Erlang(n) risk models with risky investments

Corina Constantinescu

Johann Radon Institute for Computational and Applied

RICAM Mathematics

Austrian Academy of Sciences

joint work with
H. Albrecher, University of Linz & RICAM
E. Thomann, Oregon State University

Special Semester on Stochastics with emphasis in Finance
RICAM, Linz, December 2nd, 2008



U=u+ct — ELVL?X,(

u: initial surplus

c: premium rate

® N(t) = number of claims
up to time t
(Poisson/renewal)

® X,: claim size
(light/heavy)

® T,: time of claim

® 7, =Th— Th_1:
inter-arrival time (79 = 0)

. . , , , . ) ® X, T are independent

® the net profit condition

c — Ap > 0 holds

® Time of ruin Ty = inf>o{t: U: <0 Uy = u}
® Probability of ruin in finite time W(u,t) = P(T, < t)

® Probability of ruin W(u) = P(T, < o).



Gerber-Shiu function

ms(u) = E (e”“w( U(Tu—), | U(Ty) NDI(Ty < 00) | U(0) = u)
—_—— ——

surpl.im.bef.ruin  deficit at ruin
e w =1 (LT of the time of ruin)

ms(u) = E (e—”q(ru < 00) | U(0) = u) = ¢5(u)

/oo e_5t\ll(u, t)dt = 210)
0 6

e w =1, 0 =0 (Probability of ruin)

mo(u) = E(1(T, < o0) | U(0) = u) = V(u)



Gerber-Shiu function on the Cramer-Lundberg model

By conditioning on the time and size of the first claim...

¢ Integral equation.

o] u—+ct
ms(u) = /0 )\e_(5+)‘)t/0 ms(u + ct — y)dF (y)dt
+ / )\e_(a‘”‘)t/ w(u + ct,y — u— ct)dF(y)dt
0 u+ct

with boundary condition, lim ms(u) = 0.

u—oo



Through integration by parts...

Integro-differential equation.

e Gerber-Shiu function:

(—c%+)\+5)m5(u) = )\/Ou ms(u — x)fx(x)dx

+ )\/00 w(u, x — u)fx(x)dx

=w(u)

limy—oo ms(u) =0

with boundary conditions, AA
m5(0) = 2&(p)



For special penalties...

e Gerber-Shiu function

(—C% + A+ 0)ms(u) = A /Ou ms(u — x)fx(x)dx + Aw(u)

¢ Laplace transform of the time of ruin
d u _
(~e gy + A+ 0)as(0) = A [ 0s(u = X)) + XFx(w)
0

e Probability of ruin

(—c% + AV (u) = )\/Ou\ll(u — x)fx (x)dx + AF x(uv)



Classical results-Probability of ruin

(~e 4 A)W(u) = A /Ou“’(u — X)fx(x)dx + AFx(u)

lim W(u) =0

u— 00

e If claim sizes are exponentially bounded (light claims) then

W(u) ~ _ M R
“ML(—R) — ¢

, U — 00

Cramer(1930)
e If claims sizes are heavy-tailed (heavy claims) then

V(u) ~ kF(u),u — oo

Embrechts et al(1997)



Classical results-LT of finite-time ruin probability

d oo —
<_CE + A+ 5) bs(u) = )\/0 ¢s(u — x)fx (x)dx + AFx(u)
lim ¢s5(u) =0

u—o0o

e If light claims then
e Laplace transform of time of ruin

0 1 1
os(u) v ——— (— + —) e R u— oo,
“AM(=R)—c\R p
Jim &5 (0) = W(w)
e (single) Laplace transform of the finite-time ruin probability
o 1 1 1
/ e W (u, t)dt ~ —————— (— + —) e R u— 0.
0 —AMy(=R)—c \R

(Gerber & Shiu, 1998)



Classical results-Gerber-Shiu functions

(—c% + A+ 8)ms(u) = A/Ou ms(u — x)fx(x)dx + Aw(u)

lim ms(u) =0

u— 00

e If light claims then

Ao Jo” wix, y) (R — e P)fx(x + y)dxdy o Ru
“MY(—R) — ¢

mg(u) ~

Gerber&Shiu(1998)



Sparre Andersen model with investments

e The claim number process N(t) is a renewal process

e We allow an additional non-traditional feature: investments in
a risky asset with returns modeled by a stochastic process Z;,
described by an SDE

e Denote Uy := U(Tg). The model

Ui = Z0t — X,

is a discrete Markov process.

We refer to this process as renewal jump-diffusion process.



Renewal jump-diffusion process

We assume that the company invests all its money continuously in
a risky asset with the price modeled by a geometric Brownian
motion.



