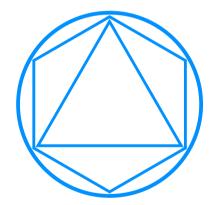
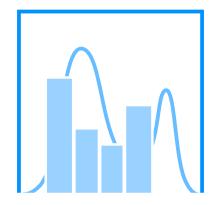
Multivariate Lévy driven Stochastic Volatility Models

Robert Stelzer



Chair of Mathematical Statistics Zentrum Mathematik Technische Universität München email: rstelzer@ma.tum.de

http://www.ma.tum.de/stat/



Parts based on joint work with O. E. Barndorff-Nielsen and Ch. Pigorsch

Outline of this talk

- Motivation from finance and the univariate model
- Matrix subordinators
- Positive semi-definite Ornstein-Uhlenbeck type processes (based on Barndorff-Nielsen & St., 2007; Pigorsch & St., 2008a)
- Multivariate Ornstein-Uhlenbeck type stochastic volatility model (based on Pigorsch & St., 2008b)
- Multivariate COGARCH(1,1) (based on St., 2008)

Stylized Facts of Financial Return Data

- non-constant, stochastic volatility
- volatility exhibits jumps
- asymmetric and heavily tailed marginal distributions
- clusters of extremes
- log returns exhibit marked dependence, but have vanishing autocorrelations (squared returns, for instance, have non-zero autocorrelation)

Stochastic Volatility Models are used to cover these stylized facts.

Univariate BNS Model I

• Logarithmic stock price process $(Y_t)_{t \in \mathbb{R}^+}$:

$$dY_t = (\mu + \beta \sigma_{t-}) dt + \sigma_{t-}^{1/2} dW_t$$

with parameters $\mu, \beta \in \mathbb{R}$ and $(W_t)_{t \in \mathbb{R}^+}$ being standard Brownian motion.

• Ornstein-Uhlenbeck-type volatility process $(\sigma_t)_{t \in \mathbb{R}^+}$:

$$d\sigma_t = -\lambda \sigma_t - dt + dL_t, \ \sigma_0 > 0$$

with parameter $\lambda > 0$ and $(L_t)_{t \in \mathbb{R}^+}$ being a Lévy subordinator.

Univariate BNS Model II

• Usually $E(\max(\log |L_1|, 0)) < \infty$ and σ is chosen as the unique stationary solution to $d\sigma_t = -\lambda \sigma_{t-} dt + dL_t$ given by

$$\sigma_t = \int_{-\infty}^t e^{-\lambda(t-s)} dL_s.$$

• Closed form expression for the integrated volatility

$$\int_0^t \sigma_s ds = \frac{1}{\lambda} \left(L_t - \sigma_t + \sigma_0 \right).$$

Derivative Pricing via Laplace transforms possible.

The Need for Multivariate Models

Multivariate models are needed

- to study comovements and spill over effects between several assets.
- for optimal portfolio selection and risk management at a portfolio level.
- to price derivatives on multiple assets.

Desire:

Multivariate models that are flexible, realistic and analytically tractable.

Some Matrix Notation

- $M_d(\mathbb{R})$: the real $d \times d$ matrices.
- \mathbb{S}_d : the real symmetric $d \times d$ matrices.
- \mathbb{S}_d^+ : the positive-semidefinite $d \times d$ matrices (covariance matrices) (a closed cone).
- \mathbb{S}_d^{++} : the positive-definite $d \times d$ matrices (an open cone).
- $A^{1/2}$: for $A \in \mathbb{S}_d^+$ the unique positive-semidefinite square root (functional calculus).

Matrix Subordinators

• Definition:

An \mathbb{S}_d -valued Lévy process L is said to be a *matrix subordinator*, if $L_t - L_s \in \mathbb{S}_d^+$ for all $s, t \in \mathbb{R}^+$ with t > s. (Barndorff-Nielsen and Pérez-Abreu (2008)).

- The paths are \mathbb{S}_d^+ -increasing and of finite variation.
- The characteristic function μ_{L_t} of L_t for $t \in \mathbb{R}^+$ is given by

$$\mu_{L_t}(Z) = \exp\left(t\left(i\mathrm{tr}(\gamma_L Z) + \int_{\mathbb{S}_d^+ \setminus \{0\}} \left(e^{i\mathrm{tr}(XZ)} - 1\right)\nu_L(dX)\right)\right), \ Z \in \mathbb{S}_d,$$

where γ_L is the drift and ν_L the Lévy measure.

Examples of Matrix Subordinators

- Analogues of univariate subordinators can be defined via the characteristic functions: e.g. (tempered) stable, Gamma or IG matrix subordinators
- Diagonal matrix subordinators, i.e. off-diagonal elements zero, diagonal elements univariate subordinators
- Discontinuous part of the Quadratic (Co-)Variation process of any *d*dimensional Lévy process *L*:

$$[\tilde{L}, \tilde{L}]_t^{\mathfrak{d}} = \sum_{s \le t} \Delta \tilde{L}_s (\Delta \tilde{L}_s)^T$$

Linear Operators Preserving Positive-Semidefiniteness

Proposition Let $\mathbf{A} : \mathbb{S}_d \to \mathbb{S}_d$ be a linear operator. Then $e^{\mathbf{A}t}(\mathbb{S}_d^+) = \mathbb{S}_d^+$ for all $t \in \mathbb{R}$, if and only if \mathbf{A} is representable as $X \mapsto AX + XA^T$ for some $A \in M_d(\mathbb{R})$.

