MDP Algorithms for Portfolio Optimization Problems in pure Jump Markets

Nicole Bäuerle (joint work with U. Rieder)

Universität Karlsruhe (TH)

Research University • founded 1825

Linz, October 2008

Overview

- Model and optimization problem
- Solution via discrete-time MDPs
- Solution method and computational aspects
- Model extensions

Model and optimization problem

The market model

Suppose we have a financial market with one bond and d risky assets whose prices evolve as follows

• Price process (S_t^0) of the bond:

$$S^0_t:=e^{rt}, \quad r\geq 0.$$

• Price processes (S_t^k) of the risky assets $k = 1, \ldots, d$:

$$dS_t^k = S_{t-}^k (\mu_k dt + dC_t^k)$$

where $\mu_k \in \mathbb{R}$ are constants and $C_t := \sum_{n=1}^{N_t} Y_n$ with $N = (N_t)$ a Poisson process with rate $\lambda > 0$ and iid random vectors (Y_n) with values in $(-1, \infty)^d$ and distribution Q where $\mathbb{I} ||Y_n|| < \infty$.

The price processes of the risky assets

If we denote by $0 := T_0 < T_1 < T_2 < \ldots$ the jump time points of the Poisson process and if $t \in [T_n, T_{n+1})$, then for $k = 1, \ldots, d$

$$S_t^k = S_{T_n}^k \exp\left(\mu_k(t-T_n)\right).$$

At the time of a jump we have

$$S_{T_n}^k - S_{T_n-}^k = S_{T_n-}^k Y_n^k.$$

In what follows we denote $S_t := (S_t^1, \ldots, S_t^d)$.

 (S_t) is a so-called Piecewise Deterministic Markov Process (PDMP).

A typical sample path

Simulated stock price in the PDMP model.

Portfolios and self-financing strategies

Portfolio strategy: (\mathfrak{F}_t) -predictable stochastic process (π_t) with values in

$$\mathcal{U}:=\{u\in I\!\!R^d\mid u\geq 0, u\cdot e\leq 1\}$$

where $\pi_t = (\pi_t^1, \ldots, \pi_t^d)$ gives the fractions of wealth invested in the risky assets at time t. $1 - \pi_t \cdot e$ is the fraction invested in the bond.

The equation for the wealth process (X_t^{π}) is then:

$$dX^{\pi}_t = X^{\pi}_t \Big(r + \pi_t \cdot (\mu - re) dt + \pi_t dC_t \Big).$$

The optimization problem

Let $U: (0, \infty) \to I\!\!R_+$ be an increasing, concave utility function and define for a portfolio strategy π and $t \in [0, T], x > 0$:

$$egin{array}{rcl} V_{\pi}(t,x) &:= & I\!\!\!E_{t,x} U(X^{\pi}_T). \ V(t,x) &:= & \sup_{\pi} V_{\pi}(t,x). \end{array}$$

Obviously

$$V_{\pi}(T,x) := U(x) = V(T,x).$$

Davis (1993), Norberg (2003), Schäl (2004,2005), Kirch and Runggaldier (2005), Jacobsen (2006), B. and Rieder (2008)

Solution via discrete-time MDPs

Solution via discrete-time MDPs: The model

- State space: $E = [0,T] \times (0,\infty)$. A state (t,x) gives the jump time point t and the wealth x of the process directly after the jump.
- Action space: $A := \{ \alpha : [0,T] \to \mathcal{U} \text{ measurable} \}$. For $\alpha \in A$ we define the movement of the wealth between jumps by

$$\phi^lpha_t(x):=x\exp\left(\int_0^t r+lpha_s\cdot(\mu-re)ds
ight).$$

• Transition probability:

$$qig(B \mid t,x,lphaig) := \lambda \int_0^{T-t} e^{-\lambda s} \int \mathbb{1}_B \Bigl(t+s,\phi^lpha_s(x)ig(1+lpha_s\cdot yig)\Bigr) Q(dy) ds$$

• One-stage reward function: $r(t,x,lpha):=e^{-\lambda(T-t)}Uig(\phi^{lpha}_{T-t}(x)ig).$

Solution via discrete-time MDPs

A sequence (f_n) with $f_n \in F := \{f : E \to A \text{ measurable}\}$ is called *Markov policy*. The expected reward of such a Markov policy is given by

$$J_{(f_n)}(t,x):=I\!\!E_{t,x}^{(f_n)}\left[\sum_{k=0}^\infty r\Big(T_k,X_k,f_k(T_k,X_k)\Big)
ight],\quad (t,x)\in E.$$

Define $J(t,x) := \sup_{(f_n)} J_{(f_n)}(t,x)$, for $(t,x) \in E$.

Theorem 1: We have V(t, x) = J(t, x), for $(t, x) \in E$ and the optimal portfolio strategies "coincide".

