≥ 0.

• state constraint: x(·) > 0;

• control constraint: c(·) ≥ 0.
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On the delay term:

We can imagine this kind of contract: the bank provides for the cus-

tomer an interest spot rate r smaller than the market spot rate rM ;

nevertheless, as a compensation, it provides a premium on the past

of the wealth. For example we could have the following dynamics:x
′(t) = rx(t) + g

(∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),

where g : R→ R. Such a contract should incentive the customer to

keep for longer periods his money within the bank account in order

to perform the benefits coming by the term g0.
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Problem:

Maximize over the set of the admissible strategies c(·)

∫ +∞

0
e−ρt

[
U1(c(t)) + U2(x(t))

]
dt.

• ρ > 0.

• U1, U2 are utility functions satisfying suitable conditions.

(For many results it can be U2 ≡ 0.)
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THE INFINITE-DIMENSIONAL REPRESENTATION

We pass from the one-dimensional DDE to an infinite-dimensional

DE (without delay): we define the Hilbert space

H = R× L2([−T, 0]; R).

The new state variable in this space is

X(t) = (X0(t), X1(t)) ∈ H.

Formally we want

X0(t) = x(t); X1(t)(ξ) = x(t+ ξ), for a.e. ξ ∈ [−T, 0].
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Define:

• the closed unbounded operator

A : D(A) ⊂ H → H,

where

D(A) = {(η0, η1(·)) ∈ H | η1(·) ∈W 1,2([−T, 0]; R), η0 = η1(0)};
and

D(A) 3 (η0, η1(·)) 7→ (rη0, η
′
1(·)).

A is the generator of a C0-semigroup S(·) on H.

• the nonlinear map F : H → H, by(
η0
η1(·)

)
7→
(
f(η0, η1(·))

0

)
:=

(
f0

(
η0,
∫ 0
−T a(ξ)η1(ξ)dξ

)
0

)
.
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Define the infinite-dimensional DE in the space H{
X ′(t) = AX(t) + F (X(t))− c(t)n̂,
X(0) = η = (η0, η1(·)) ∈ H,

where n̂ = (1, 0) ∈ H.

The role of A:

A(X0(t), X1(t)) = (rX0(t), X1(t)′(·)).

On the first component A gives the linear evolution of the present;
On the second component A moves the past as a shift.

The role of the boundary condition in D(A):

D(A) = {(η0, η1(·)) ∈ H | η1(·) ∈W 1,2([−T, 0]; R), η0 = η1(0)}.

This boundary condition forces the past to follow the present, i.e.
the last point of the past has to follow the same evolution of the
present.
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MILD SOLUTIONS AND EQUIVALENCE

Proposition 3 For any η ∈ H and c(·) ∈ L1
loc([0,+∞); R), the equa-

tion {
X ′(t) = AX(t) + F (X(t))− c(t)n̂,
X(0) = η = (η0, η1(·)) ∈ H,

admits a unique mild solution X(·), i.e.

X(t) = S(t)η +

∫ t

0
S(t− τ)F (X(τ))dτ +

∫ t

0
c(τ)S(t− τ)n̂ dτ.

Moreover

X(t) =
(
X0(t), X1(t)(ξ)|ξ∈[−T,0]

)
=
(
x(t);x(t+ ξ)|ξ∈[−T,0]

)
,

where x(·) is the unique solution of the one-dimensional delay equa-

tion.
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HJB EQUATION

Formally the HJB equation for the problem is

ρv(η) = 〈Aη,∇v(η)〉+ f(η)vη0(η) + U2(η0) +H(vη0(η));

this requires in particular η ∈ D(A).

In order to allow η ∈ H we rewrite it as

ρv(η) = 〈η,A∗∇v(η)〉+ f(η)vη0(η) + U2(η0) +H(vη0(η)),

where H is the Legendre transform of U1, i.e.

H(p) := sup
c≥0

(U1(c)− cp) , p > 0.
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THE HJB EQUATION IN GENERAL:

WHICH KIND OF SOLUTIONS?

Some considerations:

• If the value function is smooth, then it solves the HJB equa-

tion. However this argument is in general only formal. Indeed

in general the value function is not smooth.

• Even if the value function is smooth, it is difficult to prove a

priori regularity results for the value function going beyond the

continuity.

• The usual theory of classical or generalized solutions for PDE

does not adapt to PDE of HJB type in general.

• The best concept of solution in the context of HJB equations

seems to be the concept of viscosity solution, which does not
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require regularity (classical or generalized) for the definition of

solution. It was developed in the early ’80s by Crandall and

Lions.