One has $e^{\mathbf{A}t}X = e^{At}Xe^{A^{T}t}$ for all $X \in \mathbb{S}_{d}$.

In the above setting $\sigma(\mathbf{A}) = \sigma(A) + \sigma(A)$. Hence, **A** has only eigenvalues of strictly negative real part, if and only if this is the case for *A*.

Positive-semidefinite OU-type Processes

Theorem Let $(L_t)_{t \in \mathbb{R}}$ be a matrix subordinator with $E(\max(\log ||L_1||, 0)) < \infty$ and $A \in M_d(\mathbb{R})$ such that $\sigma(A) \subset (-\infty, 0) + i\mathbb{R}$.

Then the stochastic differential equation of Ornstein-Uhlenbeck-type

$$d\Sigma_t = (A\Sigma_{t-} + \Sigma_{t-}A^T)dt + dL_t$$

has a unique stationary solution

$$\Sigma_t = \int_{-\infty}^t e^{A(t-s)} dL_s e^{A^T(t-s)}$$

or, in vector representation, $\operatorname{vec}(\Sigma_t) = \int_{-\infty}^t e^{(I_d \otimes A + A \otimes I_d)(t-s)} d\operatorname{vec}(L_s)$. Moreover, $\Sigma_t \in \mathbb{S}_d^+$ for all $t \in \mathbb{R}$.

Stationary Distribution

Theorem Let γ_L be the drift of the driving matrix subordinator *L* and ν_L its Lévy measure.

The stationary distribution of the Ornstein-Uhlenbeck process Σ is infinitely divisible (even operator self-decomposable) with characteristic function

$$\hat{\mu}_{\Sigma}(Z) = \exp\left(i\mathrm{tr}(\gamma_{\Sigma}Z) + \int_{\mathbb{S}_{d}^{+}\setminus\{0\}} (e^{i\mathrm{tr}(YZ)} - 1)\nu_{\Sigma}(dY)\right), \ Z \in \mathbb{S}_{d},$$

where

$$\gamma_{\Sigma} = -\mathbf{A}^{-1}\gamma_L$$
 and $\nu_{\Sigma}(E) = \int_0^\infty \int_{\mathbb{S}_d^+ \setminus \{0\}} I_E(e^{As}xe^{A^Ts})\nu_L(dx)ds$

for all Borel sets E in $\mathbb{S}_d^+ \setminus \{0\}$.

 A^{-1} is the inverse of the linear operator $A : \mathbb{S}_d(\mathbb{R}) \to \mathbb{S}_d(\mathbb{R}), X \mapsto AX + XA^T$ which can be represented as $\operatorname{vec}^{-1} \circ ((I_d \otimes A) + (A \otimes I_d))^{-1} \circ \operatorname{vec}$.

Strict Positive-definiteness

Proposition If $\gamma_L \in \mathbb{S}_d^{++}$ or $\nu_L(\mathbb{S}_d^{++}) > 0$, then the stationary distribution P_{Σ} of Σ is concentrated on \mathbb{S}_d^{++} , i.e. $P_{\Sigma}(\mathbb{S}_d^{++}) = 1$.

Theorem Let \tilde{L} be a Lévy process in \mathbb{R}^d with Lévy measure $\nu_{\tilde{L}} \neq 0$ and assume that $\nu_{\tilde{L}}$ is absolutely continuous (with respect to the Lebesgue measure on \mathbb{R}^d).

Then the stationary distribution of the Ornstein-Uhlenbeck type process Σ_t driven by the discontinuous part of the quadratic variation $[\tilde{L}, \tilde{L}]_t^{\mathfrak{d}}$ is absolutely continuous with respect to the Lebesgue measure. Moreover, the stationary distribution P_{Σ} of Σ_t is concentrated on \mathbb{S}_d^{++} , i.e. $P_{\Sigma}(\mathbb{S}_d^{++}) = 1$.

Marginal Dynamics

Assume that A is real diagonalisable and let $U \in GL_d(\mathbb{R})$ be such that $UAU^{-1} =: D$ is diagonal.

• $M_t := UL_t U^T$ is again a matrix subordinator.

•
$$(U\Sigma_t U^T)_{ij} = \left(\int_{-\infty}^t e^{D(t-s)} d(UL_s U^T) e^{D(t-s)}\right)_{ij} = \int_{-\infty}^t e^{(\lambda_i + \lambda_j)(t-s)} dM_{ij,s}.$$

• Hence, the individual components of $U\Sigma_t U^T$ are stationary onedimensional Ornstein-Uhlenbeck type processes with associated SDE $d(U\Sigma_t U^T)_{ij} = (\lambda_i + \lambda_j)(U\Sigma_t U^T)_{ij}dt + dM_{ij,t}.$

 M_{ii} for $1 \le i \le d$ are necessarily subordinators and $(U\Sigma_t U^T)_{ii}$ have to be positive OU type processes.

The individual components Σ_{ij,t} of Σ_t are superpositions of (at most d²) univariate OU type processes. The individual OU processes superimposed are in general not independent.

