# PIVOTAL QUANTILE ESTIMATES IN VAR CALCULATIONS

Peter Schaller, Bank Austria ~ Creditan<br/>stalt (BA-CA) Wien, peter@ca-risc.co.at

CPeter Schaller, BA-CA, Strategic Riskmanagement

### Contents

- Some aspects of model risk in VAR calculations
- Examples
- Pivotal quantile estimates
- Results

### References

- P.Schaller: Uncertainty of parameter estimates in VAR calculations; Working paper, Bank Austria, Vienna, 2002; SSRN abstract\_id 308082.
- G.Pflug, P.Schaller: Pivotal quantile estimates in VAR calculations; in preparation.

### VAR calculation

- Calculate quantile of distribution of profits and losses
- Distribution to be estimated from historical sample
- Straightforward, if there is a large number of identically distributed historical changes of market states

However:

- Sample may be small
  - Recently issued instruments
  - Availability of data
  - Change in market dynamics !!
- Estimation from small sample induces the risk of a misestimation

### Model risk

- Estimation of distribution may proceed in two steps
  - 1. Choose family of distributions (model specification)
  - 2. Select distribution within selected family (parameter estimation)
- $\bullet$  This may be seen as inducing two types of risk
  - 1. Risk of misspecification of family
  - 2. Uncertainty in parameter estimates

- This differentiation, however, is highly artificial:
  - If there are several candidate families we might choose a more general family comprising them
  - This family will usually be higher dimensional
  - Uncertainty in parameter estimates will be larger for the higher dimensional family
  - Eventually, problem of model specification is partly transformed into problem of parameter estimation
- In practice, choice is often not between distinct models, choice is between simple model and complex model containing the simple model

# Trade off

- A simple model will not cover all features of the distribution, e.g.
  - time dependent volatility
  - fat tails
- This will result in biased (generally too small) VAR estimates
- In a more sophisticated model we will have a larger uncertainty in the estimation of the distribution
- This exposes us to model risk

### Example I: time dependent volatility

- Daily returns are normally distributed, time dependent volatility
- $\bullet$  Volatility varies between 0.55 and 1.3
- average volatility is 1
- e.g.:  $\sigma^2 = 1 + 0.7 * \sin(2\pi t)$

Time series of normally distributed returns with varying volatility (4 years)



- With normal distribution assumption and a long term average of the volatility ( $\sigma = 1$ ) we get a VAR<sub>0.99</sub> of 2.33
- $\bullet$  On the average this will lead to 1.4% of excess returns rather than 1%
- Note: Excesses not uniformly distributed over time
- Way out: Calculate volatility from most recent 25 returns to get time dependent volatility
- $\bullet$  Again we will find some 1.4% of excesses
- Note: Excesses now (almost) uniformly distributed over time



#### Volatility estimate from 25 returns

- Estimating time dependent volatility:
  - Long lookback period leads to systematic error (bias)
  - Short lookback period leads to stochastic error (uncertainty)
- Both seen in back testing of the VAR estimate: Probability of excess return is higher than expected from VAR confidence level

# Example II: Fat tailed distribution

- Model fat tailed returns as function of normally distributed variable: e.g.:  $x = a * sign(y) * |y|^b$ , y normally distributed
- $\bullet$  parameter b determines tail behavior:
  - normal for b = 1
  - fat tailed for b > 1
- $\bullet$  volatility depends on scaling parameter a



Fat tailed distributions for b=1.25:

- Modeling as normal distribution:
  - Assume perfect volatility estimate
  - -1.5% excesses of estimated VAR<sub>0.99</sub>
- Modeling as fat tailed distribution
  - Two parameters have to be estimated
  - With a lookback period of 50 days we obtain 1.5% of excesses
- The result for the two parameter model does not depend on the actual value of b:
  - The model would also generate 1.5% of excesses for b=1 (corresp. to norm.dist.)
  - Compare to normal distribution assumption: 50 days of lookback period  $\Rightarrow$  1.2% of excesses for norm.dist. returns

- Interpretation: With the complexity of the model the uncertainty of the parameter estimates increases
- Again there is a trade off between
  - bias in the simple model
  - uncertainty in the complex model