Bad case (viscosity approach): We do not know whether there

exists a classical solution of the HJB equation or not. Then:

• We can prove that the value function is a viscosity solution

(possibly unique) of the HJB equation (this is quite standard).

• We can try to prove, by using this viscosity property, that the

value function is indeed smooth and so it is a classical solution.

– This is a regularity result, as well as when in the classical

PDE’s theory it is proved that a generalized solution is indeed

a classical solution.

– Such a result does not hold in general, because, as said, the

value function is not smooth in general.
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• We can use the fact that the value function is a classical solution

of the HJB equation to prove a verification theorem giving an

optimal strategy for the problem.



BACK TO THE PROBLEM: RESULTS

• Concavity:

The value function is concave. The domain D(V ), i.e. the set

where V > −∞, is an open set of H with respect to the norm

‖η‖A−1 := ‖A−1η‖.

• Continuity:

The value function is continuous on D(V ) with respect to ‖·‖A−1.

• Properties of superdifferentials:

Some properties for superdifferentials of concave and ‖ · ‖A−1-

continuous functions are proved. These properties are very im-

portant to prove the regularity result.
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• Viscosity:

The value function is a viscosity solution of HJB in the following

sense:

Definition 1 Define the set of test functions

τ :=
{
ϕ ∈ C1(H)

∣∣∣ ∇ϕ(·) ∈ D(A∗), ηn → η ⇒ A∗∇ϕ(ηn) ⇀ A∗∇ϕ(η)
}
.

A continuous function v : D(V ) → R is called a viscosity subso-

lution of HJB on D(V ) if, for any ϕ ∈ τ and any ηM ∈ D(V ) such

that v − ϕ has a local maximum at ηM , we have

ρv(ηM) ≤ 〈ηM , A∗∇ϕ(ηM)〉+ f(ηM)ϕη0(ηM) + U2(η0) +H(ϕη0(ηM)).

Analogous definition for viscosity supersolution.



• Regularity (main result):

The value function is continuously differentiable on D(V ) along

the ”present” direction, i.e.

∃ Vη0(η), ∀η ∈ D(V ),

and

η 7−→ Vη0(η)

is continuous.



• On the (formal) optimal feedback strategy:

Thanks to the regularity result we can write the feedback map,

defined by

C(η) := argmaxc≥0 (U1(c)− cVη0(η)) , η ∈ D(V ).

If U2 is not integrable at 0+, then the formal optimal feedback

strategy exists (in the sense that the closed loop equation as-

sociated with the feedbak map C has a global solution) and is

admissible.



OTHER FUTURE TARGETS

Research project also with

Elena Vigna (University of Torino, Italy)

Martino Grasselli (University of Verona, Italy)

• To take stochastic interest rates

• To release the hypotheses of demographic stationarity

• To introduce a stochastic wage

• To analyze the decumulation phase
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THIS IS THE END, THANKS
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A stochastic advertising model with delay

66



Monopolistic firm preparing the market introduction of a new prod-

uct at some time T in the future.

Nerlove-Arrow (1962) framework: the state is the “goodwill stock”

y(t), 0 ≤ t ≤ T .

The control is the rate of advertising spending z(t).

The state equation is linear and allows for delay effects both in the

state and in the control.

Literature: Buratto, Grosset, Viscolani, Marinelli, etc.:

stochastic problems with no delay.
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State equation

dy(t) =

[
a0y(t) +

∫ 0

−r
a1(ξ)y(t+ ξ) dξ + b0z(t) +

∫ 0

−r
b1(ξ)z(t+ ξ) dξ

]
dt

+σ dW0(t), s ≤ t ≤ T ≤ +∞

y(s) = x0; y(s+ ξ) = x1(ξ), z(s+ ξ) = δ(ξ), ξ ∈ [−r, 0],
(3)

where:

- the Brownian motion W0 is defined on a filtered probability space
(Ω,F ,F = (Ft)t≥0,P), with F being the completion of the filtration
generated by W0. The volatility σ > 0 is constant.

- the advertising spending rate z(t) is constrained to remain in the set
U := L2

F([0, T ], U), the space of square integrable processes adapted
to F taking values in a closed convex set U ⊆ R+, such as U = [0, R],
with R a positive constant, finite or infinite.
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- a0 and a1(·) describe the process of goodwill deterioration when

the advertising stops,

- b0 and b1(·) provide the characterization of the effect of the current

and the past advertising rates on the goodwill level.

- the values of x0, x1(·) and δ(·) reflect the “initial” goodwill and

advertising trajectories.