Second Order Structure

Theorem Assume that the driving Lévy process is square-integrable. Then the second order moment structure is given by

$$E(\Sigma_t) = \gamma_{\Sigma} - \mathbf{A}^{-1} \int_{\mathbb{S}_d^+ \setminus \{0\}} y\nu(dy) = -\mathbf{A}^{-1} E(L_1)$$
$$\operatorname{var}(\operatorname{vec}(\Sigma_t)) = -\mathcal{A}^{-1} \operatorname{var}(\operatorname{vec}(L_1))$$
$$\operatorname{cov}(\operatorname{vec}(\Sigma_{t+h}), \operatorname{vec}(\Sigma_t)) = e^{(A \otimes I_d + I_d \otimes A)h} \operatorname{var}(\operatorname{vec}(\Sigma_t)),$$

where $t \in \mathbb{R}$ and $h \in \mathbb{R}^+$, $\mathbf{A} : M_d(\mathbb{R}) \to M_d(\mathbb{R}), X \mapsto AX + XA^T$ and $\mathcal{A} : M_{d^2}(\mathbb{R}) \to M_{d^2}(\mathbb{R}), X \mapsto (A \otimes I_d + I_d \otimes A)X + X(A^T \otimes I_d + I_d \otimes A^T).$

The individual components of the autocovariance matrix do not have to decay exponentially, but may exhibit exponentially damped sinusoidal behaviour.

The Integrated Volatility

Theorem The integrated Ornstein-Uhlenbeck process Σ_t^+ is given by

$$\Sigma_t^+ := \int_0^t \Sigma_t dt = \mathbf{A}^{-1} \left(\Sigma_t - \Sigma_0 - L_t \right)$$

for $t \in \mathbb{R}^+$.

Multivariate OU type Stochastic Volatility Model

d-dimensional logarithmic stock price process $(Y_t)_{t \in \mathbb{R}}$:

$$dY_t = (\mu + \Sigma_{t-}\beta) dt + \Sigma_{t-}^{1/2} dW_t$$

with

17

- $(W_t)_{t \in \mathbb{R}^+}$ being *d*-dimensional standard Brownian motion,
- $\mu, \beta \in \mathbb{R}^d$ and
- $(\Sigma_t)_{t \in \mathbb{R}^+}$ being a stationary \mathbb{S}_d^+ -valued Ornstein-Uhlenbeck type process.

\implies Natural analogue of the univariate model

The Conditional Fourier Transform

Assume the driving matrix subordinator L has characteristic exponent ψ_L , i.e. $E(e^{i\operatorname{tr}(L_t z)}) = e^{t\psi_L(z)}$ for all $z \in M_d(\mathbb{R}) + i\mathbb{S}_d^+$. Let $(Y_0, \Sigma_0) \in \mathbb{R}^d \times \mathbb{S}_d^+$ be the initial values. Then we have for every $t \in \mathbb{R}^+$ and $(y, z) \in \mathbb{R}^d \times M_d(\mathbb{R})$

$$E\left(e^{i\left(Y_{t}^{T}y+\operatorname{tr}(\Sigma_{t}z)\right)}\middle|\Sigma_{0},Y_{0}\right) = \exp\left\{i(Y_{0}+\mu t)^{T}y+i\operatorname{tr}\left(\Sigma_{0}e^{A^{T}t}ze^{At}\right)\right.$$
$$\left.+i\operatorname{tr}\left(\Sigma_{0}e^{A^{T}t}\left[\mathbf{A}^{-*}\left(y\beta^{T}+\frac{i}{2}yy^{T}\right)\right]e^{At}-\Sigma_{0}\left[\mathbf{A}^{-*}\left(y\beta^{T}+\frac{i}{2}yy^{T}\right)\right]\right)\right.$$
$$\left.+\int_{0}^{t}\psi_{L}\left(e^{A^{T}s}ze^{As}+e^{A^{T}s}\left[\mathbf{A}^{-*}\left(y\beta^{T}+\frac{i}{2}yy^{T}\right)\right]e^{As}-\mathbf{A}^{-*}\left(y\beta^{T}+\frac{i}{2}yy^{T}\right)\right)ds\right\}$$

with A^{-*} denoting the inverse of the adjoint of A, i.e. A^{-*} is the inverse of the linear operator A^* given by $X \mapsto A^T X + X A$.

The Logarithmic Returns

Let $\Delta > 0$ (grid size). Define for $n \in \mathbb{N}$:

• log-returns over periods $[(n-1)\Delta, n\Delta]$ of length Δ :

$$\mathbf{Y}_{n} = Y_{n\Delta} - Y_{(n-1)\Delta} = \int_{(n-1)\Delta}^{n\Delta} (\mu + \Sigma_{t}\beta) dt + \int_{(n-1)\Delta}^{n\Delta} \Sigma_{t}^{1/2} dW_{t}.$$

• Integrated volatility over $[(n-1)\Delta, n\Delta]$:

$$\boldsymbol{\Sigma}_{\boldsymbol{n}} := \int_{(n-1)\Delta}^{n\Delta} \Sigma_t dt.$$

It holds that

$$\mathbf{Y}_n \left| \mathbf{\Sigma}_n \sim N_d \left(\mu \Delta + \mathbf{\Sigma}_n \beta, \mathbf{\Sigma}_n \right) \right|$$

with N_d denoting the *d*-dimensional normal distribution.

