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Outline of this talk

• Motivation from finance and the univariate model

• Matrix subordinators

• Positive semi-definite Ornstein-Uhlenbeck type processes (based on
Barndorff-Nielsen & St., 2007; Pigorsch & St., 2008a)

• Multivariate Ornstein-Uhlenbeck type stochastic volatility model (based on
Pigorsch & St., 2008b)

• Multivariate COGARCH(1,1) (based on St., 2008)
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Stylized Facts of Financial Return Data

• non-constant, stochastic volatility

• volatility exhibits jumps

• asymmetric and heavily tailed marginal distributions

• clusters of extremes

• log returns exhibit marked dependence, but have vanishing autocorrelations
(squared returns, for instance, have non-zero autocorrelation)

Stochastic Volatility Models are used to cover these stylized facts.
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Univariate BNS Model I

• Logarithmic stock price process (Yt)t∈R+:

dYt = (µ+ βσt−) dt+ σ
1/2
t− dWt

with parameters µ, β ∈ R and (Wt)t∈R+ being standard Brownian motion.

• Ornstein-Uhlenbeck-type volatility process (σt)t∈R+:

dσt = −λσt−dt+ dLt, σ0 > 0

with parameter λ > 0 and (Lt)t∈R+ being a Lévy subordinator.
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Univariate BNS Model II

• Usually E(max(log |L1|, 0)) < ∞ and σ is chosen as the unique stationary
solution to dσt = −λσt−dt+ dLt given by

σt =

∫ t

−∞

e−λ(t−s)dLs.

• Closed form expression for the integrated volatility

∫ t

0

σsds =
1

λ
(Lt − σt + σ0).

Derivative Pricing via Laplace transforms possible.
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The Need for Multivariate Models

Multivariate models are needed

• to study comovements and spill over effects between several assets.

• for optimal portfolio selection and risk management at a portfolio level.

• to price derivatives on multiple assets.

Desire:

Multivariate models that are flexible, realistic and analytically tractable.
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Some Matrix Notation

• Md(R): the real d× d matrices.

• Sd: the real symmetric d× d matrices.

• S
+
d : the positive-semidefinite d×dmatrices (covariance matrices) (a closed

cone).

• S
++
d : the positive-definite d× d matrices (an open cone).

• A1/2: for A ∈ S
+
d the unique positive-semidefinite square root (functional

calculus).
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Matrix Subordinators

• Definition:
An Sd-valued Lévy process L is said to be a matrix subordinator, if Lt−Ls ∈
S

+
d for all s, t ∈ R+ with t > s.

(Barndorff-Nielsen and Pérez-Abreu (2008)).

• The paths are S
+
d -increasing and of finite variation.

• The characteristic function µLt of Lt for t ∈ R
+ is given by

µLt(Z) = exp

(

t

(

itr(γLZ) +

∫

S
+
d
\{0}

(

eitr(XZ) − 1
)

νL(dX)

))

, Z ∈ Sd,

where γL is the drift and νL the Lévy measure.
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Examples of Matrix Subordinators

• Analogues of univariate subordinators can be defined via the characteristic
functions: e.g. (tempered) stable, Gamma or IG matrix subordinators

• Diagonal matrix subordinators, i.e. off-diagonal elements zero, diagonal
elements univariate subordinators

• Discontinuous part of the Quadratic (Co-)Variation process of any d-
dimensional Lévy process L̃:

[L̃, L̃]dt =
∑

s≤t

∆L̃s(∆L̃s)
T
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Linear Operators Preserving
Positive-Semidefiniteness

Proposition Let A : Sd → Sd be a linear operator. Then eAt(S+
d ) = S

+
d for

all t ∈ R, if and only if A is representable as X 7→ AX + XAT for some
A ∈Md(R). �

One has eAtX = eAtXeA
T t for all X ∈ Sd.

In the above setting σ(A) = σ(A) + σ(A). Hence, A has only eigenvalues of
strictly negative real part, if and only if this is the case for A.
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Positive-semidefinite OU-type Processes

Theorem Let (Lt)t∈R be a matrix subordinator with E(max(log ‖L1‖, 0)) <∞
and A ∈Md(R) such that σ(A) ⊂ (−∞, 0) + iR.

