CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL

L. C. G. Rogers

Statistical Laboratory, University of Cambridge
Overview

- Contracting to align objectives
- Investing under constraints on the law of terminal wealth
- Investment under law-invariant coherent risk measure constraints
- Contracting for optimal investment under LI coherent risk measure constraints
Aligning objectives.
Aligning objectives.

- Principal (head of desk) has utility U_P
Aligning objectives.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A.
Aligning objectives.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
Aligning objectives.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.
Aligning objectives.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?
Aligning objectives.

- Principal (head of desk) has utility U_P.
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

If

$$U_P(x - \varphi(x)) = kU_A(\varphi(x))$$

then the agent is optimising the same objective as the principal!
Aligning objectives.

• Principal (head of desk) has utility U_P
• Agent (trader) has utility U_A.
• Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
• Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

If

$$U_P(x - \varphi(x)) = kU_A(\varphi(x))$$

then the agent is optimising the same objective as the principal!

• What about the agent’s effort?
Aligning objectives.

- Principal (head of desk) has utility U_P.
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

If

$$U_P(x - \varphi(x)) = kU_A(\varphi(x))$$

then the agent is optimising the same objective as the principal!

- What about the agent’s effort?
- What about misreporting?
Aligning objectives.

- Principal (head of desk) has utility U_P.
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

If

$$U_P(x - \varphi(x)) = kU_A(\varphi(x))$$

then the agent is optimising the same objective as the principal!

- What about the agent’s effort?
- What about misreporting?
- What if $\inf_{x>0} U_P(x) < \inf_{x>0} U_A(x)$?
Aligning objectives.

- Principal (head of desk) has utility U_P.
- Agent (trader) has utility U_A.
- Agent trades in market over $[0, T]$, achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

If

$$U_P(x - \varphi(x)) = kU_A(\varphi(x))$$

then the agent is optimising the same objective as the principal!

- What about the agent's effort?
- What about misreporting?
- What if $\inf_{x>0} U_P(x) < \inf_{x>0} U_A(x)$?

Insist $w_T \geq x$, then make

$$U_P(x - \varphi(x)) = k\{U_A(\varphi(x)) - U_A(0)\} + U_P(x)$$
Proposition. If U_P and U_A are strictly increasing, the function $\varphi : [x, \infty) \to \mathbb{R}^+$ is well defined by

$$U_P(x - \varphi(x)) = k\{U_A(\varphi(x)) - U_A(0)\} + U_P(x).$$

It is increasing, and $u \equiv U_A \circ \varphi$ is concave.
Proposition. If U_P and U_A are strictly increasing, the function $\varphi : [x, \infty) \to \mathbb{R}^+$ is well defined by

$$U_P(x - \varphi(x)) = k \{ U_A(\varphi(x)) - U_A(0) \} + U_P(x).$$

It is increasing, and $u \equiv U_A \circ \varphi$ is concave.

PROOF. Monotonicity obvious.
Proposition. If U_P and U_A are strictly increasing, the function $\varphi : [x, \infty) \to \mathbb{R}^+$ is well defined by

$$U_P(x - \varphi(x)) = k \{ U_A(\varphi(x)) - U_A(0) \} + U_P(x).$$

It is increasing, and $u \equiv U_A \circ \varphi$ is concave.

Proof. Monotonicity obvious. If concavity fails, for some $x_1, x_2 \geq x$, $p = 1 - q \in (0, 1)$, with $x = px_1 + qx_2$

$$u(x) = U_A(\varphi(x))$$

$$< pu(x_1) + qu(x_2)$$

$$= p U_A(\varphi(x_1)) + q U_A(\varphi(x_2))$$

$$\leq U_A(p \varphi(x_1) + q \varphi(x_2)),$$

and so $\varphi(x) < p \varphi(x_1) + q \varphi(x_2)$.

Proposition. If U_P and U_A are strictly increasing, the function $\varphi : [x, \infty) \to \mathbb{R}^+$ is well defined by

$$U_P(x - \varphi(x)) = k\{U_A(\varphi(x)) - U_A(0)\} + U_P(x).$$

It is increasing, and $u \equiv U_A \circ \varphi$ is concave.