Second Order Structure of Σ_n

Assume henceforth $E(||L_1||^2) < \infty$.

$$E(\mathbf{\Sigma}_{n}) = \Delta E(\Sigma_{0}) = -\Delta \mathbf{A}^{-1} E(L_{1})$$

$$\operatorname{var}(\operatorname{vec}(\mathbf{\Sigma}_{n})) = r^{++}(\Delta) + (r^{++}(\Delta))^{T}$$

$$r^{++}(t) = (\mathscr{A}^{-2} (e^{\mathscr{A}t} - I_{d^{2}}) - \mathscr{A}^{-1}t) \operatorname{var}(\operatorname{vec}(\Sigma_{0}))$$

$$= -(\mathscr{A}^{-2} (e^{\mathscr{A}t} - I_{d^{2}}) - \mathscr{A}^{-1}t))\mathcal{A}^{-1}\operatorname{var}(\operatorname{vec}(L_{1}))$$

$$\operatorname{acov}_{\mathbf{\Sigma}}(h) = e^{\mathscr{A}\Delta(h-1)}\mathscr{A}^{-2} (I_{d^{2}} - e^{\mathscr{A}\Delta})^{2} \operatorname{var}(\operatorname{vec}(\Sigma_{0}))$$

$$= -e^{\mathscr{A}\Delta(h-1)}\mathscr{A}^{-2} (I_{d^{2}} - e^{\mathscr{A}\Delta})^{2} \mathcal{A}^{-1}\operatorname{var}(\operatorname{vec}(L_{1})), h \in \mathbb{N}.$$

where $\mathscr{A} = A \otimes I_d + I_d \otimes A$ and $\mathcal{A} : M_{d^2}(\mathbb{R}) \to M_{d^2}(\mathbb{R}), X \mapsto \mathscr{A}X + X \mathscr{A}^T$.

 \implies vec (Σ_n) is a causal ARMA(1,1) process with AR parameter $e^{\mathscr{A}\Delta}$.

Second Order Structure of \mathbf{Y}_n and $\mathbf{Y}_n \mathbf{Y}_n^T$

$$E(\mathbf{Y}_n) = (\mu + E(\Sigma_0)\beta)\Delta$$

$$\operatorname{var}(\mathbf{Y}_n) = E(\Sigma_0)\Delta + (\beta^T \otimes I_d)\operatorname{var}(\operatorname{vec}(\mathbf{\Sigma}_n))(\beta \otimes I_d)$$

$$\operatorname{acov}_{\mathbf{Y}}(h) = (\beta^T \otimes I_d)\operatorname{acov}_{\mathbf{\Sigma}}(h)(\beta \otimes I_d), h \in \mathbb{N}$$

Assume $\mu = \beta = 0$. Then:

$$E(\mathbf{Y}_{n}\mathbf{Y}_{n}^{T}) = E(\Sigma_{0})\Delta$$

var(vec($\mathbf{Y}_{n}\mathbf{Y}_{n}^{T}$)) = $(I_{d^{2}} + \mathbf{Q} + \mathbf{P}\mathbf{Q})$ var(vec(Σ_{n}))
 $+(I_{d^{2}} + \mathbf{P}) (E(\Sigma_{0}) \otimes E(\Sigma_{0})) \Delta^{2}$
acov_{**YY**} (h) = acov_{**\Sigma**} (h) for $h \in \mathbb{N}$

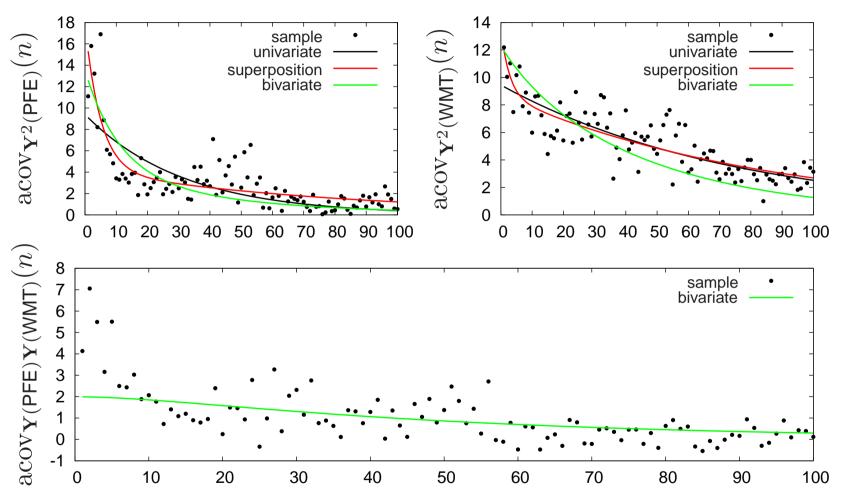
where **P** and **Q** are linear operators on $M_{d^2}(\mathbb{R})$ rearranging the entries.

 \implies vec $(\mathbf{Y}_n \mathbf{Y}_n^T)$ is a causal ARMA(1,1) process with AR parameter $e^{\mathscr{A}\Delta}$.

