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VAR calculation

e Calculate quantile of distribution of profits and losses
e Distribution to be estimated from historical sample

e Straightforward, if there is a large number of identically distributed
historical changes of market states

However:
e Sample may be small

— Recently issued instruments
— Availability of data

— Change in market dynamics !!

e Eistimation from small sample induces the risk of a misestimation
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Model risk

e Listimation of distribution may proceed in two steps

1. Choose family of distributions (model specification)

2. Select distribution within selected family (parameter estimation)
e This may be seen as inducing two types of risk

1. Risk of misspecification of family

2. Uncertainty in parameter estimates
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e This differentiation, however, is highly artificial:
— If there are several candidate families we might choose a more
general family comprising them
— This family will usually be higher dimensional

— Uncertainty in parameter estimates will be larger for the higher
dimensional family

— Eventually, problem of model specification is partly transformed
into problem of parameter estimation

e In practice, choice is often not between distinct models, choice is bet-
ween simple model and complex model containing the simple model
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Trade off

e A simple model will not cover all features of the distribution, e.g.

— time dependent volatility
— fat tails

e This will result in biased (generally too small) VAR estimates

e In a more sophisticated model we will have a larger uncertainty in
the estimation of the distribution

e This exposes us to model risk
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Example I: time dependent volatility

e Daily returns are normally distributed, time dependent volatility
e Volatility varies between 0.55 and 1.3
e average volatility is 1

ecg.: 0’ =1+0.7x*sin(27t)
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Time series of normally distributed returns with varying volatility (4
years)
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e With normal distribution assumption and a long term average of the
volatility (o = 1) we get a VARq.g9 of 2.33

e On the average this will lead to 1.4% of excess returns rather than

1%

e Note: Excesses not uniformly distributed over time

e Way out: Calculate volatility from most recent 25 returns to get time
dependent volatility

e Again we will find some 1.4% of excesses

e Note: Excesses now (almost) uniformly distributed over time
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Volatility estimate from 25 returns
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e Listimating time dependent volatility:

— Long lookback period leads to systematic error (bias)
— Short lookback period leads to stochastic error (uncertainty)
e Both seen in back testing of the VAR estimate:

Probability of excess return is higher than expected from VAR confi-
dence level
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Example II: Fat tailed distribution

e Model fat tailed returns as function of normally distributed variable:
e.g.. x = a*sign(y) * ly|”, y normally distributed

e parameter b determines tail behavior:

— normal for b =1
— fat tailed for b > 1

e volatility depends on scaling parameter a
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Fat tailed distributions for b=1.25:
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e Modeling as normal distribution:

— Assume perfect volatility estimate
— 1.5% excesses of estimated VAR o9

e Modeling as fat tailed distribution

— Two parameters have to be estimated
— With a lookback period of 50 days we obtain 1.5% of excesses

e The result for the two parameter model does not depend on the actual
value of b:

— The model would also generate 1.5% of excesses for b=1 (corresp.
to norm.dist.)

— Compare to normal distribution assumption:
50 days of lookback period = 1.2% of excesses for norm.dist. re-
turns
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e Interpretation: With the complexity of the model the uncertainty of
the parameter estimates increases

e Again there is a trade off between

— bias in the simple model

— uncertainty in the complex model
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Example I1I: Oprisk Capital

e 99.9% quantile (VAR with 99.9% confidence level) of yearly aggregate
losses to be calculated

e T'ypical observation period: 5 years

e Sample may be increased by external data

e Still, direct estimation of the quantile is not possible
e Bootstrapping

— Split yearly loss into series of independent loss events
— Estimate distribution of size of events (severities)
— Estimate frequency