Then the stochastic differential equation of Ornstein-Uhlenbeck-type

dΣt = (AΣt− + Σt−A
T )dt+ dLt

has a unique stationary solution

Σt =

∫ t

−∞

eA(t−s)dLse
AT (t−s)

or, in vector representation, vec(Σt) =
∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Σt ∈ S
+
d for all t ∈ R. �
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Stationary Distribution

Theorem Let γL be the drift of the driving matrix subordinator L and νL its
Lévy measure.

The stationary distribution of the Ornstein-Uhlenbeck process Σ is infinitely
divisible (even operator self-decomposable) with characteristic function

µ̂Σ(Z) = exp

(

itr(γΣZ) +

∫

S
+
d
\{0}

(eitr(Y Z) − 1)νΣ(dY )

)

, Z ∈ Sd,

where

γΣ = −A−1γL and νΣ(E) =

∫ ∞

0

∫

S
+
d
\{0}

IE(eAsxeA
T s)νL(dx)ds

for all Borel sets E in S
+
d \{0}.

A−1 is the inverse of the linear operator A : Sd(R) → Sd(R), X 7→ AX+XAT

which can be represented as vec−1 ◦ ((Id ⊗A) + (A⊗ Id))
−1 ◦ vec. �
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Strict Positive-definiteness

Proposition If γL ∈ S
++
d or νL(S++

d ) > 0, then the stationary distribution PΣ

of Σ is concentrated on S
++
d , i.e. PΣ(S++

d ) = 1. �

Theorem Let L̃ be a Lévy process in R
d with Lévy measure νL̃ 6= 0 and

assume that νL̃ is absolutely continuous (with respect to the Lebesgue
measure on R

d).

Then the stationary distribution of the Ornstein-Uhlenbeck type process Σt

driven by the discontinuous part of the quadratic variation [L̃, L̃]dt is absolutely
continuous with respect to the Lebesgue measure. Moreover, the stationary
distribution PΣ of Σt is concentrated on S

++
d , i.e. PΣ(S++

d ) = 1. �
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Marginal Dynamics
Assume that A is real diagonalisable and let U ∈ GLd(R) be such that
UAU−1 =: D is diagonal.

• Mt := ULtU
T is again a matrix subordinator.

• (UΣtU
T )ij =

(

∫ t

−∞
eD(t−s)d(ULsU

T )eD(t−s)
)

ij
=
∫ t

−∞
e(λi+λj)(t−s)dMij,s.

• Hence, the individual components of UΣtU
T are stationary one-

dimensional Ornstein-Uhlenbeck type processes with associated SDE
d(UΣtU

T )ij = (λi + λj)(UΣtU
T )ijdt+ dMij,t.

Mii for 1 ≤ i ≤ d are necessarily subordinators and (UΣtU
T )ii have to be

positive OU type processes.

• The individual components Σij,t of Σt are superpositions of (at most
d2) univariate OU type processes. The individual OU processes
superimposed are in general not independent.
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Second Order Structure

Theorem Assume that the driving Lévy process is square-integrable. Then
the second order moment structure is given by

E(Σt) = γΣ − A−1

∫

S
+
d
\{0}

yν(dy) = −A−1E(L1)

var(vec(Σt)) = −A−1var(vec(L1))

cov(vec(Σt+h), vec(Σt)) = e(A⊗Id+Id⊗A)hvar(vec(Σt)),

where t ∈ R and h ∈ R+, A : Md(R) → Md(R), X 7→ AX + XAT and
A : Md2(R) →Md2(R), X 7→ (A⊗ Id+ Id⊗A)X+X(AT ⊗ Id+ Id⊗AT ). �

The individual components of the autocovariance matrix do not have to decay
exponentially, but may exhibit exponentially damped sinusoidal behaviour.
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The Integrated Volatility

Theorem The integrated Ornstein-Uhlenbeck process Σ+
t is given by

Σ+
t :=

∫ t

0

Σtdt = A−1 (Σt − Σ0 − Lt)

for t ∈ R+. �
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Multivariate OU type Stochastic Volatility Model

d-dimensional logarithmic stock price process (Yt)t∈R:

dYt = (µ+ Σt−β) dt+ Σ
1/2
t− dWt

with

• (Wt)t∈R+ being d-dimensional standard Brownian motion,

• µ, β ∈ Rd and

• (Σt)t∈R+ being a stationary S
+
d -valued Ornstein-Uhlenbeck type process.