Moment Estimators

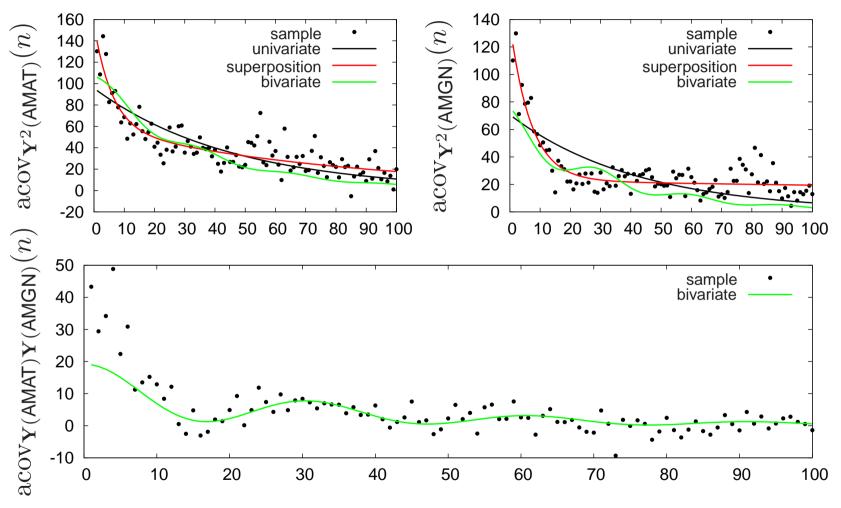
- Assume $\mu = \beta = 0$
- $E(L_1)$, $var(vec(L_1))$ and A can be estimated from the empirically observed $E(\mathbf{Y}_n \mathbf{Y}_n^T)$, $acov_{\mathbf{Y}\mathbf{Y}^T}(1)$ and $acov_{\mathbf{Y}\mathbf{Y}^T}(2)$.
- They are identified provided one assumes that $e^{\mathbf{A}_{vech}\Delta}$ has a unique real logarithm and $var(vech(\Sigma_0))$ is invertible.
- In practice one uses more lags of the autocovariance function and GMM estimation.
- The log-returns Y are strongly mixing. Thus the estimators are under appropriate technical conditions consistent and asymptotically normal.

Empirical Illustration I



Empirical and estimated autocovariance functions: PFE and WMT

Empirical Illustration II



Empirical and estimated autocovariance functions: AMAT and AMGN

Extensions

Even more flexibility (and long memory) by considering superpositions of independent multivariate positive semi-definite OU type processes for Σ . Possibilities:

- Superposition of finitely many OU type processes: Straightforward and (almost) all results easily extendible.
- Superposition of countably many OU type processes and convergence in L^2 .
- Use of a \mathbb{S}_d^+ -valued Lévy basis Λ on $\mathbb{R} \times M_d^-(\mathbb{R})$ with $M_d^-(\mathbb{R}) := \{X \in M_d(\mathbb{R}) : \sigma(X) \subset (-\infty, 0) + i\mathbb{R}\}$:

$$\Sigma_t = \int_{-\infty}^t \int_{M_d^-(\mathbb{R})} e^{A(t-s)} \Lambda(ds, dA) e^{A^T(t-s)}$$

Univariate BNS and COGARCH model

• The Ornstein-Uhlenbeck type stochastic volatility model (BNS model):

$$dY_t = \sqrt{\sigma_{t-}} dW_t$$
$$d\sigma_t = -\lambda \sigma_{t-} dt + dL_t$$

with $\lambda > 0$, W standard Brownian motion and L a subordinator.

• The COGARCH(1,1) model (Klüppelberg, Lindner, Maller (2004)):

$$\begin{split} dY_t &= \sqrt{\sigma_{t-}} dL_t \\ \sigma_t &= c + v_t, \quad dv_t = -\alpha v_{t-} dt + \beta \sigma_{t-} d[L,L]_t^{\mathfrak{d}} \end{split}$$

with $\alpha, \beta, c > 0$, L a Lévy process and $[L, L]_t^{\mathfrak{d}} = \sum_{0 < s < t} (\Delta L_s)^2$.

Multivariate COGARCH(1,1) – Definition

Definition Let *L* be a *d*-dimensional Lévy process and $A, B \in M_d(\mathbb{R}), C \in \mathbb{S}_d^+$ and set $[L, L]_t^{\mathfrak{d}} := \sum_{0 < s \leq t} \Delta L_s(\Delta L_s)^T$. Then the process $Y = (Y_t)_{t \in \mathbb{R}^+}$ solving

$$dY_t = \Sigma_{t-}^{1/2} dL_t, \qquad \Sigma_t = C + V_t, \tag{1}$$

$$dV_t = (AV_{t-} + V_{t-}A^T)dt + B\Sigma_{t-}^{1/2}d[L,L]_t^{\mathfrak{d}}\Sigma_{t-}^{1/2}B^T$$
(2)

with initial values $Y_0 = 0$ in \mathbb{R}^d and V_0 in \mathbb{S}_d^+ is called a *multivariate COGARCH(1,1)* process.

The process $V = (V_t)_{t \in \mathbb{R}^+}$ (or Σ) with paths in \mathbb{S}_d^+ is referred to as a *multivariate COGARCH(1,1) volatility process*.

Agrees with the definition of the COGARCH(1,1) for d = 1 and inherits many of the properties of multivariate GARCH(1,1).

Multivariate COGARCH(1,1) – Equivalent Definitions

• One can directly define Σ via the SDE

 $d\Sigma_t = (A(\Sigma_{t-} - C) + (\Sigma_{t-} - C)A^T)dt + B\Sigma_{t-}^{1/2}d[L, L]_t^{\mathfrak{d}}\Sigma_{t-}^{1/2}B^T$

which shows that Σ has a mean reverting structure (provided $\sigma(A) \subset (-\infty, 0) + i\mathbb{R}$) with "mean" *C*.

 The volatility process V (or Σ) is of finite variation and V satisfies for all t ∈ ℝ⁺

$$V_t = e^{At} V_0 e^{A^T t} + \int_0^t e^{A(t-s)} B \Sigma_{s-}^{1/2} d[L, L]_s^{\mathfrak{d}} \Sigma_{s-}^{1/2} B^T e^{A^T (t-s)}.$$

Markovian Properties and Stationarity

Provided $C \in \mathbb{S}_d^{++}$, (Y, V) and V alone are temporally homogeneous strong Markov processes on $\mathbb{R}^d \times \mathbb{S}_d^+$ and \mathbb{S}_d^+ , respectively. Moreover, both have the weak Feller property.