Question:

When we invest everything in a risky asset, do the ruin
probabilities have a faster decay than when there is no investment?
Answer:

When investments in an asset whose price follows a GBM, the ruin
probabilities have a power decay

W(u)~ Cu™%, as u— oo,

where k depends on the parameters of the investments or on those
of the claim sizes.



Objective

e Analyze the asymptotic behavior of the ruin probability W(u)
and the Laplace transform of the time of ruin ¢s(u) (implicitly
the Laplace transform of the finite-time ruin probability) as
the initial capital (surplus) v — oo.

e Determine a general integro-differential equation for ms(u).
Main tools

e integration by parts

e regular variation theory



Assumptions (equation)

e Inter-arrival times {7 },>o have densities f; satisfying an
ODE with constant coefficients

() =0

with homogeneous or non-homogeneous boundary conditions.
(example: £(t) = e ™™ = (& + \)f(t) =0)

e The price of the investments Z/ up to time t starting with
an initial capital v is modeled by a non-negative stochastic
process with an infinitesimal generator A



Assumptions (asymptotic behavior)

We identify two cases:

e Light claims. Claim sizes { X }x>0 have well-behaved
distributions Fx with exponentially bounded tails

1—Fx(x)<ce™™ a,ce€R, Vx>0

e Heavy-tailed claims. Claim sizes { Xy} x>0 have regularly
varying distribution

1— Fx(x) ~ Cx“I(x), as x— o0
(Notation: 1 — Fx(x) € R(—a))

where C is a positive constant and /(x) is a slowly varying
function.



U = Zi)7 = X

Theorem. Let h be a sufficiently smooth function of the risk
process such that E(h(Uy) | Uy = u) = h(u). If f; satisfies the
ODE of order n, with constant coefficients

c (%) £(t) = ki%ak (%)k £(t) =0

and homogeneous boundary conditions, then

L (A1) = ao (/O h(u — x)fx (x)dx + w(u)>

The proof uses semigroup theory, Kolmogorov backward equation
and integration by parts.



Probability of ruin

Since the probability of non-ruin ®(u) satisfies the hypothesis
and then the IDE.

As a consequence the probability of ruin also satisfies this IDE
LAV (u) = ap </ V(u — x)fx(x)dx + Fx(u)>
0

V(w)=1 if u<0
limy—oo W(u) =0

Recall:

A: infinitesimal generator of the investment process,

Fx claim sizes distribution

. .. n k
5*(%) is adjoint to E(%) = Zk:o Qk (%)



More IDEs

Laplace transform of the time of ruin

£4(4 = 9)0s(@) = ao [ o1u = )x(x)e + Fx(w))

Gerber-Shiu function

£2(a= ms(s) = ao ([ motu = ) + o))

Recall:
e A infinitesimal generator of the investment process,
e Fx claim sizes distribution

o n k
o L£*(&)is adjoint to £(%) = Y7ok ()



Classical Cramer-Lundberg model

The surplus model:
N(t)

U(t)=u+ct—> X
k=0

The ODE satisfied by the exponential inter-arrival times

d d d d

L) = (S + VE() =0 = £7(5) = (— + )

The SDE satisfied by the investment process

dZ; = cdt; A = ci
du

Then the IDE for Gerber-Shiu function

(—c% + 0+ A)ms(u) = A /ou ms(u — x)fx(x)dx + Aw(u)

£*(A—05)



Cramer-Lundberg model with tnvestments

The surplus model:

N(t)

U(t) = u+ ct—&—a/tU(s)ds—&—U/t U(s)dWs — >~ Xi.
0 0

k=0
The ODE satisfied by the exponential inter-arrival times

(B = (E N =0 = (D)= (-2 1

The SDE satisfied by the investment process

u u u o?u? d? d
dZt = (C"‘ aZt )dt"‘O'Zt th,A = TW + (C + QU)E

Then the IDE satisfied by the probability of ruin

(“A+ A)U(u) = )\/Ou W — y)dFx(y)dy + AFx(u)



Asymptotic behavior of the probability of ruin

a?u? d? d v =
( — —(c+au)—+)\) u):A/ V(u—y)dFx(y)dy + AFx(u)
2 du d 0

e For small volatility (2§ > 1): W(u) ~ Cu™*, u — oo
e If claim sizes are exponentially bounded (light claims)
(Norberg&Kalashnikov(2002), Frolova et.al(2002), C.&Thomann(2005))

e If claims sizes are regularly varying (heavy-tailed claims)

(Paulsen(2002))
2
k_max<oz,—i—1>
o

e For large volatility (% <1): VY(u)=1,Vu>0.
(Norberg&Kalashnikov(2002), Frolova et.al(2002))