Note that we recover the model of Nerlove and Arrow (1962) from

(3) in the deterministic setting (σ = 0) in the absence of delay

effects (a1(·) = b1(·) = 0).
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In addition, we assume that the following conditions hold:

(i) a0 ≤ 0;

(ii) a1(·) ∈ L2([−r, 0],R);

(iii) b0 ≥ 0;

(iv) b1(·) ∈ L2([−r, 0],R+);

(v) x0 ≥ 0;

(vi) x1(·) ≥ 0, with x1(0) = x0;

(vii) δ(·) ≥ 0.
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Setting x := (x0, x1(·)) and denoting by ys,x,z(t), t ∈ [0, T ], ”the”

solution of (3), we define the objective functional

J(s, x; z) =

[
ϕ0(ys,x,z(T ))−

∫ T

s
h0(z(t)) dt

]
, (4)

where ϕ0 : R −→ R and h0 : R+ −→ R+ are measurable utility and

cost functions, respectively, satisfying the growth condition

|f(x)| ≤ K(1 + |x|)m, K > 0, m ≥ 0, (5)

for f = ϕ0, h0. If T = +∞ we remove the final reward ϕ0 and put it

inside the integral with a discount factor

J(s, x; z) =

[∫ +∞

s
e−ρt[ϕ0(ys,x,z(t))− h0(z(t))] dt

]
.
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Let us also define the value function V for this problem as follows:

V (s, x) = sup
z∈U

J(s, x; z).

We shall say that z∗ ∈ U is an optimal strategy if it is such that

V (s, x) = J(s, x; z∗).

Problem: maximization of the objective functional J over all admis-

sible strategies

U = L2
F([0, T ], U).
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An equivalent infinite dimensional setting

(for the advertising problem)
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The state space is infinite dimensional

• In the previously quoted literature (e.g. the case when a1 and

b1 are 0) the state of the system at time t is described only by a

(real) number: the stock of goodwill at time t: the state space

is one dimensional.

• In models with delay (to have a Markovian state equation) it

is useful to consider a bigger state. In this case the state at

time t is given by the history of the goodwill in the whole period

[t− r, t]. So the system is described by a function

[−r, 0] −→ R

which is not a finite dimensional vector.
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The choice of the state space

• There is not a unique possible choice of the infinite dimensional

state space and state variable (see e.g. Ichikawa (1982), Vinter

- Kwong (1981), Bensoussan - Da Prato - Delfour - Mitter,

(2006)).

• Here we choose (following Vinter - Kwong (’81)) of the Hilbert-

state space

X := R× L2(−r, 0).

• We call the state x(t) ∈ X.
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The new state equation

Let us define an operator A : D(A) ⊂ X −→ X as follows:

A : (x0, x1(·)) 7→
(
a0x0 + x1(0), a1(·)x0 − x′1

)
a.e. ∈ [−r, 0],

D(A) =
{
x ∈ X : x1 ∈W 1,2([−r, 0]; R), x1(−r) = 0

}
.

Moreover, setting U := R+, we define the bounded linear control

operator B : U −→ X as

B : u 7→
(
b0u, b1(·)u

)
, (6)

and finally the operator G : R −→ X as G : x0 7→ (σx0, 0).

Note that b1 6= 0 implies that ImB 6⊂ ImG.
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The new state equation is then the abstract evolution equation{
dY (t) = (AY (t) +Bz(t)) dt+GdW0(t)

Y (s) = x̄ ∈ X,
(7)

with arbitrary initial datum x̄ ∈ X and control z ∈ U.

(Controlled Ornstein Uhlenbeck process)

We have the following equivalence result (see Gozzi - Marinelli,

2006)



Proposition. For t ≥ r, one has, P-a.s.,

Y (t) = M(Y0(t), Y0(t+ ·), z(t+ ·)),
where

M : X × L2([−r, 0],R) −→ X

(x0, x1(·), v(·)) 7→ (x0,m(·)),

m(ξ) :=

∫ ξ

−r
a1(ζ)x1(ζ − ξ) dζ +

∫ ξ

−r
b1(ζ)v(ζ − ξ) dζ.

Moreover, let {y(t), t ≥ −r} be a continuous solution of the stochas-
tic delay differential equation (3), and Y (·) be the weak solution of
the abstract evolution equation (7) with initial condition

x̄ = M(x0, x1, δ(·)).
Then, for t ≥ 0, one has, P-a.s.,

Y (t) = M(y(t), y(t+ ·), z(t+ ·)),
hence y(t) = Y0(t), P-a.s., for all t ≥ 0.
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Using this equivalence result, we can now give a Markovian refor-

mulation on the Hilbert space X of the problem of maximizing (4).