Theorem 1. Assume:

- $C \in \mathbb{S}_d^{++}$, $A \in M_d(\mathbb{R})$ is diagonalisable with $S \in GL_d(\mathbb{C})$ such that $S^{-1}AS$ is diagonal,
- the Lévy measure ν_L of L satisfies

 $\int_{\mathbb{R}^d} \log \left(1 + \alpha_1 \| (S^{-1} \otimes S^{-1}) \operatorname{vec}(yy^T) \|_2 \right) \nu_L(dy) < -2 \max(\Re(\sigma(A))),$ where $\alpha_1 := \|S\|_2^2 \|S^{-1}\|_2^2 K_{2,A} \| (S^{-1}BS) \otimes (S^{-1}BS) \|_2,$ $K_{2,A} := \max_{X \in \mathbb{S}^+_d, \|X\|_2 = 1} \left(\frac{\|X\|_2}{\|(S^{-1} \otimes S^{-1}) \operatorname{vec}(X)\|_2} \right).$ Then there exists a stationary distribution μ for the multivariate COGARCH(1,1) volatility process V having the following property:

lf

$$\int_{\mathbb{R}^d} \left(\left(1 + \alpha_1 \| (S^{-1} \otimes S^{-1}) \operatorname{vec}(yy^T) \|_2 \right)^k - 1 \right) \nu_L(dy) < -2k \max(\Re(\sigma(A)))$$

for some
$$k \in \mathbb{N}$$
, then

$$\int_{\mathbb{S}_d^+} \|x\|^k \mu(dx) < \infty,$$

i.e. the *k*-th moment of μ is finite.

The stationary distribution is not known to be unique or to be a limiting distribution.

Second Order Properties

Assume:

• The driving Lévy process *L* has finite fourth moments and ν_L satisfies

$$\int_{\mathbb{R}^d} x x^T \nu_L(dx) = \sigma_L I_d,$$

$$\int_{\mathbb{R}^d} \operatorname{vec}(x x^T) \operatorname{vec}(x x^T)^T \nu_L(dx) = \rho_L(I_{d^2} + K_d + \operatorname{vec}(I_d) \operatorname{vec}(I_d)^T)$$

for some $\sigma_L, \rho_L \in \mathbb{R}^+$ and with K_d being the commutation matrix,

• $\sigma(A), \sigma(\mathscr{A}), \sigma(\mathscr{C}) \subset (-\infty, 0) + i\mathbb{R}$ with

 $\mathscr{A} = A \otimes I_d + I_d \otimes A + \sigma_L B \otimes B,$

 $\mathscr{C} := \mathscr{A} \otimes I_{d^2} + I_{d^2} \otimes \mathscr{A} + \sigma_L \left((B \otimes B) \otimes I_{d^2} + I_{d^2} \otimes (B \otimes B) \right) + \mathscr{BR},$

 $\mathscr{B} = (B \otimes B) \otimes (B \otimes B), \ \mathcal{R} = \rho_L \left(\mathcal{Q} + \mathcal{K}_d \mathcal{Q} + I_{d^4} \right),$

where \mathcal{K}_d and \mathcal{Q} are certain permutation matrices.

• V_0 has finite second moments.

Then V is asymptotically second order stationary with

• mean

$$E(\operatorname{vec}(V_{\infty})) = -\sigma_L \mathscr{A}^{-1}(B \otimes B)\operatorname{vec}(C),$$

• autocovariance function

$$\operatorname{acov}_{\operatorname{vec}(V_{\infty})}(h) = e^{\mathscr{A}h}\operatorname{var}(\operatorname{vec}(V_{\infty}))$$

for $h \in \mathbb{R}^+$

• and variance

 $\operatorname{vec}(\operatorname{vec}(V_{\infty}))) = -\mathscr{C}^{-1}\left[\left(\sigma_{L}^{2}\mathscr{C}(\mathscr{A}^{-1}\otimes\mathscr{A}^{-1})\mathscr{B} + \mathscr{B}\mathscr{R}\right)\left(\operatorname{vec}(C)\otimes\operatorname{vec}(C)\right) + \left(\sigma_{L}(B\otimes B)\otimes I_{d^{2}} + \mathscr{B}\mathscr{R}\right)\operatorname{vec}(C)\otimes E\left(\operatorname{vec}(V_{\infty})\right) + \left(\sigma_{L}I_{d^{2}}\otimes(B\otimes B) + \mathscr{B}\mathscr{R}\right)E\left(\operatorname{vec}(V_{\infty})\right)\otimes\operatorname{vec}(C)\right].$

The Increments of \boldsymbol{Y}

For $\Delta > 0$ the sequence of increments $\mathbf{Y} = (\mathbf{Y}_n)_{n \in \mathbb{N}}$ defined by

$$\mathbf{Y}_n = \int_{(n-1)\Delta}^{n\Delta} \Sigma_{s-}^{1/2} dL_s$$

gives the log-returns over consecutive time periods of length Δ in a financial context.

Stationarity:

If Σ (or V) is stationary, then **Y** is stationary.