=⇒ Natural analogue of the univariate model
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The Conditional Fourier Transform

Assume the driving matrix subordinator L has characteristic exponent ψL, i.e.
E(eitr(Ltz)) = etψL(z) for all z ∈ Md(R) + iS+

d . Let (Y0,Σ0) ∈ R
d × S

+
d be the

initial values. Then we have for every t ∈ R
+ and (y, z) ∈ R

d ×Md(R)

E
(

ei(Y
T
t y+tr(Σtz))

∣

∣

∣
Σ0, Y0

)

= exp
{

i(Y0 + µt)Ty + itr
(

Σ0e
AT tzeAt

)

+ itr

(

Σ0e
AT t

[

A−∗

(

yβT +
i

2
yyT

)]

eAt − Σ0

[

A−∗

(

yβT +
i

2
yyT

)])

+

∫ t

0

ψL

(

eA
T szeAs + eA

T s

[

A−∗

(

yβT +
i

2
yyT

)]

eAs − A−∗

(

yβT +
i

2
yyT

))

ds

}

with A−∗ denoting the inverse of the adjoint of A, i.e. A−∗ is the inverse of
the linear operator A∗ given by X 7→ ATX +XA.
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The Logarithmic Returns

Let ∆ > 0 (grid size). Define for n ∈ N:

• log-returns over periods [(n− 1)∆, n∆] of length ∆:

Yn = Yn∆ − Y(n−1)∆ =

∫ n∆

(n−1)∆

(µ+ Σtβ)dt+

∫ n∆

(n−1)∆

Σ
1/2
t dWt.

• Integrated volatility over [(n− 1)∆, n∆]:

Σn :=

∫ n∆

(n−1)∆

Σtdt.

It holds that
Yn |Σn ∼ Nd (µ∆ + Σnβ,Σn)

with Nd denoting the d-dimensional normal distribution.
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Second Order Structure of Σn

Assume henceforth E(‖L1‖2) <∞.

E(Σn) = ∆E(Σ0) = −∆A−1E(L1)

var(vec(Σn)) = r++(∆) +
(

r++(∆)
)T

r++(t) =
(

A
−2
(

eA t − Id2

)

− A
−1t
)

var(vec(Σ0))

= −
(

A
−2
(

eA t − Id2

)

− A
−1t
)

)A−1var(vec(L1))

acovΣ(h) = eA ∆(h−1)
A

−2
(

Id2 − eA ∆
)2

var(vec(Σ0))

= −eA ∆(h−1)
A

−2
(

Id2 − eA ∆
)2A−1var(vec(L1)), h ∈ N.

where A = A⊗ Id + Id ⊗A and A : Md2(R) →Md2(R), X 7→ AX +XA T .

=⇒ vec(Σn) is a causal ARMA(1,1) process with AR parameter eA ∆.
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Second Order Structure of Yn and YnY
T
n

E(Yn) = (µ+E(Σ0)β)∆

var(Yn) = E(Σ0)∆ + (βT ⊗ Id)var(vec(Σn))(β ⊗ Id)

acovY(h) = (βT ⊗ Id)acovΣ(h)(β ⊗ Id), h ∈ N

Assume µ = β = 0. Then:

E(YnY
T
n ) = E(Σ0)∆

var(vec(YnY
T
n )) = (Id2 + Q + PQ) var(vec(Σn))

+(Id2 + P) (E(Σ0) ⊗E(Σ0)) ∆2

acovYYT (h) = acovΣ(h) for h ∈ N

where P and Q are linear operators on Md2(R) rearranging the entries.

=⇒ vec(YnY
T
n ) is a causal ARMA(1,1) process with AR parameter eA ∆.
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Moment Estimators

• Assume µ = β = 0

• E(L1), var(vec(L1)) and A can be estimated from the empirically observed
E(YnY

T
n ), acovYYT (1) and acovYYT (2).

• They are identified provided one assumes that eAvech∆ has a unique real
logarithm and var(vech(Σ0)) is invertible.