In particular, denoting by Y s,x̄,z(·) a mild solution of (7), (4) is

equivalent to

J(s, x; z) =

[
ϕ(Y s,x̄,z(T )) +

∫ T

s
h(z(t)) dt

]
, (8)

with the functions h : U −→ R and ϕ : X −→ R defined by

h(z) = −h0(z)

ϕ(x0, x1) = ϕ0(x0).

Hence also V (s, x) = supz∈U J(s, x; z).

The same for the infinite horizon problem.
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The Dynamic Programming (DP) and the

Hamilton-Jacobi-Bellman (HJB) equation

79



We consider now the infinite dimensional problem (0 ≤ s ≤ t ≤ T ).

State equation:{
dY (t) = (AY (t) +Bz(t)) dt+GdW0(t)

Y (s) = x ∈ X,
(9)

Objective functional (to maximize):

J(s, x; z) =

[
ϕ(Y (T )) +

∫ T

s
h(z(t)) dt

]
, (10)

and similarly for T = +∞.

Value function:

V (s, x) = sup
z∈U

J(s, x; z)
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We apply the DP approach.

A (naive) scheme of the DP approach is the following

DP-1 Write an equation for the value function: the so-called Dy-
namic Programming Principle and its infinitesimal version, the
Hamilton-Jacobi-Bellman (HJB) equation:

(DPP): for every (s, x) ∈ [0, T ]×X and t1 ∈ (s, T )

V (s, x) = sup
z∈U

[∫ T

s
h(z(t)) dt+ V (t1, Y (t1))

]
,

This is a standard result but the proof is nontrivial (see e.g.
Fleming - Soner (2005), Yong - Zhou (1999) in finite dimen-
sion; in the infinite dimensional case e.g. Lions, G. -Swiech -
Sritharan)



(HJB): for every (t, x) ∈ [0, T ]×D(A)


vt(t, x) +

1

2
Tr(GG∗vxx(t, x)) + 〈Ax, vx(t, x)〉+H0(vx(t, x)) = 0,

v(T, x) = ϕ(x),

(11)

where H0(p) = supz∈U(〈Bz, p〉+h(z)) is the so-called Hamiltonian.

DP-2 Find a solution of the HJB equation and prove that it is the

value function. If not possible prove weaker results on the HJB

equation (existence, uniqueness, regularity, etc.);



DP-3 (Verification Theorem). Prove that an optimal feedback formula
(i.e. a formula expressing the optimal control as function of the
optimal state) is given by

z∗(t) = F (vx(t, Y ∗(t))) (12)

where F is the function giving the arg max of the Hamiltonian
H0.

DP-4 Plug such feedback formula into the state equation (obtaining
the so-called Closed Loop Equation) to find the optimal trajec-
tories of the state and of the control.{

dY (t) = (AY (t) +BF (vx(t, Y (t)))) dt+GdW0(t)

Y (s) = x ∈ X,
(13)

The main issue is the study of the HJB equation.



.

The Main features of the HJB equation
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State of the art

• Strong solution approach: initiated first by Barbu and Da Prato

(1981) and then developped by various authors (Cannarsa - Da

Prato, G., Goldys - Maslowski, G. - Rouy, Cerrai, Da Prato -

Debussche, G. - Goldys, Chow - Menaldi, etc).

– Uses regularisation properties of the Ornstein Uhlenbeck tran-

sition semigroup associated to the uncontrolled problem.

– Finds regular solutions (at least C1 or W 1 in space) so the

optimal sinthesis is “possible”.
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Not applicable here since

– No regularizing properties of O-U semigroup (since A is of

first order and G degenerate).

– Without this G. - Goldys still works but needs ImB ⊂ ImG

which is not true here due to the presence of the delay in the

control (“carryover” effect).



• Backward SDE approach: series of papers by Fuhrman, Tessi-

tore, Masiero, etc.

- Represents the solution of HJB using a suitable forward - back-

ward system and finds regular solutions (see the talk of Fuhrman

for more on this).

Not applicable here since

- it needs ImB ⊂ ImG which is not true here.



• Viscosity solutions approach: initiated by Crandall and Lions in

’80 for finite dimensional PDE’s. Infinite dimensional second

order HJB first studied by Lions ’88 and then by various authors

(Swiech, G., Rouy, Sritharan, Kelome, etc).

– More general theory of existence and uniqueness.

– No regularity results (the solutions are continuous but no

more: no space derivatives so sinthesis is much more com-

plicated).

Not devloped for our case but seems applicable here.

(And we did not consider the state constraints!!!!!)



.

Some results on existence, regularity and

optimal synthesis, (under construction)

83



We use the viscosity solution approach.