Proof. Monotonicity obvious. If concavity fails, for some $x_1, x_2 \geq x,$

$p = 1 - q \in (0, 1),$ with $x = px_1 + qx_2$

$$u(x) = U_A(\varphi(x))
< pu(x_1) + qu(x_2)
= pU_A(\varphi(x_1)) + qU_A(\varphi(x_2))
\leq U_A(p\varphi(x_1) + q\varphi(x_2)),$$

and so $\varphi(x) < p\varphi(x_1) + q\varphi(x_2).$ Hence

$$u(x) = U_A(\varphi(x)) = U_P(x - \varphi(x))
> U_P(x - p\varphi(x_1) - q\varphi(x_2))
\geq pU_P(x_1 - \varphi(x_1)) + qU_P(x_2 - \varphi(x_2))
= pU_A(\varphi(x_1)) + qU_A(\varphi(x_2)).$$
How does it look?

Wage function: Agent is CRRA(0.95) Principal is CRRA(2), k = 3

UP, Principal's utility for final portfolio value

Proportion of terminal wealth paid to agent
Wage function: Agent is CRRA(0.95) Principal is $0.1 \times \text{CRRA}(2) + 0.9 \times \text{CRRA}(0.5)$, $k = 3$

Utility of all wealth

Utility of wealth after fees

Proportion of terminal wealth paid to agent

UP, Principal's utility for final portfolio value

Utility of wealth after fees
Investing under constraints on the law of w_T.

Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = r w_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = r w_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t (-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1} (\mu - r)$)

$$d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to $\max \ E U (w_T)$ subject to some constraint on the law of w_T;
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1} (\mu - r)$)

$$d\zeta_t = \zeta_t (-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to $\max \text{EU}(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T.
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t (-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to maximize $EU(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T. If we want a given law for w_T, cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ.

Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t (-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to max $EU(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T. If we want a given law for w_T, cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ. So the principal’s problem is to find decreasing ψ to max $E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T.
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t(\sigma dW_t + (\mu - r)dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t(-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to $\max EU(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T. If we want a given law for w_T, cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ. So the principal’s problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T\psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T. Knowing ψ, define a utility u by

$$u'(x) = \psi(x);$$
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t (-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to $\max EU(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T. If we want a given law for w_T, cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ. So the principal’s problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T. Knowing ψ, define a utility u by

$$u'(x) = \psi(x);$$

then an agent with initial wealth w_0 and maximizing $Eu(w_T)$ will choose $w_T = \psi(\zeta_T)$.

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 7/1
Investing under constraints on the law of w_T.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t(\sigma dW_t + (\mu - r) dt),$$

state-price density process ($\kappa \equiv \sigma^{-1}(\mu - r)$)

$$d\zeta_t = \zeta_t(-r dt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Principal wants to $\max EU(w_T)$ subject to some constraint on the law of w_T; so he has to choose a law for w_T. If we want a given law for w_T, cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ. So the principal’s problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T. Knowing ψ, define a utility u by

$$u'(x) = \psi(x);$$

then an agent with initial wealth w_0 and maximizing $Eu(w_T)$ will choose $w_T = \psi(\zeta_T)$. If the risk-constrained principal offers the agent φ, where

$$kU_A(\varphi(x)) - a = u(x),$$

then the unconstrained agent implements the principal’s optimum.
Law-invariant coherent risk measures.
Law-invariant coherent risk measures.

These are

\[\rho(X) = \sup \{ \rho^\mu(X) : \mu \in \mathcal{M} \}, \]

where \(\mathcal{M} \) is a collection of probability measures on \([0, 1]\).
Law-invariant coherent risk measures.

These are

\[\rho(X) = \sup \{ \rho^\mu(X) : \mu \in \mathcal{M} \}, \]

where \(\mathcal{M} \) is a collection of probability measures on \([0, 1]\),

\[\rho^\mu(X) \equiv \int \rho_a(X) \, \mu(da), \]
Law-invariant coherent risk measures.