Asymptotic behavior of the Laplace transform of ruin

2,2 d2 d h u —
(- (et a4 A0 as() = [ osu =~ V)aFx(dy + Pl

e For small volatility (% > 1): ¢s(u) ~ Cu=k, as u — oo
e Light claims

(= a 1 n a 1 2+25
S \g2 2 o2 2 02




Asymptotic behavior of the Gerber-Shiu function

22 2 "
( 2 %‘(c—i—au)*-ﬁ-)\—ko) mg(u):)\/o- ms(u — y)dFx(y)dy + Aw(u)

e For small volatility ( > 1): Interplay between penalty and
claim size distribution



Erlang(n) risk model with investments

e The ODE satisfied by the Erlang(n) inter-arrival times
d d n _ wdy o d n
LSV = (5 + NF(0) =0 = L£7(5) = (5 + )

e The SDE satisfied by the investment process

. ) . d o?u?
dZ{ = (c+aZ)dt + o Z!dWe A= (c+au)_- + —

e Then the IDE satisfied by the Gerber-Shiu function

(—A+A+09)"ms(u) = \" /Ou ms(u)(u—y)dFx(y)dy +\"w(u)



Asymptotic behavior of the probability of ruin

(—A+N)"V(u)=\" /Ou V(u — y)dFx(y)dy + A"Fx(u)

e For small volatility, % > 1, V(u) ~ Cu= as u — 0
e If exponentially bounded (light) claims

k=221

o2

o If regularly varying (heavy-tailed) claims (R(—a),a > 0)

k—max(a,2—2—1>
o



Asymptotic behavior of the Laplace transform of ruin

(—A+ X+ 6)"ps(u) = A" /quba(u — y)dFx(y)dy + \"Fx(u)

e For "small volatility” % > 1, ¢ps(u) ~ Cu™*, as u — oo
e If claim sizes are exponentially bounded (light claims)

k*a 1+ a 1 2+25
T o2 2 o2 2 02

o If claims sizes are regularly varying (heavy-tailed claims)

Kk — ma a 1+ a 1 2+25
=max|a, —= — = - —= =
0/,02 2 o2 2 o2




Our method

Steps in all examples to follow:

1. IDE (V(u), ¢s(u), ms(u))

2. Take Laplace transform of the IDE

3. Exploit regularity at zero of the homogeneous part of the
ODE satisfied by the Laplace transform W(s), ¢5(s), Ms(s)

4. Obtain the particular solution of the non-homogeneous ODE

e Laplace transform of the tail of the claims distribution Fx(u)
o Laplace transform of w(u) = [ w(u,x — u)fx(x)dx

5. Use Karamata -Tauberian arguments to establish decay rate



Cramer-Lundberg with investments

o2u? d?

(—7W—(C+au)i+)\)\ll(u) = )\/Ou V(u—y)dFx(y)dy+AFx(u)

du

e Laplace transform

?X(S)

(“A -+ A)(s) — Ml(s) = cW(0) + )\(% _ xs))

e 2-nd order ODE: s?y? + py(s)sy + p2(s) = pa(s)

e Homogeneous equation is regular at zero solutions of the form

o
y(s) =+ Z sk
k=0



Regularity at zero
Determine p :

e The coefficient of the s” term should be zero, reduces to the
equation
(*(p+2)—a)(p+1)=0
e with solutions:

1. P1 = -1
2. p2 = —2 + %
— U(s) = G5 h(s) + Cas™?h(s) + C3P(s)

where P(s) is the particular solutions of the non-homogeneous
equation obtained through perturbation analysis



Particular solution

e Light claims: analytic function (does not produce a candidate
for the decay)

— U(s) = G5 h(s) + Cos™h(s) + Csla(s)
e Regularly varying: p3 = -1+«
— \I’(S) = (s /1(5) + Cos? /2(5) + (353 /3(5)

where 1, I3 are slowly varying functions.

o Cases: p1 < p2 < pzorp; <p3<p



Extensions

1. Same arguments work for Erlang(n) or mixture of exponentials
inter-arrival times

2. Stochastic ordering for asymptotic analysis to Gamma of
non-integers

3. Fractional investments

t t N(t)
u(t) = u—i—ct—i—va/ U(s)ds+“/0/ U(s)dWs — ZXk.
0 0 k=0



Conclusions

1.

For a Sparre Andersen model, perturbed by a continuous
stochastic proces, if the inter-claim arrivals density satisfies a
ODE with constant coefficients (Laplace transform is a
rational function) a general integro-differential equation can
be derived for functions of the risk process

For exponential bounded claim sizes (light claims), in an
Erlang(n) risk model with investments in a stock modeled by
a GBM with small volatility, W(u) has an algebraic decay rate,
depending on the parameter of the investments only.

For regularly varying claim size distributions (heavy-tailed
claims), in Erlang(n) risk models with investments in a GBM
with small volatility, the decay rate depends on the parameters
of the investment or of the claim size, whichever is larger.



THANK YOU FOR YOUR ATTENTION!