Stationary Second Order Structure of the ("Squared") Increments

Assume that the previous assumptions regarding the second order behaviour are satisfied and $E(L_1) = 0$, $var(L_1) = (\sigma_L + \sigma_W)I_d$ for some $\sigma_W \in \mathbb{R}^+$, then:

• $(\mathbf{Y}_n)_{n \in \mathbb{N}}$ has finite fourth moments, mean zero and is uncorrelated. The increments **Y** are white noise with variance:

$$\operatorname{vec}(\operatorname{var}(\mathbf{Y}_1)) = (\sigma_L + \sigma_W) \Delta \mathscr{A}^{-1} (A \otimes I_d + I_d \otimes A) \operatorname{vec}(C)$$

• but the sequence of "squared" increments $(\mathbf{Y}_n \mathbf{Y}_n^T)_{n \in \mathbb{N}}$ has non-zero autocorrelations which decrease exponentially (from lag one onwards):

$$\operatorname{acov}_{\mathbf{Y}\mathbf{Y}}(h) = e^{\mathscr{A}\Delta h} \mathscr{A}^{-1} \left(I_{d^2} - e^{-\mathscr{A}\Delta} \right) \left(\sigma_L + \sigma_W \right) \operatorname{cov}(\operatorname{vec}(V_\Delta), \operatorname{vec}(\mathbf{Y}_1\mathbf{Y}_1^*))$$

This is the autocovariance structure of an ARMA(1,1) process.

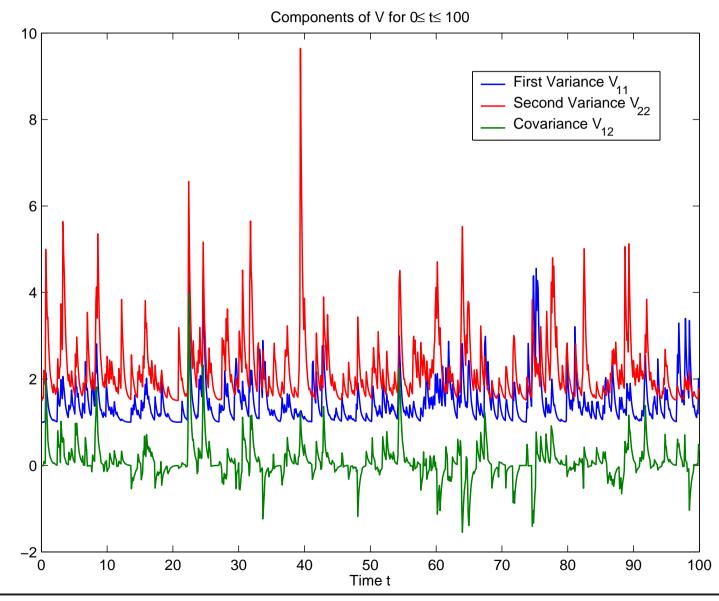
Illustrative Simulations

In the following a simulation of a two-dimensional COGARCH(1,1) process is shown where:

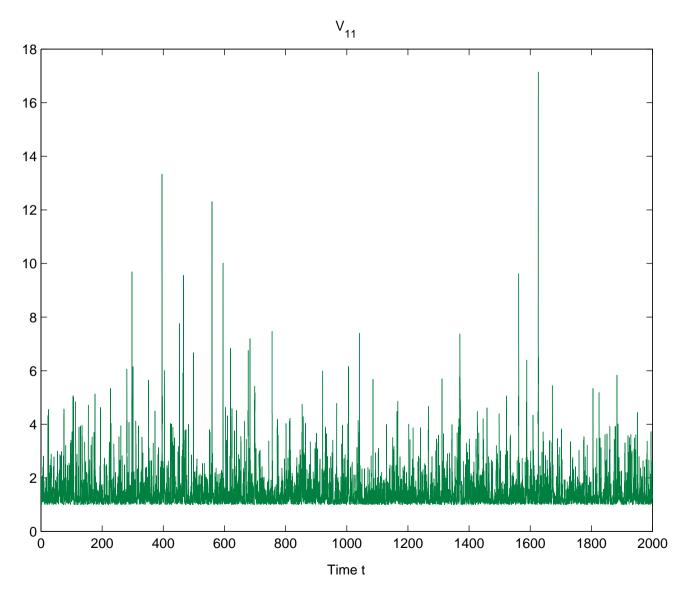
- the driving Lévy process is the sum of a standard Brownian motion and a compound Poisson process in \mathbb{R}^2 with rate 4 and $N(0, I_2/4)$ -distributed jumps.
- Hence, $[L, L]^{\mathfrak{d}}$ is a compound Poisson process with Wishart-distributed jumps.

•
$$A = -1.6I_2$$
, $B = I_2$ and
 $C = \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$ (corresponds to a "mean" correlation of zero).

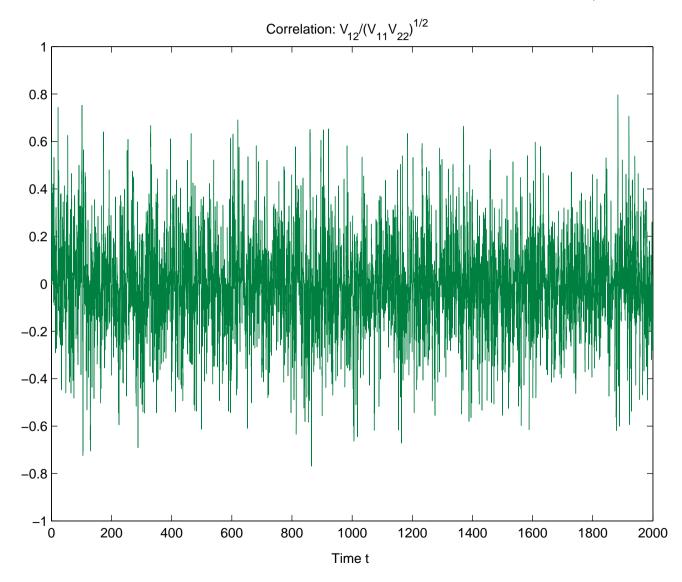
Stochastic Volatility Process $\boldsymbol{\Sigma}$