Some important operators

We define the following operators $L, \mathcal{T}_f, \mathcal{T}$ which act on $I\!M := \{v : E \to I\!R_+ \mid v \text{ is measurable}\}:$

$$egin{aligned} (Lv)(t,x,lpha) &:= e^{-\lambda(T-t)}Uig(\phi^lpha_{T-t}(x)ig) + \int v(s,y)q(ds,dy\mid t,x,lpha).\ (\mathcal{T}_fv)(t,x) &:= Lv(t,x,f(t,x)),\ (t,x)\in E,\ f\in F.\ (\mathcal{T}v)(t,x) &= \sup_{lpha\in A} Lv(t,x,lpha). \end{aligned}$$

From MDP theory it follows that

Financial optimization problems

A peculiar norm

Let
$$b(t,x) := e^{\beta(T-t)}(1+x), \ (t,x) \in E$$
 for $\beta \ge 0$.

Next we introduce the weighted supremum norm $\|\cdot\|_b$ on $I\!\!M$ by

$$\|v\|_b := \sup_{(t,x)\in E} rac{v(t,x)}{b(t,x)} \quad ext{and} \quad I\!\!B_b := \{v\in I\!\!M \mid \|v\|_b < \infty\}.$$

Finally, we define the set

 $I\!\!M_c := \{v \in I\!\!B_b \mid v \text{ is continuous, } v(t,x) \text{ is concave and } \}$

increasing in x, decreasing in t}.

Properties of \mathcal{T} and \mathcal{T}_f

Theorem 2: It holds that

a) $\mathcal{T}: I\!\!M_c \to I\!\!M_c$.

b) For $v, w \in I\!\!B_b$ and $f \in F$ we have

$$egin{array}{rcl} \|\mathcal{T}_f v - \mathcal{T}_f w\|_b &\leq c_eta \|v - w\|_b \ \|\mathcal{T} v - \mathcal{T} w\|_b &\leq c_eta \|v - w\|_b. \end{array}$$

with $c_{\beta} := \frac{\lambda(1+\bar{y})}{\beta+\lambda-\bar{\mu}} \Big(1 - e^{-T(\beta+\lambda-\bar{\mu})}\Big)$. Thus the operators $\mathcal{T}_f, \mathcal{T}$ are contracting if $c_{\beta} < 1$ which is the case if β is large enough.

Characterization of the value function

Theorem 3:

a) The value function V is the unique fixed point of \mathcal{T} in $I\!M_c$.

b) For $J_0 \in I\!\!M_c$ it holds that

$$\|V-\mathcal{T}^nJ_0\|_b\leq rac{c_eta^n}{1-c_eta}\|\mathcal{T}J_0-J_0\|_b.$$

c) There exists an optimal stationary portfolio strategy π , i.e. there exists an $f \in F$ such that

$$\pi_t = f(T_n, X_n)(t - T_n)$$
 for $t \in [T_n, T_{n+1})$.

Financial optimization problems

Solution method and computational aspects

Howard's policy improvement algorithm

Theorem 4: Howard's policy improvement algorithm works for the portfolio problem. More precisely, let $f, g \in F$.

a) If for some subset $E_0 \subset E$

$$egin{aligned} g(t,x)\in D(t,x,f) &:= \{lpha\in A\mid LJ_f(t,x,lpha)>J_f(t,x)\}, \qquad (t,x)\in E_0\ &g(t,x)=f(t,x), \qquad (t,x)
otin E_0 \end{aligned}$$

then
$$J_g \geq J_f$$
 and $J_g(t,x) > J_f(t,x)$ for $(t,x) \in E_0$.

b) If $D(t, x, f) = \emptyset$ for all $(t, x) \in E$ then $J_f = V$, i.e. the decision rule f defines the optimal stationary portfolio strategy.

Application: Suppose $r = \mu_i$ and U is continuously differentiable and $U'(x + u \cdot Y)Y$ is integrable for all x > 0 and ||u|| small. Then "invest all the money in the bond" is optimal if and only if $I\!\!EY \le 0$.

Approximating the utility function

Let $U^{(n)}, U$ be utility functions and denote by $V^{(n)}, V$ the corresponding value functions and by

Moreover, let us denote by

 $LsA_n^*(t,x) := \{ \alpha \in A; \ \alpha \text{ is an accumulation point of a sequence } (\alpha_n)$ with $\alpha_n \in A_n^*(t,x) \ \forall n \in I\!\!N \}$

the upper limit of the set sequence $\Big(A_n^*(t,x)\Big).$

Jouini and Napp (2004), Schäl (1975)

Approximating the utility function

Theorem 5:

a) If U and \tilde{U} are two utility functions with corresponding value functions V and \tilde{V} , then

$$\|V- ilde{V}\|_b\leq \|U- ilde{U}\|_brac{e^{Tar{\mu}}}{1-c_eta}.$$

b) Let $(U^{(n)})$ be a sequence of utility functions with $\lim_{n\to\infty} \|U^{(n)} - U\|_b = 0$. Then $\lim_{n\to\infty} \|V^{(n)} - V\|_b = 0$ and we get that

 $\emptyset \neq LsA_n^*(t,x) \subset A^*(t,x)$

for all $(t,x) \in E$, i.e. in particular, the limit f^* of a sequence of decision rules (f_n^*) with $f_n^*(t,x) \in A_n^*(t,x)$ for all $(t,x) \in E$ defines an optimal portfolio strategy for the model with utility function U.

