
1

MDP Algorithms for Portfolio Optimization
Problems in pure Jump Markets

Nicole Bäuerle
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Model and optimization problem
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The market model

Suppose we have a financial market with one bond and d risky assets
whose prices evolve as follows

• Price process (S0
t ) of the bond:

S0
t := ert, r ≥ 0.

• Price processes (Sk
t ) of the risky assets k = 1, . . . , d:

dSk
t = Sk

t−
(
µkdt + dCk

t

)
where µk ∈ IR are constants and Ct :=

∑Nt
n=1 Yn with N = (Nt) a

Poisson process with rate λ > 0 and iid random vectors (Yn) with values
in (−1, ∞)d and distribution Q where IE‖Yn‖ < ∞.
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The price processes of the risky assets

If we denote by 0 := T0 < T1 < T2 < . . . the jump time points of the
Poisson process and if t ∈ [Tn, Tn+1), then for k = 1, . . . , d

Sk
t = Sk

Tn
exp

(
µk(t − Tn)

)
.

At the time of a jump we have

Sk
Tn

− Sk
Tn− = Sk

Tn−Y k
n .

In what follows we denote St := (S1
t , . . . , Sd

t ).

(St) is a so-called Piecewise Deterministic Markov Process (PDMP).
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A typical sample path

Simulated stock price in the PDMP model.
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Portfolios and self-financing strategies

Portfolio strategy: (Ft)-predictable stochastic process (πt) with values in

U := {u ∈ IRd | u ≥ 0, u · e ≤ 1}

where πt = (π1
t , . . . , πd

t ) gives the fractions of wealth invested in the risky
assets at time t. 1 − πt · e is the fraction invested in the bond.

The equation for the wealth process (Xπ
t ) is then:

dXπ
t = Xπ

t

(
r + πt · (µ − re)dt + πtdCt

)
.
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The optimization problem

Let U : (0, ∞) → IR+ be an increasing, concave utility function and define
for a portfolio strategy π and t ∈ [0, T ], x > 0:

Vπ(t, x) := IEt,xU(Xπ
T ).

V (t, x) := sup
π

Vπ(t, x).

Obviously
Vπ(T, x) := U(x) = V (T, x).

Davis (1993), Norberg (2003), Schäl (2004,2005), Kirch and Runggaldier
(2005), Jacobsen (2006), B. and Rieder (2008)
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Solution via discrete-time MDPs
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Solution via discrete-time MDPs: The model

• State space: E = [0, T ] × (0, ∞). A state (t, x) gives the jump time
point t and the wealth x of the process directly after the jump.

• Action space: A := {α : [0, T ] → U measurable}. For α ∈ A we define
the movement of the wealth between jumps by

φ
α
t (x) := x exp

„Z t

0
r + αs · (µ − re)ds

«
.

• Transition probability:

q
(
B | t, x, α

)
:= λ

∫ T −t

0
e−λs

∫
1B

(
t + s, φα

s (x)
(
1 + αs · y

))
Q(dy)ds

• One-stage reward function: r
(
t, x, α

)
:= e−λ(T −t)U

(
φα

T −t(x)
)
.
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Solution via discrete-time MDPs

A sequence (fn) with fn ∈ F := {f : E → A measurable} is called
Markov policy. The expected reward of such a Markov policy is given by

J(fn)(t, x) := IE
(fn)
t,x

[ ∞∑
k=0

r
(
Tk, Xk, fk(Tk, Xk)

)]
, (t, x) ∈ E.

Define J(t, x) := sup(fn) J(fn)(t, x), for (t, x) ∈ E.

Theorem 1: We have V (t, x) = J(t, x), for (t, x) ∈ E and the optimal
portfolio strategies ”coincide”.
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Some important operators

We define the following operators L, Tf , T which act on
IM := {v : E → IR+ | v is measurable}:

(Lv)(t, x, α) := e−λ(T −t)U
(
φα

T −t(x)
)
+

∫
v(s, y)q(ds, dy | t, x, α).

(Tfv)(t, x) := Lv(t, x, f(t, x)), (t, x) ∈ E, f ∈ F.

(T v)(t, x) = sup
α∈A

Lv(t, x, α).

From MDP theory it follows that

J(fn) = lim
n→∞

Tf0 . . . Tfn−10

Jf := J(f) = lim
n→∞

T n
f 0

Jf = TfJf .
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A peculiar norm

Let b(t, x) := eβ(T −t)(1 + x), (t, x) ∈ E for β ≥ 0.

Next we introduce the weighted supremum norm ‖ · ‖b on IM by

‖v‖b := sup
(t,x)∈E

v(t, x)

b(t, x)
and IBb := {v ∈ IM | ‖v‖b < ∞}.

Finally, we define the set

IMc := {v ∈ IBb | v is continuous, v(t, x) is concave and

increasing in x, decreasing in t}.
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Properties of T and Tf

Theorem 2: It holds that

a) T : IMc → IMc.

b) For v, w ∈ IBb and f ∈ F we have

‖Tfv − Tfw‖b ≤ cβ‖v − w‖b

‖T v − T w‖b ≤ cβ‖v − w‖b.

with cβ := λ(1+ȳ)
β+λ−µ̄

(
1 − e−T (β+λ−µ̄)

)
. Thus the operators Tf , T are

contracting if cβ < 1 which is the case if β is large enough.
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Characterization of the value function

Theorem 3:

a) The value function V is the unique fixed point of T in IMc.

b) For J0 ∈ IMc it holds that

‖V − T nJ0‖b ≤
cn

β

1 − cβ

‖T J0 − J0‖b.