# Example III: Oprisk Capital

- 99.9% quantile (VAR with 99.9% confidence level) of yearly aggregate losses to be calculated
- Typical observation period: 5 years
- Sample may be increased by external data
- Still, direct estimation of the quantile is not possible
- Bootstrapping
  - Split yearly loss into series of independent loss events
  - Estimate distribution of size of events (severities)
  - Estimate frequency
  - Calculate distribution of yearly losses by convolution

# Remarks:

- Sampling is always subject to lower threshold
- Frequencies are (approximately) Poisson distributed by definition
- Severities will be fat tailed (E.g. Pareto tails with exponent close to one)

### Synthetic example

- Assume severity distribution is Pareto:  $F(x) = 1 x^{-1/\chi}$  $x \in \{1, ..., \infty\}$  ... ratio between severity and sampling threshold
- $\bullet$  On the average 200 losses per year above threshold
- 5 years of observation  $\Rightarrow$  Sample size N=1000
- Relevant external data may increase sample size to N = 10000
- Estimate  $\chi$  via MLE (  $\chi = \overline{log(x)}$  )
- stdev. of estimator  $\sigma_{\chi} = \chi/\sqrt{N}$

- Single loss approximation
  - For fat tailed distribution loss in bad years is dominated by single huge loss
  - $\Rightarrow$  For calculation of high quantiles distribution of aggregated losses can be approximated by distribution of annual loss maxima
- Result for  $\chi = 1$ 
  - VAR=200000 (in units of lower threshold)
  - With an error of  $\pm 2$  stddev. for  $\chi$  estimate will lead to result fluctuating between 92400 and 432600 (internal data only) res. 156600 and 255100 (with external data)
  - Accuracy of single loss approximation: FFT result for  $\chi = 1$  is 202500

- Use lower sampling threshold to increase sample size
  - Problematic in view of the large quotient between result and sampling threshold
  - Complete sampling may be difficult to achieve for low threshold
  - In practice, the opposite is done (Peak over Threshold method)
- To be on the safe side would be costly!

# The general situation

- Distribution  $P(\vec{\alpha})$  member of family **P** of distributions labeled by some parameters  $\vec{\alpha}$
- For estimation of  $\vec{\alpha}$  a (possibly small) sample  $\langle \vec{X} \rangle$  of independent draws from  $P(\vec{\alpha})$  available

Estimation of parameters:

- Choose estimator  $\hat{\alpha}(\vec{X})$
- Calculate  $\hat{\alpha}$  value for given sample
- Identify this value with  $\vec{\alpha}$

However:

- $\hat{\alpha}$  is itself a random number
- A value of  $\vec{\alpha}$  different from the observed value could have produced sample

CPeter Schaller, BA-CA, Strategic Riskmanagement

### Naive argument:

- With some probability we will underestimate quantile
  - $\Rightarrow$  Probability that next year's loss will exceed quantile estimate is higher than 1-q
- With some probability the we will overestimate quantile
  - $\Rightarrow$  Probability that next year's loss will exceed quantile estimate is lower than 1-q
- Effects might average out and overall probability that next year's loss is above the estimate might be 1-q
- The estimate could then be interpreted as VAR with a confidence level of q
- Unfortunately it does not work out, as seen in the examples

#### Question

- Can we find estimate such that probability of next year's loss to be above estimate is precisely 1-q ?
  - (q ... confidence level of VAR estimate)

### Pivotal quantile estimate

• Definition: A quantity  $Q_q(X_1, \ldots, X_n)$  is denoted as pivotal quantile estimate, if

$$Prob\{X_{n+1} \le Q_q(X_1, \dots, X_n)\} = q \quad \forall \alpha$$

- Example:
  - Consider family of all continuous probability distributions on  $\mathbb{R}$ .
  - Let  $Y_1, \ldots, Y_n$  be the order statistics of a sample of i.i.d. variables from some member of this family. Then
  - $-Y_k$  is a pivotal quantile estimate for q = k/(n+1).
- $\bullet$  In the following we will consider families of distributions allowing a pivotal quantile estimate for all levels of q