These are

$$\rho(X) = \sup \{\rho^\mu(X) : \mu \in \mathcal{M}\},$$

where \mathcal{M} is a collection of probability measures on $[0, 1]$,

$$\rho^\mu(X) \equiv \int \rho_a(X) \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1} E[X : X \leq F_X^{-1}(a)] = -E[X|X \leq F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx.$$
Law-invariant coherent risk measures.

These are

\[\rho(X) = \sup \{ \rho^\mu(X) : \mu \in \mathcal{M} \}, \]

where \(\mathcal{M} \) is a collection of probability measures on \([0, 1]\),

\[\rho^\mu(X) \equiv \int \rho_a(X) \, \mu(da), \]

and

\[\rho_a(X) \equiv -a^{-1} E[X : X \leq F_X^{-1}(a)] = -E[X|X \leq F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx. \]

If \(X = \psi(\zeta) \equiv \psi(\zeta_T), \psi \text{ decreasing}, \) then \(F_X^{-1}(a) = \psi(F_\zeta^{-1}(1-a)). \)
Law-invariant coherent risk measures.

These are

\[\rho(X) = \sup\{\rho^\mu(X) : \mu \in \mathcal{M}\}, \]

where \(\mathcal{M} \) is a collection of probability measures on \([0, 1]\),

\[\rho^\mu(X) \equiv \int \rho_a(X) \mu(da), \]

and

\[\rho_a(X) \equiv -a^{-1} E[X : X \leq F_X^{-1}(a)] = -E[X|X \leq F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx. \]

If \(X = \psi(\zeta) \equiv \psi(\zeta_T), \psi \) decreasing, then \(F_X^{-1}(a) = \psi(F_\zeta^{-1}(1 - a)) \). Hence

\[\rho_a(X) = -a^{-1} \int_0^a F_X^{-1}(x) \, dx = -a^{-1} \int_1^{1-a} \psi(F_\zeta^{-1}(y)) \, dy \]
Law-invariant coherent risk measures.

These are

$$\rho(X) = \sup \{ \rho^\mu(X) : \mu \in \mathcal{M} \},$$

where \mathcal{M} is a collection of probability measures on $[0, 1]$,

$$\rho^\mu(X) \equiv \int \rho_a(X) \, \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1} E[X : X \leq F_X^{-1}(a)] = -E[X|X \leq F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx.$$

If $X = \psi(\zeta) \equiv \psi(\zeta_T)$, ψ decreasing, then $F_X^{-1}(a) = \psi(F_\zeta^{-1}(1-a))$. Hence

$$\rho_a(X) = -a^{-1} \int_0^a F_X^{-1}(x) \, dx = -a^{-1} \int_{1-a}^1 \psi(F_\zeta^{-1}(y)) \, dy$$

and

$$\rho^\mu(X) = -\int \psi(z) \left\{ \int_{1-F_\zeta(z)}^1 a^{-1} \mu(da) \right\} F_\zeta(dz)$$

$$= -E[\psi(\zeta) g_\mu(\zeta)]$$

for some non-negative increasing g_μ.
The optimization problem.

\[
\max_{\psi \downarrow, \psi \geq \zeta} EU(\psi(\zeta_T)), \quad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^1 a^{-1} \mu(da).
\]
The optimization problem.

\[
\max_{\psi \downarrow, \psi \geq x} EU(\psi(\zeta_T)), \quad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T) g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^1 a^{-1} \mu(da).
\]

Suppose \(\mathcal{M} = \{\mu_1, \ldots, \mu_n\} \), \(g_i \equiv g_{\mu_i} \), and \(g_i(-\infty) = 0 \).
The optimization problem.

\[
\max_{\psi \downarrow, \psi \geq x} \mathbb{E}U(\psi(\zeta_T)), \quad w_0 = \mathbb{E}[\zeta_T \psi(\zeta_T)], \quad \mathbb{E}[\psi(\zeta_T)g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^1 a^{-1} \mu(da).
\]