Let us now consider the following Bellman equation on X

ρv + 1
2Tr(GG

∗vxx) + 〈Ax, vx〉+H0(vx) = 0, x ∈ X, (14)

where H0(p) = supz∈U(〈Bz, p〉+ h(z)).

We introduce the following two classes of test functions:

Definition 2 (i) We call T1 the set of functions ψ ∈ C2(X) such

that, ψx(x) ∈ D(A∗) for any x ∈ X and ψ,ψx, A∗ψx, ψxx are uniformly

continuous.

(ii) We call T2 the set of functions g ∈ C2
b (X) which are of the form

g(t, x) = g0(‖x‖), g0 ∈ C2([0,+∞); R), g′0 ≥ 0,

and g, gx, gxx are uniformly continuous.



Next we give the following definition of viscosity solution:

Definition 3 (i) A continuous function v : X −→ R is called a vis-

cosity subsolution (supersolution) of the HJB equation (12) on

X if, for any triple (xM , ψ, g) ∈ X × T1 × T2 such that xM is a local

maximum (minimum) point of v − ψ − g, we have

ρv(xM) +
1

2
Tr (GG∗ψxx(xM) + gxx(xM)) + 〈x,A∗ψx(xM)〉

+H0(ψx0(xM) + gx0(xM)) ≤ (≥)0

(ii) v called a viscosity solution of the HJB equation (9) if it is

both a viscosity subsolution and a viscosity supersolution.



• Existence of viscosity solutions.

Theorem The value function is a viscosity solution of the HJB

equation (9).

This is ok also in the pension fund problem (see S. Federico

2008)

• Uniqueness of viscosity solution.

Work in progress. The definition used to prove existence seems

“compatible” with a uniqueness theorem.



• Regularity of viscosity solutions.

First we remark that the feedback formula (10) in our case

contains only the derivative of the value function with respect

to the first (real) component of the state.

So to write (10) we need only differentiability of V in the first

component.

To prove this we extend to the infinite dimensional case a

method developped in finite dimension for the case when V is

semiconcave (here is concave) and H0 is strictly convex (see e.g.

Bardi - Capuzzo Dolcetta).

Ok for some deterministic case, work in progress for the adver-

tising case.



• Verification Theorem and sinthesis Under construction.

Idea:

approximate the solution with classical solutions of approximat-

ing equations (see e.g. G., ’94) and use Ito formula

or

use weak version of Ito formula (see e.g. G.- Russo, 2006).



.

THIS IS THE END, THANKS
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Let us now consider the following Bellman equation on X

ρv + 1
2Tr(GG

∗vxx) + 〈Ax, vx〉+H0(vx) = 0, x ∈ X, (15)



The main problem with (15) is that it is not solvable with any

of the techniques currently available.

In particular, as of now, one cannot characterize the value func-

tion as the (unique) solution, in a suitable sense, of equation

(15). This is work in progress using the theory of viscosity so-

lutions.

Nevertheless, if we know a priori that a smooth solution ex-

ists, then we can apply a verification theorem (proved Gozzi -

Marinelli).

This will be done in a special case, for which there exists a

smooth solution in closed form, and hence we can fully charac-

terize the optimal strategy.



DP-1

Like in the one dimensional model we write the HJB related to the

optimal control problem:

ρv(x) = sup
i∈[0,Ax0]

HCV (x,Dv(x); i)

= sup
i∈[0,Ax0]

{
〈(x0, x1), GDV (x0, x1)〉M2+

+ 〈i, δ0(DV (x0, x1))1 − δ−T (DV (x0, x1))1〉R+

+
(Ax0 − i)1−σ

(1− σ)

}



DP-2

To solve the HJB we require that:

• The solution of HJB is defined on a open set O of M2 and C1

on such set.

• On a closed subset Γ, where the trajectories interesting from the

economic point of view remain, the solution has differential in

D(G) (on D(G) also the Dirac δ makes sense).

• The solution satisfies on Γ the (HJB).
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With some nontrivial work it is possible to find an explicit solution

v of the HJB

v(x) = ν

(∫ 0

−T
eξsx1(s)ds+ x0

)1−σ

which, in terms of the historical investment ῑ : [−T, 0] −→ R is written

as

v(ῑ) = ν

(∫ 0

−T
(1− eξ(T+s))ῑ(s)ds

)1−σ

where ξ is the only positive root of the equation z = A(1−e−Tz) and

ν =
1

(1− σ)ξ/A

(
ρ− ξ(1− σ)

σξ/A

)−σ

Compare with the standard AK case.
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DP-3

The explicit expression for the feedback φ is

φ(x) = Ax0 −
(
ρ− ξ(1− σ)

σξ/A

)−σ(∫ 0

−T
eξsx1(s)ds+ x0

)
Again by a non trivial work we prove that it is optimal and that

v = V .
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DP-4

Putting the feedback into the state equation we get the following.

