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VAR calculation

• Calculate quantile of distribution of profits and losses

• Distribution to be estimated from historical sample

• Straightforward, if there is a large number of identically distributed
historical changes of market states

However:

• Sample may be small

– Recently issued instruments

– Availability of data

– Change in market dynamics !!

• Estimation from small sample induces the risk of a misestimation
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Model risk

• Estimation of distribution may proceed in two steps

1. Choose family of distributions (model specification)

2. Select distribution within selected family (parameter estimation)

• This may be seen as inducing two types of risk

1. Risk of misspecification of family

2. Uncertainty in parameter estimates
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• This differentiation, however, is highly artificial:

– If there are several candidate families we might choose a more
general family comprising them

– This family will usually be higher dimensional

– Uncertainty in parameter estimates will be larger for the higher
dimensional family

– Eventually, problem of model specification is partly transformed
into problem of parameter estimation

• In practice, choice is often not between distinct models, choice is bet-
ween simple model and complex model containing the simple model
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Trade off

• A simple model will not cover all features of the distribution, e.g.

– time dependent volatility

– fat tails

• This will result in biased (generally too small) VAR estimates

• In a more sophisticated model we will have a larger uncertainty in
the estimation of the distribution

• This exposes us to model risk
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Example I: time dependent volatility

• Daily returns are normally distributed, time dependent volatility

• Volatility varies between 0.55 and 1.3

• average volatility is 1

• e.g.: σ2 = 1 + 0.7 ∗ sin(2πt)
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Time series of normally distributed returns with varying volatility (4
years)
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• With normal distribution assumption and a long term average of the
volatility (σ = 1) we get a VAR0.99 of 2.33

• On the average this will lead to 1.4% of excess returns rather than
1%

• Note: Excesses not uniformly distributed over time

• Way out: Calculate volatility from most recent 25 returns to get time
dependent volatility

• Again we will find some 1.4% of excesses

• Note: Excesses now (almost) uniformly distributed over time
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Volatility estimate from 25 returns
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• Estimating time dependent volatility:

– Long lookback period leads to systematic error (bias)

– Short lookback period leads to stochastic error (uncertainty)

• Both seen in back testing of the VAR estimate:
Probability of excess return is higher than expected from VAR confi-
dence level
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Example II: Fat tailed distribution

• Model fat tailed returns as function of normally distributed variable:
e.g.: x = a ∗ sign(y) ∗ |y|b , y normally distributed

• parameter b determines tail behavior:

– normal for b = 1

– fat tailed for b > 1

• volatility depends on scaling parameter a
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Fat tailed distributions for b=1.25:
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• Modeling as normal distribution:

– Assume perfect volatility estimate

– 1.5% excesses of estimated VAR0.99

• Modeling as fat tailed distribution

– Two parameters have to be estimated

– With a lookback period of 50 days we obtain 1.5% of excesses

• The result for the two parameter model does not depend on the actual
value of b:

– The model would also generate 1.5% of excesses for b=1 (corresp.
to norm.dist.)

– Compare to normal distribution assumption:
50 days of lookback period ⇒ 1.2% of excesses for norm.dist. re-
turns
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• Interpretation: With the complexity of the model the uncertainty of
the parameter estimates increases

• Again there is a trade off between

– bias in the simple model

– uncertainty in the complex model
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Example III: Oprisk Capital

• 99.9% quantile (VAR with 99.9% confidence level) of yearly aggregate
losses to be calculated

• Typical observation period: 5 years

• Sample may be increased by external data

• Still, direct estimation of the quantile is not possible

• Bootstrapping

– Split yearly loss into series of independent loss events

– Estimate distribution of size of events (severities)

– Estimate frequency

– Calculate distribution of yearly losses by convolution
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Remarks:

• Sampling is always subject to lower threshold

• Frequencies are (approximately) Poisson distributed by definition

• Severities will be fat tailed (E.g. Pareto tails with exponent close to
one)
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Synthetic example

• Assume severity distribution is Pareto: F (x) = 1− x−1/χ

x ∈ {1, ..., .∞} ... ratio between severity and sampling threshold

• On the average 200 losses per year above threshold

• 5 years of observation ⇒ Sample size N=1000

• Relevant external data may increase sample size to N = 10000

• Estimate χ via MLE ( χ = log(x) )