c) There exists an optimal stationary portfolio strategy π, i.e. there exists
an f ∈ F such that

πt = f(Tn, Xn)(t − Tn) for t ∈ [Tn, Tn+1).
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Solution method and computational aspects
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Howard’s policy improvement algorithm

Theorem 4: Howard’s policy improvement algorithm works for the portfolio
problem. More precisely, let f, g ∈ F .

a) If for some subset E0 ⊂ E

g(t, x) ∈ D(t, x, f) := {α ∈ A | LJf(t, x, α) > Jf(t, x)}, (t, x) ∈ E0

g(t, x) = f(t, x), (t, x) /∈ E0

then Jg ≥ Jf and Jg(t, x) > Jf(t, x) for (t, x) ∈ E0.

b) If D(t, x, f) = ∅ for all (t, x) ∈ E then Jf = V , i.e. the decision rule f
defines the optimal stationary portfolio strategy.

Application: Suppose r = µi and U is continuously differentiable and
U ′(x + u · Y )Y is integrable for all x > 0 and ‖u‖ small. Then ”invest all
the money in the bond” is optimal if and only if IEY ≤ 0.
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Approximating the utility function

Let U (n), U be utility functions and denote by V (n), V the corresponding
value functions and by

A∗
n(t, x) := {α ∈ A : T (n)V (n)(t, x) = L(n)V (n)(t, x, α)}

A∗(t, x) := {α ∈ A : T V (t, x) = LV (t, x, α)}.

Moreover, let us denote by

LsA∗
n(t, x) := {α ∈ A; α is an accumulation point of a sequence (αn)

with αn ∈ A∗
n(t, x) ∀n ∈ IN}

the upper limit of the set sequence
(
A∗

n(t, x)
)
.

Jouini and Napp (2004), Schäl (1975)
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Approximating the utility function

Theorem 5:

a) If U and Ũ are two utility functions with corresponding value functions
V and Ṽ , then

‖V − Ṽ ‖b ≤ ‖U − Ũ‖b

eT µ̄

1 − cβ

.

b) Let
(
U (n)

)
be a sequence of utility functions with limn→∞ ‖U (n)−U‖b = 0.

Then limn→∞ ‖V (n) − V ‖b = 0 and we get that

∅ 6= LsA∗
n(t, x) ⊂ A∗(t, x)

for all (t, x) ∈ E, i.e. in particular, the limit f∗ of a sequence of decision
rules (f∗

n) with f∗
n(t, x) ∈ A∗

n(t, x) for all (t, x) ∈ E defines an optimal
portfolio strategy for the model with utility function U .
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State space discretization

Choose a grid G ⊂ E and define the grid operator TG on IMc by

TGv(t, x) :=
{

T v(t, x), for (t, x) ∈ G
linear interpolation, else

and bG : E → IR+ by a linear interpolation of b. For v ∈ IMc:

‖v‖G := sup
(t,x)∈E

v(t, x)
bG(t, x)

≤ ‖v‖b.

Theorem 6: Suppose that cG < 1. Then it holds for J0 ∈ IMc that

‖V − T n
G J0‖G ≤

1

1 − cG

(
cn

G‖TGJ0 − J0‖G + m(h)
)

where m(h) := ‖V − TGV ‖G → 0 if the mesh size tends to zero.
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Numerical example

One stock (d = 1): µ = r = 0.

Relative jump distribution:

Q(dy) =
{

pλ+e−λ+ydy , y ≥ 0
(1 − p)λ−(y + 1)λ−−1 , −1 < y < 0

p = 0.5, λ+ = λ− = 1.

Utility function

U(x) =
1

γ
xγ, γ = 0.5.

Horizon T = 1

Mesh size: h = 0.01
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Numerical example
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Upper solid line: V (0, x).
Upper dotted line: J1(0, x).
Lower solid line: V (1, x) = U(x).
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Model extensions
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Model extensions: Dynamic risk constraints

Next we impose an additional dynamic risk constraint of the form

U(x) = {u ∈ U | ρ
“

Xπ
T1

− x
”

= uxρ(Y ) ≤ 0.1} where ρ is AVaR.

Solid line: Value function without con-

straints. Dotted line: Utility function.

Dashed line: First iteration of the grid

operator with risk constraints.
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Model extensions: Partial information

Suppose we do not know the jump intensity Λ ∈ {λ1, . . . , λm}.

Define pk(t) := IP
(
Λ = λk | FS

t

)
, λ̂t :=

∑
λkpk(t) = IE

[
Λ | FS

t

]
.

Filter equation:

pk(t) = pk(0) +
∫ t

0
pk(s−)

(λk − λ̂s−

λ̂s−

)
dη̂s

where

η̂t = Nt −
∫ t

0
λ̂sds.

The filter becomes part of the state space, i.e. the value function is of the
form V (t, x, p). The optimization problem can be solved as before by
reduction to a discrete time MDP.
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Comparison: Full - Partial Information

Let U(x) = 1
γ
xγ with 0 < γ < 1, d = 1 and Q = δy0 with y0 < 0.

Here, the optimal fractions of wealth invested in the stock u∗
λ (full

information), u∗(t, p) (partial information) do not depend on the wealth
itself. Let λ = (λ1, . . . λm).

Theorem 7:

The optimal fraction u∗(t, p) invested in the stock has the following
property for all (t, p) ∈ [0, T ] × P:

u∗
λ′p ≤ u∗(t, p).

Bäuerle and Rieder (2007)
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27

References
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Thank you for your attention!
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