— Calculate distribution of yearly losses by convolution
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Remarks:
e Sampling is always subject to lower threshold
e Frequencies are (approximately) Poisson distributed by definition

e Severities will be fat tailed (E.g. Pareto tails with exponent close to
one)
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Synthetic example

e Assume severity distribution is Pareto: F(z) =1 — xUx
x € {1,...,.00} ... ratio between severity and sampling threshold

e On the average 200 losses per year above threshold
e 5 years of observation = Sample size N=1000

e Relevant external data may increase sample size to N = 10000

e Estimate x via MLE ( x = log(x) )
e stdev. of estimator o, = x/V' N
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e Single loss approximation
— For fat tailed distribution loss in bad years is dominated by single
huge loss
= For calculation of high quantiles distribution of aggregated losses
can be approximated by distribution of annual loss maxima

e Result for y =1

— VAR=200000 (in units of lower threshold)

— With an error of 2 stddev. for y estimate will lead to result
fluctuating between 92400 and 432600 (internal data only) res.
156600 and 255100 (with external data)

— Accuracy of single loss approximation:
FET result for xy = 1 is 202500
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e Use lower sampling threshold to increase sample size

— Problematic in view of the large quotient between result and samp-
ling threshold

— Complete sampling may be difficult to achieve for low threshold
— In practice, the opposite is done (Peak over Threshold method)

e To be on the safe side would be costly!
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The general situation

e Distribution P(&) member of family P of distributions labeled by
some parameters a

e For estimation of @ a (possibly small) sample < X > of independent
draws from P(q&) available

Estimation of parameters:
e Choose estimator é(X)
e Calculate a value for given sample
e Identify this value with a
However:
e (v is itself a random number

e A value of & different from the observed value could have produced
sample
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Naive argument:
e With some probability we will underestimate quantile

= Probability that next year’s loss will exceed quantile estimate is
higher than 1-q

e With some probability the we will overestimate quantile

= Probability that next year’s loss will exceed quantile estimate is
lower than 1-q

e Effects might average out and overall probability that next year’s loss
is above the estimate might be 1-q

e The estimate could then be interpreted as VAR with a confidence
level of g

e Unfortunately it does not work out, as seen in the examples
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Question

e Can we find estimate such that probability of next year’s loss to be
above estimate is precisely 1-q 7
(q ... confidence level of VAR estimate)
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Pivotal quantile estimate

e Definition: A quantity Q,(Xi, ..., X,) is denoted as pivotal quantile
estimate, if

Prob{X,+1 < Qu(X1,...,X,)} =q Va

e [ixample:

— Consider family of all continuous probability distributions on R.

— Let Y7, ....Y, be the order statistics of a sample of i.i.d. variables
from some member of this family. Then

— Y} is a pivotal quantile estimate for ¢ = k/(n +1) .

e In the following we will consider families of distributions allowing a
pivotal quantile estimate for all levels of ¢
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e Lemma: The following statements (a) and (b) are equivalent:

(a) A family of distributions (P, ) allows for a pivotal quantile estimate
Qu( X1, ..., X,) forall ¢ € (0,1) .
(b) A pivotal function (i.e. a function whose distribution does not

depend on a) V(Xq,..., X,,11) exists, such that the distribution
of V' is continuous and V' is strictly monotonic in X,

e Proof:

— (a) = (b): The inverse of Q,(X1,...,X,) with respect to ¢ app-
lied to X,,41 is uniformly distributed for all ¢

— (b) = (a): Denote by Q" the quantile function for the distribution
of V: Prob{V < QV(q)} =q .
Then the inverse of V' w.rt X, applied to Q" (q) is a pivotal
quantile estimate.
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Structure models

e Let GG be a group of monotonic bijective transformations on the real
line and let P be some probability measure on R

e By P9 we denote the transformed measure
P(A) = P(g~'(A)).

e A mapping (™ — 3.y, which maps R" into G is called G-equivariant,
if for all g € G and all vectors ()

AN AN

Jy(@m) = 9 © Gyln)-

S
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e Consider a structure model (PY),c¢ is given.
— Let Xy, ..., X, Xu+1 be an i.i.d. sequence from P9
for some unknown g.
— Let g,m) be G-equivariant.
=V = @;(%n)(XnH) is pivotal.