- Lemma: The following statements (a) and (b) are equivalent:
  - (a) A family of distributions  $(P_{\alpha})$  allows for a pivotal quantile estimate  $Q_q(X_1, \ldots, X_n)$  for all  $q \in (0, 1)$ .
  - (b) A pivotal function (i.e. a function whose distribution does not depend on  $\alpha$ )  $V(X_1, \ldots, X_{n+1})$  exists, such that the distribution of V is continuous and V is strictly monotonic in  $X_{n+1}$
- Proof:
  - $(a) \Rightarrow (b)$ : The inverse of  $Q_q(X_1, \ldots, X_n)$  with respect to q applied to  $X_{n+1}$  is uniformly distributed for all q
  - $(b) \Rightarrow (a)$ : Denote by  $Q^V$  the quantile function for the distribution of V:  $Prob\{V \le Q^V(q)\} = q$ .

Then the inverse of V w.r.t  $X_{n+1}$  applied to  $Q^V(q)$  is a pivotal quantile estimate.

#### Structure models

- Let G be a group of monotonic bijective transformations on the real line and let P be some probability measure on  $\mathbb{R}$
- By  $P^g$  we denote the transformed measure

$$P^{g}(A) = P(g^{-1}(A)).$$

• A mapping  $x^{(n)} \mapsto \hat{g}_{x^{(n)}}$ , which maps  $\mathbb{R}^n$  into G is called G-equivariant, if for all  $g \in G$  and all vectors  $x^{(n)}$ 

$$\hat{g}_{g(x^{(n)})} = g \circ \hat{g}_{x^{(n)}}$$



- Consider a structure model  $(P^g)_{g\in G}$  is given.
  - Let  $X_1, \ldots, X_n, X_{n+1}$  be an i.i.d. sequence from  $P^g$  for some unknown g.
  - Let  $\hat{g}_{x^{(n)}}$  be *G*-equivariant.
  - $\Rightarrow V = \hat{g}_{X^{(n)}}^{-1}(X_{n+1})$  is pivotal.
  - $\Rightarrow$  If V has a continuous distribution function F, a pivotal quantile estimate is given by

$$Q_q(X^{(n)}) := \hat{g}_{X^{(n)}}(F^{-1}(q)).$$

Construction of equivariant maps

• For all  $x^{(n)} \in \mathbb{R}^n$ , let

 $\mathcal{O}(x^{(n)}) = \{ y^{(n)} : \exists g \in G \text{ such that } x^{(n)} = g(y^{(n)}) \}$ 

be the orbit of  $x^{(n)}$ .

- For  $x^{(n)}$  and  $y^{(n)}$  on the same orbit, there is a g with  $y^{(n)} = g(x^{(n)})$ . - Orbits are either disjoint or identical.
- Let  $r(x^{(n)})$  be a maximal invariant selection (i.e.  $r(x^{(n)}) \in \mathcal{O}(x^{(n)})$ , r constant in each orbit
- Let  $\hat{g}$  be defined through the relation

$$\hat{g}_{x^{(n)}}r(x^{(n)}) = x^{(n)}.$$

 $\Rightarrow \hat{g}(x^{(n)})$  is *G*-equivariant

# Example: MLE

- The most likelihood estimator is equivariant.
- r is given by samples with the following property: The maximum of the likelihood function is located at P.

Example: Location-scale families.

• 
$$g_{a,b}(x) = a + bx \ (b > 0)$$

• A location estimate  $\hat{\mu}(X^{(n)})$  is location/scale equivariant, if for all a and all b > 0

$$\hat{\mu}(a + bX^{(n)}) = a + b\hat{\mu}(X^{(n)})$$

- A scale estimate is equivariant, if  $\hat{\sigma}(a + bX^{(n)}) = b \hat{\sigma}(X^{(n)})$ .
- $(X^{N+1} \hat{\mu}) / \hat{\sigma}$  is pivotal
- Transformations with a = 0 form subgroup