• stdev. of estimator σχ = χ/
√

N
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• Single loss approximation

– For fat tailed distribution loss in bad years is dominated by single
huge loss

⇒ For calculation of high quantiles distribution of aggregated losses
can be approximated by distribution of annual loss maxima

• Result for χ = 1

– VAR=200000 (in units of lower threshold)

– With an error of ±2 stddev. for χ estimate will lead to result
fluctuating between 92400 and 432600 (internal data only) res.
156600 and 255100 (with external data)

– Accuracy of single loss approximation:
FFT result for χ = 1 is 202500
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• Use lower sampling threshold to increase sample size

– Problematic in view of the large quotient between result and samp-
ling threshold

– Complete sampling may be difficult to achieve for low threshold

– In practice, the opposite is done (Peak over Threshold method)

• To be on the safe side would be costly!
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The general situation

• Distribution P (~α) member of family P of distributions labeled by
some parameters ~α

• For estimation of ~α a (possibly small) sample < ~X > of independent
draws from P (~α) available

Estimation of parameters:

• Choose estimator α̂( ~X)

• Calculate α̂ value for given sample

• Identify this value with ~α

However:

• α̂ is itself a random number

• A value of ~α different from the observed value could have produced
sample
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Naive argument:

• With some probability we will underestimate quantile

⇒ Probability that next year’s loss will exceed quantile estimate is
higher than 1-q

• With some probability the we will overestimate quantile

⇒ Probability that next year’s loss will exceed quantile estimate is
lower than 1-q

• Effects might average out and overall probability that next year’s loss
is above the estimate might be 1-q

• The estimate could then be interpreted as VAR with a confidence
level of q

• Unfortunately it does not work out, as seen in the examples
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Question

• Can we find estimate such that probability of next year’s loss to be
above estimate is precisely 1-q ?
(q ... confidence level of VAR estimate)
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Pivotal quantile estimate

• Definition: A quantity Qq(X1, . . . , Xn) is denoted as pivotal quantile
estimate, if

Prob{Xn+1 ≤ Qq(X1, . . . , Xn)} = q ∀α

• Example:

– Consider family of all continuous probability distributions on R.

– Let Y1, . . . , Yn be the order statistics of a sample of i.i.d. variables
from some member of this family. Then

– Yk is a pivotal quantile estimate for q = k/(n + 1) .

• In the following we will consider families of distributions allowing a
pivotal quantile estimate for all levels of q
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• Lemma: The following statements (a) and (b) are equivalent:

(a) A family of distributions (Pα) allows for a pivotal quantile estimate
Qq(X1, . . . , Xn) for all q ∈ (0, 1) .

(b) A pivotal function (i.e. a function whose distribution does not
depend on α) V (X1, . . . , Xn+1) exists, such that the distribution
of V is continuous and V is strictly monotonic in Xn+1

• Proof:

– (a) ⇒ (b): The inverse of Qq(X1, . . . , Xn) with respect to q app-
lied to Xn+1 is uniformly distributed for all q

– (b) ⇒ (a): Denote by QV the quantile function for the distribution
of V : Prob{V ≤ QV (q)} = q .
Then the inverse of V w.r.t Xn+1 applied to QV (q) is a pivotal
quantile estimate.
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Structure models
• Let G be a group of monotonic bijective transformations on the real

line and let P be some probability measure on R
• By P g we denote the transformed measure

P g(A) = P (g−1(A)).

• A mapping x(n) 7→ ĝx(n), which maps Rn into G is called G-equivariant,
if for all g ∈ G and all vectors x(n)

ĝg(x(n)) = g ◦ ĝx(n).

IRn

ĝ

ĝ
IRn

G

G g

g
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• Consider a structure model (P g)g∈G is given.

– Let X1, . . . , Xn, Xn+1 be an i.i.d. sequence from P g

for some unknown g.

– Let ĝx(n) be G-equivariant.

⇒ V = ĝ−1

X(n)(Xn+1) is pivotal.

⇒ If V has a continuous distribution function F , a pivotal quantile
estimate is given by

Qq(X
(n)) := ĝX(n)(F

−1(q)).
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Construction of equivariant maps

• For all x(n) ∈ Rn, let

O(x(n)) = {y(n) : ∃g ∈ G such that x(n) = g(y(n))}

be the orbit of x(n).