• The optimal investment path is the unique solution of the delay

differential equation

i(t) = A

∫ 0

−T
i(t+ s)ds− b2

∫ 0

−T
(1− eξs)i(−T + s+ t)ds

• The optimal capital path is the unique solution of the delay

differential equation

k∗(t) =

∫ 0

(t−T )∧0
ῑ(s)ds+

∫ t

(t−T )∨0
[ak(s)− Λegs] ds

We cannot solve explicitly but we can get various informations

from them.
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OPTIMAL PATHS
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The optimal consumption path

Along optimal trajectories we have

c(t) = Ak(t)− i(t) = Λegt

where

Λ =

(
ρ− ξ(1− σ)

σξ/a

)(∫ 0

−T
(1− eξs)ῑ(T − s)ds

)

g =
ξ − ρ
σ

Compare with the standard AK case.

Note that the optimal investment and the related capital are not
exponential: they oscillate.
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Long run behavior of capital and investment paths

Using the equation for the optimal investment and capital obtained
above we get

We have

lim
t−→+∞

e−gtk(t) =
Λ

a− g
1−e−gT

> 0

and

lim
t−→+∞

e−gti(t) =
Λ

a
g(1− e−gT )− 1

> 0

Moreover we can write the optimal paths in Fourier series and give
an expression for the principal part of the oscillations.

This give a basis for an estimation of the model.
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Balanced Growth Paths

The balanced growth path (BGP) are of the form

i(s) = a0e
gs for s ∈ [−T,+∞)

k(s) = b0e
gsfor s ∈ [0,+∞)

where a0 and b0 are connected by the relation:

b0 = a0

∫ 0

−T
egss
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Equation for optimal co-state

The optimal co-state is exponential and satisfies

λ(t) =
A

σg + ρ
(Λ−σe−gtσ)
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Comparison with previous results

The main improvements obtained using the DP approach is the

explicit expression of:

- The value function

- The optimal feedback

- The DDE for optimal investment and capital paths

- The constants like Λ, limt−→+∞ e−gtk(t), limt−→+∞ e−gti(t).

Moreover we get the following.
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- The use of lighter assumptions on the parameters of the model.

- The theoretical justification of the absence of corner solutions.



.

THIS IS THE END
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We can see that the model for T −→∞ tends to the one dimensional

AK model. In particular:

I ξ −→ A

I ν −→ r−σ
1−σ

If ῑ ∈ L2(−∞, 0)

I The term (∫ 0

−T
(1− eξs)ῑ(T − s)ds

)
−→ k



Moreover

I g −→ A− r

I Λ −→ rk

I The value function tends to the one dimensional one

I The optimal trajectories tend to the one dimensional ones
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MAIN FEATURES OF THE PROBLEM
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1

Both problems can be suitably rewritten as optimal controls of

Hilbert space systems

• In the first case the Hilbert-state space is given by H = R ×
L2(−T, 0);

• In the first case the Hilbert-state space is given by H = L2(0, s).
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2

In both cases the state equation in the state space is of the kind{
k′(τ) = Ak(τ) +Bu(τ), τ ∈]t,+∞[

k(t) = x ∈ H,

where

• A generates a strongly continuous semigroup which is not ana-

lytic;

• the control operator B is unbounded.
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3

In both cases the objective functional is not bounded neither from

above nor from below

4

State or state - control constraints are present.
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Back to the delay model We can come back to the economic model:

• The value function for an historical positive investment i : [−T, 0] is

V(i)=ν

(∫ 0
−T (1 − eξs)i(−T − s)s

)1−σ
whereξ is the only positive root

of the equation z = A(1− e−Tz) and ν =

(
ρ−ξ(1−σ)
σξ/A

)−σ
1

(1−σ)ξ/A
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• The optimal control solves the delay differential equationi(t) = A
∫ 0
−T i(t+

s)s−b2
∫ 0
−T (1−eξs)i(−T+s+t)sTheoptimalcapitalsolvesthedelaydifferentialequationk∗(t) =∫ 0

(t−T )∧0 ῑ(s)ds+
∫ t
(t−T )∨0 [ak(s)− Λegs] ds

102



•• Along optimal trajectories we have c(t) =Ak(t)-i(t)=ΛegtwhereΛ =(
ρ−ξ(1−σ)
σξ/a

)(∫ 0
−T (1−eξs)ῑ(T−s)ds

)
g = ξ−ρ

σ Notethattheoptimalinvestmentandtherelatedcapitalarenotexponential.
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Other results: long run behavior Using the equation for the optimal

investment obtained using DP approach we can find other informa-

tion of the economic system:

We have limt−→+∞ e−gtk(t) = Λ
a− g

1−e−gT
> 0and limt−→+∞ e−gti(t) =

Λ
a
g(1−e−gT )−1

> 0
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Other results: BGPs The balanced growth path (BGP) are of the

form i(s)=a0e
gs for s ∈ [−T,+∞)k(s) = b0e

gsfor s ∈ [0,+∞)wherea0

and b0 are connected by the relation: b0 = a0
∫ 0
−T e

gss
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Other results: Equation for optimal co-state The optimal co-state

is exponential and satisfies λ(t) = A
σg+ρ(Λ−σe−gtσ)
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Comparison with one dimensional AK model We can see that the

model for T −→ ∞ tends to the one dimensional AK model. In

particular:

I ξ −→ A

I ν −→ r−σ
1−σ

If ῑ ∈ L2(−∞, 0)

I The term
(∫ 0
−T (1− eξs)ῑ(T − s)ds

)
−→ k
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Moreover

I g −→ A− r

I Λ −→ rk

I The value function tends to the one dimensional one

I The optimal trajectories tend to the one dimensional ones
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Comparison with previous results The main improvements obtained

using the DP approach in M2 are:

- The value function of the problem

- The optimal feedback

- Explicit DDE for optimal investment and optimal capital

- Explicit expression for constants like Λ, limt−→+∞ e−gtk(t), limt−→+∞ e−gti(t)...

- The use of lighter assumptions on the constants (we haven’t

see them in the discussion)
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1. Natural abstract setting:

H := L2(0, s̄), U := R× L2(0, s̄)

H space state, U control space.{
k′(τ) = A0k(τ) +Bu(τ), τ ∈]t,+∞[

k(t) = x ∈ L2(0, s̄),

where

A0f(s) = −
∂

∂s
f(s)− µf(s); D(A) = {f ∈ H1(0, s̄) : f(0) = 0}

Bu ≡ B(u0, u1) = u1 + δ0u0

The control on the boundary yields

B 6∈ L(U,H)
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Minimize

J∞(t, x, u) =

∫ +∞

t
e−λτ [g0(k(τ)) + h0(u(τ))]dτ,

over the set

L
p
λ(t,+∞;U) = {u ∈ L1

loc(t,+∞;U) ; t 7→ u(t)e
−λtp ∈ Lp(t,+∞;U)}

Value Function

Z(t, x) = inf
L
p
λ(t,+∞;U)

J∞(t, x, u),

Z(t, x) = e−λtZ(0, x), where Z(0, x) is the candidate solution of the

stationary HJB equation

−λz(x) + 〈A∗z′(x), x〉H − h∗0(−B∗z′(x)) + g(x) = 0,

(where h∗0(u) = supv∈U{(u|v)U + h0(v)});
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The terms

〈A∗z′(x), x〉H , and − h∗0(−B∗z′(x))

in HJB are not well defined.

2. Extended abstract setting

We set V := D(A∗) and choose V ′ = D(A∗)′ as state space.

The state equation and HJB make sense, B ∈ L(U, V ′), B∗ ∈ L(V, U),

so that HJB reads as

−λz(x) + 〈z′(x), Ax〉V ′×V − h
∗
0(−B∗z′(x)) + g(x) = 0,
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General assumptions

1. A : D(A) ⊂ V ′ −→ V ′ generates a s.c. semigroup {eτA}τ≥0 on V ′;

2. B ∈ L(U, V ′);

3. there exists ω ≥ 0 such that |eτAx|
V ′ ≤ e

ωτ |x|
V ′, ∀τ ≥ 0;

4. g0, φ0 : V ′ −→ R, convex, C1 with Lipschitz gradient.

5. h0 is convex, lower semi–continuous, ∂uh0 is injective; ∃a > 0,
∃b ∈ R, ∃p > 1 : h0(u) ≥ a|u|pU + b, ∀u ∈ U ;

Moreover, either p > 2, λ > 2ω, or λ > ω, and g0, φ0 sublinear.

6. h∗0(0) = 0, h∗0 is C1 with Lipschitz gradient.
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Crucial assumption:

g0, that is naturally defined on H, can be extended on V ′ to a C1

function with respect to the topology of V ′.

Then:

Unboundedness of B is compensated by the regularity of g0.

(Faggian, ’04, for finite horizon)
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ESSENTIAL LITERATURE
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1. Regular and strong solutions for general convex problem and
distributed control, with and without constraints: Barbu-Da Prato,
Cannarsa-Di Blasio.