Suppose \(\mathcal{M} = \{\mu_1, \ldots, \mu_n\} \), \(g_i \equiv g_{\mu_i} \), and \(g_i(-\infty) = 0 \). Lagrangian:

\[
L(\psi, z) \equiv E\left[U(\psi(\zeta)) + \lambda(w_0 - \zeta \psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]
\]

\[
= E\left[U(\psi(\zeta)) - \psi(\zeta)\{\lambda \zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z + b) \right] + \lambda w_0.
\]
The optimization problem.

\[
\max_{\psi_\downarrow, \psi \geq x} \mathbb{E}U(\psi(\zeta_T)), \quad w_0 = \mathbb{E}[\zeta_T\psi(\zeta_T)], \quad \mathbb{E}[\psi(\zeta_T)g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^{1} a^{-1} \mu(da).
\]

Suppose \(\mathcal{M} = \{\mu_1, \ldots, \mu_n\} \), \(g_i \equiv g_{\mu_i} \), and \(g_i(-\infty) = 0 \). Lagrangian:

\[
L(\psi, z) \equiv \mathbb{E}\left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^{n} \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]
\]

\[
= \mathbb{E}\left[U(\psi(\zeta)) - \psi(\zeta)\{\lambda\zeta - \sum_{i=1}^{n} \alpha_i g_i(\zeta)\} - \alpha \cdot (z + b) \right] + \lambda w_0.
\]

Dual-feasibility: \(\alpha \geq 0 \).
The optimization problem.

\[
\max_{\psi \downarrow, \psi \geq X} EU(\psi(\zeta_T)), \quad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^1 a^{-1} \mu(da).
\]

Suppose \(\mathcal{M} = \{\mu_1, \ldots, \mu_n\} \), \(g_i \equiv g_{\mu_i} \), and \(g_i(-\infty) = 0 \). Lagrangian:

\[
L(\psi, z) \equiv E\left[U(\psi(\zeta)) + \lambda(w_0 - \zeta \psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\}\right]
\]

\[
= E\left[U(\psi(\zeta)) - \psi(\zeta)\left\{\lambda \zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\right\} - \alpha \cdot (z + b)\right] + \lambda w_0.
\]

Dual-feasibility: \(\alpha \geq 0 \), and

\[
\lambda \geq \sup_{x > 0} \frac{\sum_{i=1}^n \alpha_i g_i(x)}{x}.
\]
The optimization problem.

\[
\max_{\psi \downarrow, \psi \geq x} EU(\psi(\zeta_T)), \quad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \geq b \quad \forall \mu \in \mathcal{M}
\]

where

\[
g_\mu(z) = \int_{1-F_\zeta(z)}^{1} a^{-1} \mu(da).
\]

Suppose \(\mathcal{M} = \{\mu_1, \ldots, \mu_n\}, g_i \equiv g_{\mu_i}\), and \(g_i(-\infty) = 0\). Lagrangian:

\[
L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta \psi(\zeta)) + \sum_{i=1}^{n} \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]
\]

\[
= E \left[U(\psi(\zeta)) - \psi(\zeta) \left\{ \lambda \zeta - \sum_{i=1}^{n} \alpha_i g_i(\zeta) \right\} - \alpha \cdot (z + b) \right] + \lambda w_0.
\]

Dual-feasibility: \(\alpha \geq 0\), and

\[
\lambda \geq \sup_{x > 0} \frac{\sum_{i=1}^{n} \alpha_i g_i(x)}{x}.
\]

Complementary slackness: \(\alpha \cdot z = 0\).
\[
\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0
\]

where

\[
h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).
\]
\[
\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta) h(\zeta) - \alpha \cdot b \right] + \lambda w_0
\]

where
\[
h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).
\]

Easy if \(h \) increasing.
\[
\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0
\]

where
\[
h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).
\]