– For x(n) and y(n) on the same orbit, there is a g with y(n) = g(x(n)).

– Orbits are either disjoint or identical.

• Let r(x(n)) be a maximalinvariant selection
(i.e. r(x(n)) ∈ O(x(n)), r constant in each orbit

• Let ĝ be defined through the relation

ĝx(n)r(x(n)) = x(n).

⇒ ĝ(x(n)) is G-equivariant
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Example: MLE

• The most likelihood estimator is equivariant.

• r is given by samples with the following property:
The maximum of the likelihood function is located at P .

Example: Location-scale families.

• ga,b(x) = a + bx (b > 0)

• A location estimate µ̂(X(n)) is location/scale equivariant, if for all a
and all b > 0

µ̂(a + bX(n)) = a + bµ̂(X(n))

• A scale estimate is equivariant, if σ̂(a + bX(n)) = b σ̂(X(n)).

• (XN+1 − µ̂)/σ̂ is pivotal

• Transformations with a = 0 form subgroup
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Results I: Normal distribution with time dependent volatility

• Standard deviation as scale parameter

• As an estimator choose weighted sum σ̂ =
√∑

wix2
i

with
∑

wi=1

• Sample may be infinite, but recent returns have higher weights than
past returns. This has a similar effect as a finite sample.

• Popular schemes like EWMA, GARCH(1,1) may be treated in this
way.

• V = xn+1/σ̂ is pivotal

• Pivotal quantile estimate given by the product of σ̂ and the quantile
of V
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• Probability density of V given by

p(V ) = N

n∏
i=1

1√
1 + wiV 2

E[
√

ν(xi)]

with

ν(xi) =

n∑
i=1

wix
2
i

1 + wiV 2

and E[.] denoting the expectation value w.r.t. standard normal dist.

• For constant weight over sample of size n we obtain StudentT distri-
bution with n degrees of freedom
(Note that σ̂ is square root of χ2 distr. variable)

• For general choice of weights:

– Expand
√

ν into Taylor series at ν0 = E[ν]

– Allows approximation of result in terms of moments of normal
distr. to arbitrary order in ν − ν0
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Results II: fat tails

• Characterization of P

– P0 ... standard normal distribution

– Variable from P (a, b) ∈ P is generated by transformation
x = g(a, b) · y := a sgn(y) |y|b , a, b > 0

• Straightforward to prove that this transformations form a group

• Standard normal distr. may e.g. be characterized by variance and
kurtosis:

– With standard estimators V̂ , K̂ for these quantities (e.g. empirical
values of the sample):

– Maximalinvariant selection given by V̂ = 1 and K̂ = 3

– Solve V̂ (g−1(â, b̂) x(n)) = 1 and K̂(g−1(â, b̂) X(n)) = 3 w.r.t. â, b̂

– Pivotal function given by V = (g−1(â, b̂) )Xn+1
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Note:

• As an alternative MLE for a, b could be used as â, b̂

• Distr. of V may be generated by simulation (Once only even in the
case of daily estimates!!), as it does not depend on actual values of
a,b
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Results III: Oprisk VAR

• Choose F0 = 1− 1/x

• Transformation x → xχ0 will generate Pareto distribution with pa-
rameter χ0

• In single loss approximation for Oprisk VAR target quantity is xa =
max(x1, .., xf), of Pareto distributed variables, where f is the annual
frequency of losses

• Under change of transformations it will transform in the same way as
severity x

• We choose MLE estimator χ̂ =
∑

i=1,...,N log(xi)/N from historical
severities xi

• distribution of V = x
1/χ̂
a is invariant under change of transformation
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Conservative estimate of VAR

• Compute distribution of V (e.g. by simulation)

• Determine its 99.9% quantile Q

• Need to be done after each change of sample size/frequency

• Estimate χ̂ from available historical data

• Qχ̂ is then to be taken as VAR estimate

• If distributional assumptions are correct, it will be exceeded with a
probability of 0.1%

• Some additional term may be necessary to account for the error in
the single loss approximation
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Numerical result

• 200 losses/year, sample size 1000

• Simulation of the distribution of V with 10 Mio runs leads to 213000±
2000 as 99.9% quantile of V

• Note, that this result does not depend on the value of χ