2. Linear-quadratic problem: Lasiecka-Triggiani, Bensoussan-Delfour
-Da Prato-Mitter, Acquistapace-Flandoli-Terreni (non autonomous
systems).

3. Viscosity solutions: Crandall-Lions (distributed control), Cannarsa-
Gozzi-Soner, Cannarsa-Tessitore (some boundary control, no regu-
larity of the value function)

4. Regular and strong solutions for general convex problem and
boundary control, on FINITE horizon:

• Unconstrained problem (Faggian, ’04,’05)

• Constraints on the control (Faggian & Gozzi, ’05)

• Constraints on the state (Faggian, ’06)
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THE RESULTS
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All the results for infinite horizon are obtained by passing to limits

as T −→∞ on the finite horizon case, with horizon T .

Finite horizon:

JT (t, x, u) =

∫ T

t
[g0 (y(τ)) + h0 (u(τ))] e−λτdτ + ϕ0(y(T ))e−λT .

φT (T − t, x) := inf
L
p
λ(t,T ;U)

JT (t, x, u)

then φT is proved to solve in strong sense the following evolutionary

HJB{
∂tφ(t, x) + e−λth∗0(−B∗[eλtφx(t, x)])− 〈Ax, φx(t, x)〉 = e−λ(T−t)g0(x),

φ(0, x) = ϕ0(x)e−λT .
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Strong solutions of the evolutionary HJB are, roughly speaking, lim-

its of classical solutions of equations approximating HJB associated

to the finite horizon problem.

Strong solutions are proved to be Lipschits in t and C1 in x, having

Lipschitz spatial gradient.

Dynamic Programming is completely performed for finite horizon,

yielding a feedback formula for optimal strategies by means of the

spatial gradient of the value function φT .
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Theorem 1: passing to limits.

Let φT (t, x) be the unique strong solution to evolutionary HJB. Then

the function

Ψ(t, x) := eλ(T−t)φT (t, x)

is independent of T and there exists the following limit

Ψ∞(x) := lim
t−→+∞

Ψ(t, x).

uniformly on bdd subsets of V ′. Moreover, if

λ > ωmax{2,
p

p− 1
},

then Ψ∞ is C1 and has Lipschitz gradient, and

Ψx(t, x) −→ Ψ′∞(x), weakly in V, as t −→ +∞.
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Theorem 2: the value function solves HJB.

(i)

Ψ∞(x) = Z∞(0, x) = inf
u∈Lpλ(0,+∞;U)

J∞(0, x, u).

(that is Ψ∞ is the value function of the infinite horizon problem

with initial time t = 0). Moreover Z∞(t, x) = e−λtΨ∞(x) .

(ii) Ψ∞ is the unique classical solution of the stationary HJB equa-

tion:

−λΨ∞(x) + 〈Ψ′∞(x), Ax〉 − h∗0(−B∗Ψ′∞(x)) + g(x) = 0.
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Theorem 3: Existence of a unique optimal pair.

∀t ≥ 0 and x ∈ V ′, ∃ ! (u∗, y∗) optimal pair.

The optimal state y∗ is the unique solution of the CLE

y(τ) = e(τ−t)Ax+

∫ τ

t
e(τ−σ)AB(h∗0)′(−B∗Ψ′∞(y(s)))dσ, τ ∈ [t,+∞[,

while the optimal control u∗ is given by the feedback formula

u∗(s) = (h∗0)′(−B∗Ψ′∞(y∗(s))).
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Theorem 4: Verification Theorem. ∀t ≥ 0 and x ∈ V ′

e−λtΨ∞(x) = J∞(t, x, u)

−
∫ T

t
e−λs

[
h∗0(−B∗Ψ′∞(y(s))) + (B∗Ψ′∞(y(s)) | u(s))U + h0(u(s))]

]
ds.

As a consequence, an admissible pair (u, y) at (t, x) is optimal if and

only if

sup
u∈U

{(
u| −B∗Ψ′∞(y(s))

)
U − h0(u)

}
=
(
u(s)| −B∗Ψ′∞(y(s))

)
U − h0(u(s))

for a.e. s ≥ 0, which is equivalent to

u(s) = (h∗0)′[−B∗Ψ′∞(y(s))]

for a.e. s ≥ 0.
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Comments:

The general model applies to a broad class of problems (not only

to hyperbolic-type). The value function is C1, so that a meaningful

feedback formula is provided in terms of its spatial gradient.

No comparable results exist, as far as we know, within viscosity

solution theory for the general problem: existence may be easy, but

uniqueness is not (at all). Regularity?

[Fabbri, ’06] gives an existence and uniqueness result for viscosity

solution for optimal investment with vintage capital, that does not

extend to the general case.
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