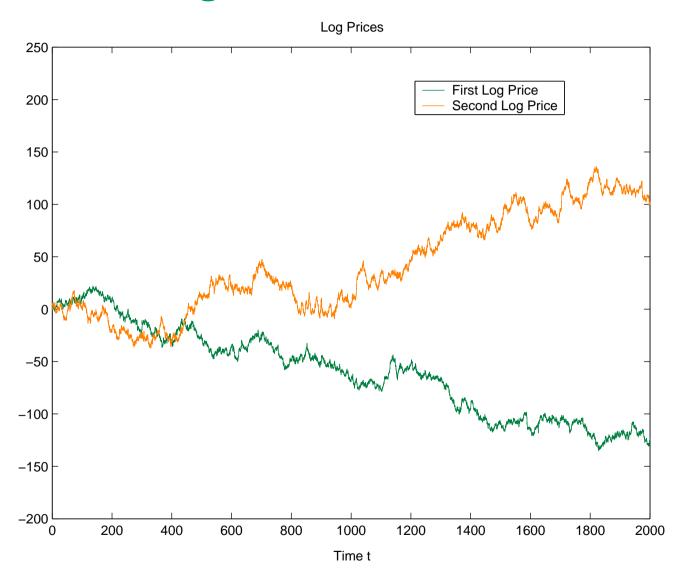
First Stochastic Variance Process Σ_{11}



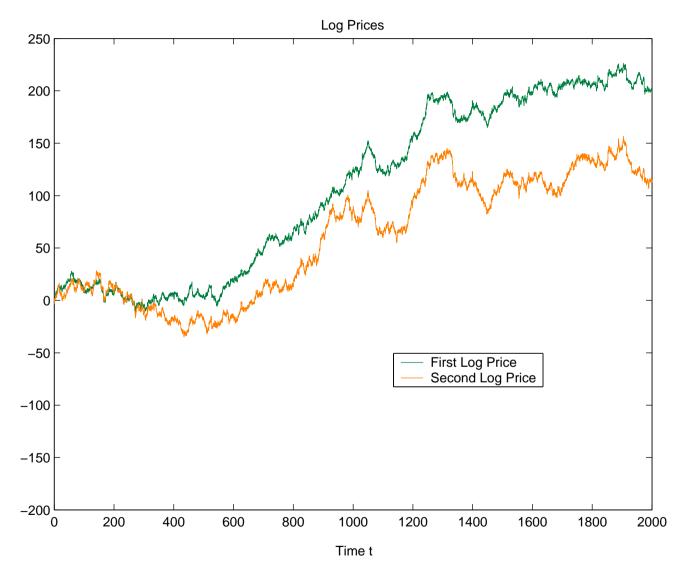
Stochastic Correlation Process $\Sigma_{12}/\sqrt{\Sigma_{11}\Sigma_{22}}$



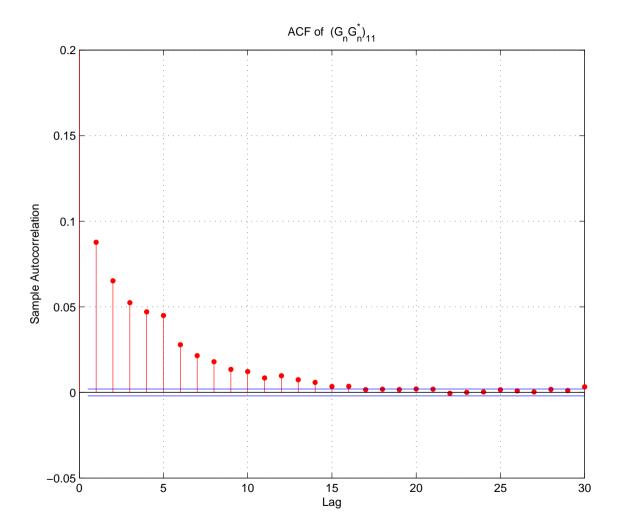
Log-Price Process Y



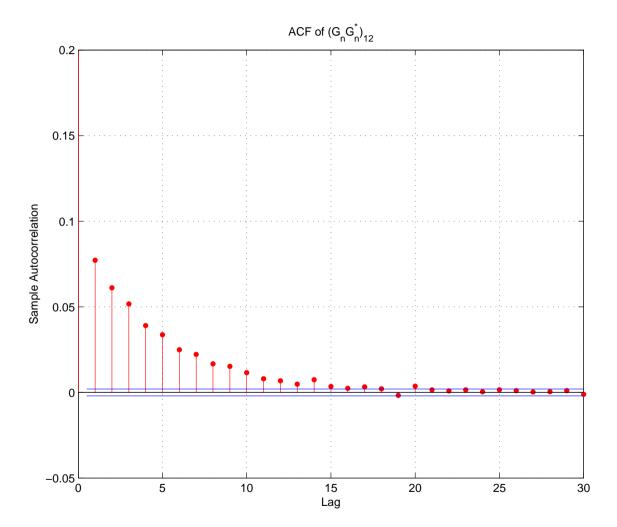
Alternative C: Log-Price Process Y



ACF "Squared Returns" $(\mathbf{Y}\mathbf{Y}^T)_{11}$



ACF "Squared Returns" $(\mathbf{Y}\mathbf{Y}^T)_{12}$



Thank you very much for your attention.