Results I: Normal distribution with time dependent volatility

- Standard deviation as scale parameter
- As an estimator choose weighted sum  $\hat{\sigma} = \sqrt{\sum w_i x_i^2}$ with  $\sum w_i = 1$
- Sample may be infinite, but recent returns have higher weights than past returns. This has a similar effect as a finite sample.
- Popular schemes like EWMA, GARCH(1,1) may be treated in this way.
- $V = x^{n+1}/\hat{\sigma}$  is pivotal
- Pivotal quantile estimate given by the product of  $\hat{\sigma}$  and the quantile of V

- © Peter Schaller, BA-CA, Strategic Riskmanagement
  - Probability density of V given by

$$p(V) = N \prod_{i=1}^{n} \frac{1}{\sqrt{1 + w_i V^2}} E[\sqrt{\nu(x_i)}]$$

with

$$\nu(x_i) = \sum_{i=1}^n \frac{w_i x_i^2}{1 + w_i V^2}$$

and E[.] denoting the expectation value w.r.t. standard normal dist.

- For constant weight over sample of size n we obtain StudentT distribution with n degrees of freedom (Note that  $\hat{\sigma}$  is square root of  $\chi^2$  distr. variable)
- For general choice of weights:
  - Expand  $\sqrt{\nu}$  into Taylor series at  $\nu_0 = E[\nu]$
  - Allows approximation of result in terms of moments of normal distr. to arbitrary order in  $\nu \nu_0$

#### Results II: fat tails

- $\bullet$  Characterization of  ${\bf P}$ 
  - $-P_0$  ... standard normal distribution
  - Variable from  $P(a, b) \in \mathbf{P}$  is generated by transformation  $x = g(a, b) \cdot y := a \operatorname{sgn}(y) |y|^b$ , a, b > 0
- Straightforward to prove that this transformations form a group
- Standard normal distr. may e.g. be characterized by variance and kurtosis:
  - With standard estimators  $\hat{V}$ ,  $\hat{K}$  for these quantities (e.g. empirical values of the sample):
  - Maximal<br/>invariant selection given by  $\hat{V}=1$  and<br/>  $\hat{K}=3$
  - Solve  $\hat{V}(g^{-1}(\hat{a},\hat{b})x^{(n)}) = 1$  and  $\hat{K}(g^{-1}(\hat{a},\hat{b})X^{(n)}) = 3$  w.r.t.  $\hat{a}, \hat{b}$
  - Pivotal function given by  $V = (g^{-1}(\hat{a}, \hat{b}))X_{n+1}$

#### Note:

- As an alternative MLE for a, b could be used as  $\hat{a}, \hat{b}$
- Distr. of V may be generated by simulation (Once only even in the case of daily estimates!!), as it does not depend on actual values of a,b

#### Results III: Oprisk VAR

- Choose  $F_0 = 1 1/x$
- Transformation  $x \to x^{\chi_0}$  will generate Pareto distribution with parameter  $\chi_0$
- In single loss approximation for Oprisk VAR target quantity is  $x_a = \max(x_1, ..., x_f)$ , of Pareto distributed variables, where f is the annual frequency of losses
- Under change of transformations it will transform in the same way as severity x
- We choose MLE estimator  $\hat{\chi} = \sum_{i=1,\dots,N} \log(x_i)/N$  from historical severities  $x_i$
- distribution of  $V = x_a^{1/\hat{\chi}}$  is invariant under change of transformation

Conservative estimate of VAR

- Compute distribution of V (e.g. by simulation)
- $\bullet$  Determine its 99.9% quantile Q
- Need to be done after each change of sample size/frequency
- Estimate  $\hat{\chi}$  from available historical data
- $Q^{\hat{\chi}}$  is then to be taken as VAR estimate
- $\bullet$  If distributional assumptions are correct, it will be exceeded with a probability of 0.1%
- Some additional term may be necessary to account for the error in the single loss approximation

Numerical result

- 200 losses/year, sample size 1000
- Simulation of the distribution of V with 10 Mio runs leads to 213000  $\pm$  2000 as 99.9% quantile of V
- $\bullet$  Note, that this result does not depend on the value of  $\chi$