• In practice one uses more lags of the autocovariance function and GMM
estimation.

• The log-returns Y are strongly mixing. Thus the estimators are under
appropriate technical conditions consistent and asymptotically normal.
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Empirical Illustration I
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Empirical Illustration II
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Extensions
Even more flexibility (and long memory) by considering superpositions of
independent multivariate positive semi-definite OU type processes for Σ.

Possibilities:

• Superposition of finitely many OU type processes: Straightforward and
(almost) all results easily extendible.

• Superposition of countably many OU type processes and convergence in
L2.

• Use of a S
+
d -valued Lévy basis Λ on R × M−

d (R) with M−
d (R) := {X ∈

Md(R) : σ(X) ⊂ (−∞, 0) + iR}:

Σt =

∫ t

−∞

∫

M−
d

(R)

eA(t−s)Λ(ds, dA)eA
T (t−s)
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Univariate BNS and COGARCH model

• The Ornstein-Uhlenbeck type stochastic volatility model (BNS model):

dYt =
√
σt−dWt

dσt = −λσt−dt+ dLt

with λ > 0, W standard Brownian motion and L a subordinator.

• The COGARCH(1,1) model (Klüppelberg, Lindner, Maller (2004)):

dYt =
√
σt−dLt

σt = c+ vt, dvt = −αvt−dt+ βσt−d[L,L]dt

with α, β, c > 0, L a Lévy process and [L,L]dt =
∑

0<s≤t(∆Ls)
2.

Advanced Modeling in Finance and Insurance, RICAM, Linz c©Robert Stelzer
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Multivariate COGARCH(1,1) – Definition

Definition Let L be a d-dimensional Lévy process and A,B ∈Md(R), C ∈ S
+
d

and set [L,L]dt :=
∑

0<s≤t∆Ls(∆Ls)
T . Then the process Y = (Yt)t∈R+

solving

dYt = Σ
1/2
t− dLt, Σt = C + Vt, (1)

dVt = (AVt− + Vt−A
T )dt+BΣ

1/2
t− d[L,L]dtΣ

1/2
t− BT (2)

with initial values Y0 = 0 in R
d and V0 in S

+
d is called a multivariate

COGARCH(1,1) process.

The process V = (Vt)t∈R+ (or Σ) with paths in S
+
d is referred to as a

multivariate COGARCH(1,1) volatility process. �

Agrees with the definition of the COGARCH(1,1) for d = 1 and inherits many
of the properties of multivariate GARCH(1,1).
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Multivariate COGARCH(1,1) – Equivalent
Definitions

• One can directly define Σ via the SDE

dΣt =(A(Σt− − C) + (Σt− − C)AT )dt+BΣ
1/2
t− d[L,L]dtΣ

1/2
t− BT

which shows that Σ has a mean reverting structure (provided σ(A) ⊂
(−∞, 0) + iR) with “mean” C.

• The volatility process V (or Σ) is of finite variation and V satisfies for all
t ∈ R

+

Vt = eAtV0e
AT t +

∫ t

0

eA(t−s)BΣ
1/2
s− d[L,L]dsΣ

1/2
s− B

TeA
T (t−s).
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Markovian Properties and Stationarity

Provided C ∈ S
++
d , (Y, V ) and V alone are temporally homogeneous strong

Markov processes on Rd × S
+
d and S

+
d , respectively. Moreover, both have the

weak Feller property.

Theorem 1. Assume:

• C ∈ S
++
d , A ∈ Md(R) is diagonalisable with S ∈ GLd(C) such that S−1AS

is diagonal,

• the Lévy measure νL of L satisfies
∫

Rd
log
(

1 + α1‖(S−1 ⊗ S−1)vec(yyT )‖2

)

νL(dy) < −2 max(ℜ(σ(A))),

where α1 := ‖S‖2
2‖S−1‖2

2K2,A‖(S−1BS) ⊗ (S−1BS)‖2,

K2,A := max
X∈S

+
d
,‖X‖2=1

( ‖X‖2

‖(S−1 ⊗ S−1)vec(X)‖2

)

.
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Then there exists a stationary distribution µ for the multivariate
COGARCH(1,1) volatility process V having the following property:

If

∫

Rd

(

(

1 + α1‖(S−1 ⊗ S−1)vec(yyT )‖2

)k − 1
)

νL(dy) < −2kmax(ℜ(σ(A)))

for some k ∈ N, then
∫

S
+
d

‖x‖kµ(dx) <∞,

i.e. the k-th moment of µ is finite.