State space discretization

Choose a grid $G \subset E$ and define the grid operator T_G on \mathbb{I}_c by

$$\mathcal{T}_G v(t,x) := \left\{egin{array}{ll} \mathcal{T} v(t,x), & ext{for } (t,x) \in G \ ext{linear interpolation}, & ext{else} \end{array}
ight.$$

and $b_G: E \to I\!\!R_+$ by a linear interpolation of b. For $v \in I\!\!M_c$:

$$\|v\|_G := \sup_{(t,x)\in E} rac{v(t,x)}{b_G(t,x)} \leq \|v\|_b.$$

Theorem 6: Suppose that $c_G < 1$. Then it holds for $J_0 \in I\!\!M_c$ that

$$\|V - \mathcal{T}_G^n J_0\|_G \le rac{1}{1 - c_G} \Big(c_G^n \|\mathcal{T}_G J_0 - J_0\|_G + m(h) \Big)$$

where $m(h) := \|V - \mathcal{T}_G V\|_G \to 0$ if the mesh size tends to zero.

Financial optimization problems

Numerical example

One stock
$$(d=1)$$
: $\mu = r = 0$.

Relative jump distribution:

$$egin{aligned} Q(dy) &=& \left\{egin{aligned} p\lambda_+e^{-\lambda_+y}dy &, y\geq 0\ (1-p)\lambda_-(y+1)^{\lambda_--1} &, -1< y< 0\ &p=0.5, \quad \lambda_+=\lambda_-=1. \end{aligned}
ight. \end{aligned}$$

Utility function

$$U(x)=rac{1}{\gamma}x^{\gamma}, \hspace{1em} \gamma=0.5.$$

Horizon T = 1

Mesh size: h = 0.01

Financial optimization problems

Numerical example

Upper solid line: V(0, x). Upper dotted line: $J_1(0, x)$. Lower solid line: V(1, x) = U(x). **Model extensions**

Model extensions: Dynamic risk constraints

Next we impose an additional dynamic risk constraint of the form $\mathcal{U}(x) = \{ u \in \mathcal{U} \mid \rho \left(X_{T_1}^{\pi} - x
ight) = ux
ho(Y) \leq 0.1 \}$ where ho is AVaR.

Solid line: Value function without constraints. Dotted line: Utility function. Dashed line: First iteration of the grid operator with risk constraints.

Financial optimization problems

Model extensions: Partial information

Suppose we do not know the jump intensity $\Lambda \in \{\lambda_1, \ldots, \lambda_m\}$.

Define
$$p_k(t) := I\!\!P \Big(\Lambda = \lambda_k \mid \mathcal{F}^S_t \Big), \quad \hat{\lambda}_t := \sum \lambda_k p_k(t) = I\!\!E \Big[\Lambda \mid \mathcal{F}^S_t \Big].$$

Filter equation:

$$p_k(t) = p_k(0) + \int_0^t p_k(s-) \Big(rac{\lambda_k - \hat{\lambda}_{s-}}{\hat{\lambda}_{s-}}\Big) d\hat{\eta}_s$$

where

$$\hat{\eta}_t = N_t - \int_0^t \hat{\lambda}_s ds.$$

The filter becomes part of the state space, i.e. the value function is of the form V(t, x, p). The optimization problem can be solved as before by reduction to a discrete time MDP.

Comparison: Full - Partial Information

Let $U(x) = rac{1}{\gamma} x^{\gamma}$ with $0 < \gamma < 1$, d = 1 and $Q = \delta_{y_0}$ with $y_0 < 0$.

Here, the optimal fractions of wealth invested in the stock u_{λ}^* (full information), $u^*(t,p)$ (partial information) do not depend on the wealth itself. Let $\lambda = (\lambda_1, \ldots \lambda_m)$.

Theorem 7:

The optimal fraction $u^*(t,p)$ invested in the stock has the following property for all $(t,p) \in [0,T] \times \mathcal{P}$:

 $u^*_{\lambda'p} \leq u^*(t,p).$

Bäuerle and Rieder (2007)

References

- [1] Bäuerle, N., Rieder, U. (2008) : MDP algorithms for portfolio optimization problems in pure jump markets. Preprint.
- [2] Davis, M.H.A. (1993) : Markov models and optimization. Chapman & Hall.
- [3] Jacobsen, M. (2006) : Point process theory and applications. Birkhäuser.
- [4] Kirch, M., Runggaldier, W. (2005) : Efficient hedging when asset prices follow a geometric Poisson process with unknown intensity . SIAM J. Control Optim., 43:1174-1195.
- [5] Norberg, R. (2003) : The Markov chain market. Astin Bulletin, 33:265-287.
- [6] Schäl, M. (2005) : Control of ruin probabilities by discrete-time investments, Math. Methods Oper. Res., 62:141–158.

Thank you for your attention!

Financial optimization problems