= If V' has a continuous distribution function F', a pivotal quantile
estimate is given by

Qy(X™) = gy (F!(q)).
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Construction of equivariant maps
o For all (™ € R™, let
O(z™) = {y'™ : 3g € G such that ™ = g(y"™)}
be the orbit of (™.
— For ™ and y™ on the same orbit, there is a g with y™ = g(z™).

— Orbits are either disjoint or identical.

o Let 7(2(™) be a maximalinvariant selection
(i.e. r(z™) € O(x™), r constant in each orbit

e Let g be defined through the relation

AN

Gpmr(a™) = 2.

= §(2") is G-equivariant
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Example: MLE

e The most likelihood estimator is equivariant.

e 1 is given by samples with the following property:
The maximum of the likelihood function is located at P.

Example: Location-scale families.
® gup(z) =a+bx (b>0)

e A location estimate /1(X™) is location /scale equivariant, if for all a
and all b > 0
(e +bXM) = a4 ba(X™)

e A scale estimate is equivariant, if &(a + b X™) = ba(X M)
o (XNt — 11)/6 is pivotal

e Transformations with a = 0 form subgroup
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Results I: Normal distribution with time dependent volatility

e Standard deviation as scale parameter

e As an estimator choose weighted sum ¢ = /> wzil??

e Sample may be infinite, but recent returns have higher weights than
past returns. This has a similar effect as a finite sample.

e Popular schemes like EWMA, GARCH(1,1) may be treated in this
way.

o V =z""1/5 is pivotal

e Pivotal quantile estimate given by the product of ¢ and the quantile

of V
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e Probability density of V' given by

pV) = N[ s BV (1)

with
n 9

V(CIZO - Z 1 4 w;V?

i=1
and F[.] denoting the expectation value w.r.t. standard normal dist.

e For constant weight over sample of size n we obtain StudentT" distri-
bution with n degrees of freedom
(Note that ¢ is square root of x* distr. variable)

e For general choice of weights:

— Expand /v into Taylor series at vy = E[V]

— Allows approximation of result in terms of moments of normal
distr. to arbitrary order in v — 1
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Results I1I: fat tails
e Characterization of P

— B, ... standard normal distribution
— Variable from P(a,b) € P is generated by transformation
r=g(a,b)-y:=asgn(y)ly®, a,b>0
e Straightforward to prove that this transformations form a group

e Standard normal distr. may e.g. be characterized by variance and
kurtosis:

— With standard estimators V, K for these quantities (e.g. empirical
values of the sample):

— Maximalinvariant selection given by V=1land K =3

— Solve V(g 4(a,b) ™) =1 and K (g (a,b) X™) =3 w.rt. a, b

— Pivotal function given by V = (¢~ (a, b) ) X1
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Note:

AN

e As an alternative MLE for a, b could be used as a, b

e Distr. of V' may be generated by simulation (Once only even in the
case of daily estimates!!), as it does not depend on actual values of

a,b
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Results I1I: Oprisk VAR
e Choose Fy=1—1/x

e Transformation r — x%0 will generate Pareto distribution with pa-
rameter x,

e In single loss approximation for Oprisk VAR target quantity is x, =
max(x1, .., &), of Pareto distributed variables, where f is the annual
frequency of losses

e Under change of transformations it will transform in the same way as
severity x

e We choose MLE estimator x = > ., ylog(z;)/N from historical
severities x;

1/x

e distribution of V' = z,/" is invariant under change of transformation
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Conservative estimate of VAR
e Compute distribution of V' (e.g. by simulation)
e Determine its 99.9% quantile @
e Need to be done after each change of sample size/frequency
e Listimate x from available historical data
e ()X is then to be taken as VAR estimate

e [f distributional assumptions are correct, it will be exceeded with a
probability of 0.1%

e Some additional term may be necessary to account for the error in
the single loss approximation
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Numerical result

e 200 losses/year, sample size 1000

e Simulation of the distribution of V" with 10 Mio runs leads to 213000+
2000 as 99.9% quantile of V

e Note, that this result does not depend on the value of y