The stationary distribution is not known to be unique or to be a limiting
distribution.
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Second Order Properties
Assume:

• The driving Lévy process L has finite fourth moments and νL satisfies
∫

Rd
xxTνL(dx) = σLId,

∫

Rd
vec(xxT )vec(xxT )TνL(dx) = ρL(Id2 +Kd + vec(Id)vec(Id)

T )

for some σL, ρL ∈ R+ and with Kd being the commutation matrix,

• σ(A), σ(A ), σ(C ) ⊂ (−∞, 0) + iR with

A =A⊗ Id + Id ⊗ A+ σLB ⊗B,

C :=A ⊗ Id2 + Id2 ⊗ A + σL ((B ⊗B) ⊗ Id2 + Id2 ⊗ (B ⊗B)) + BR,

B =(B ⊗B) ⊗ (B ⊗B), R = ρL (Q + KdQ + Id4) ,

where Kd and Q are certain permutation matrices.

• V0 has finite second moments.
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Then V is asymptotically second order stationary with

• mean
E(vec(V∞)) = −σLA

−1(B ⊗B)vec(C),

• autocovariance function

acovvec(V∞)(h) = eA hvar(vec(V∞))

for h ∈ R+

• and variance

vec(var(vec(V∞))) = − C
−1
[(

σ2
LC (A −1 ⊗ A

−1)B + BR
)

(vec(C) ⊗ vec(C))

+ (σL(B ⊗B) ⊗ Id2 + BR) vec(C) ⊗E(vec(V∞))

+ (σLId2 ⊗ (B ⊗B) + BR)E(vec(V∞)) ⊗ vec(C)] .
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The Increments of Y

For ∆ > 0 the sequence of increments Y = (Yn)n∈N defined by

Yn =

∫ n∆

(n−1)∆

Σ
1/2
s− dLs

gives the log-returns over consecutive time periods of length ∆ in a financial
context.

Stationarity:
If Σ (or V ) is stationary, then Y is stationary.
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Stationary Second Order Structure of the
(“Squared”) Increments

Assume that the previous assumptions regarding the second order behaviour
are satisfied and E(L1) = 0, var(L1) = (σL+ σW )Id for some σW ∈ R+, then:

• (Yn)n∈N has finite fourth moments, mean zero and is uncorrelated.
The increments Y are white noise with variance:

vec(var(Y1)) = (σL + σW )∆A
−1(A⊗ Id + Id ⊗A)vec(C)

• but the sequence of “squared” increments (YnY
T
n )n∈N has non-zero

autocorrelations which decrease exponentially (from lag one onwards):

acovYY(h) = eA ∆h
A

−1
(

Id2 − e−A ∆
)

(σL + σW )cov(vec(V∆), vec(Y1Y
∗
1))

This is the autocovariance structure of an ARMA(1,1) process.
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Illustrative Simulations

In the following a simulation of a two-dimensional COGARCH(1,1) process is
shown where:

• the driving Lévy process is the sum of a standard Brownian motion and
a compound Poisson process in R2 with rate 4 and N(0, I2/4)-distributed
jumps.

• Hence, [L,L]d is a compound Poisson process with Wishart-distributed
jumps.

• A = −1.6I2 , B = I2 and

C =

(

1 0

0 1.5

)

(corresponds to a “mean” correlation of zero).
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Stochastic Volatility Process Σ
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First Stochastic Variance Process Σ11
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Stochastic Correlation Process Σ12/
√

Σ11Σ22

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Correlation: V

12
/(V

11
V

22
)1/2

Time t

Advanced Modeling in Finance and Insurance, RICAM, Linz c©Robert Stelzer



39 September 22nd, 2008

Log-Price Process Y
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Alternative C: Log-Price Process Y
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ACF “Squared Returns” (YYT)11
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ACF “Squared Returns” (YYT)12
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Thank you very much for your attention!
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