Easy if \(h \) increasing. Else, set \(\tilde{h}(x) \equiv h(F^{-1}_\zeta(x)), \tilde{\psi}(x) \equiv \psi(F^{-1}_\zeta(x)) \), consider
\[
E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) \right] = \int_0^1 \left\{ U(\tilde{\psi}(x)) - \tilde{\psi}(x) \tilde{h}(x) \right\} \, dx \equiv \Psi,
\]
say.
\[
\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0
\]

where
\[
h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).
\]

Easy if \(h \) increasing. Else, set \(\tilde{h}(x) \equiv h(F^{-1}_\zeta(x)), \tilde{\psi}(x) \equiv \psi(F^{-1}_\zeta(x)) \), consider
\[
E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) \right] = \int_0^1 \left\{ U(\tilde{\psi}(x)) - \tilde{\psi}(x)\tilde{h}(x) \right\} dx \equiv \Psi,
\]
say. Now set \(H(x) \equiv \int_0^x \tilde{h}(y) \, dy \), and let \(\overline{H} \) be the greatest convex minorant of \(H \), which we may express as
\[
\overline{H}(x) = H(x) + \eta(x)
\]
for some \(\eta \leq 0, \eta(0) = \eta(1) = 0. \)
\[
\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta) h(\zeta) - \alpha \cdot b \right] + \lambda w_0
\]

where

\[
h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).
\]

Easy if \(h \) increasing. Else, set \(\tilde{h}(x) \equiv h(F_\zeta^{-1}(x)) \), \(\tilde{\psi}(x) \equiv \psi(F_\zeta^{-1}(x)) \), consider

\[
E \left[U(\psi(\zeta)) - \psi(\zeta) h(\zeta) \right] = \int_0^1 \{ U(\tilde{\psi}(x)) - \tilde{\psi}(x) \tilde{h}(x) \} \, dx \equiv \Psi,
\]

say. Now set \(H(x) \equiv \int_0^x \tilde{h}(y) \, dy \), and let \(\underline{H} \) be the greatest convex minorant of \(H \), which we may express as

\[
\underline{H}(x) = H(x) + \eta(x)
\]

for some \(\eta \leq 0, \eta(0) = \eta(1) = 0 \). Now estimate

\[
\Psi = \int_0^1 \{ U(\tilde{\psi}(x)) - \tilde{\psi}(x)(\tilde{h}(x) + \eta'(x)) \} \, dx + \int_0^1 \tilde{\psi}(x) \eta'(x) \, dx \\
\leq \int_0^1 \tilde{U}(\tilde{h}(x) + \eta'(x)) \, dx + [\tilde{\psi}(x) \eta(x)]_0^1 - \int_0^1 \eta(x) \, d\tilde{\psi}(x).
\]
Some remarks
Some remarks

- The optimal $\tilde{\psi}$ is given by

$$
\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x))
$$
Some remarks

- The optimal $\tilde{\psi}$ is given by

$$\tilde{\psi}(x) = (U')^{-1}(h(x) + \eta'(x))$$

- To deal with bound $\psi \geq x$, we just take

$$\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x)) \vee x$$
Some remarks

- The optimal $\tilde{\psi}$ is given by

$$\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x))$$

- To deal with bound $\psi \geq x$, we just take

$$\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x)) \lor x$$

- This allows us to replace the principal’s constrained problem with an unconstrained problem for the agent. (Slight mismatch irrelevant in practice).
Some remarks

- The optimal $\tilde{\psi}$ is given by
 \[\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x)) \]

- To deal with bound $\psi \geq x$, we just take
 \[\tilde{\psi}(x) = (U')^{-1}(\tilde{h}(x) + \eta'(x)) \lor x \]

- This allows us to replace the principal's constrained problem with an unconstrained problem for the agent. (Slight mismatch irrelevant in practice).

- The numerical approach is to minimize the dual value over the Lagrange multipliers.
How does it look?

\[\mu = \delta a \quad \text{for} \quad a = 0.05, \quad b = 0.9 \]
\(g_i(x) = a_i^{-1} I_{\{x > 1 - a_i\}} \), \(i = 1, 2 \), \(a_1 = 0.65 \), \(a_2 = 0.05 \), \(g_3(x) = \beta^{-1} \log \left(\frac{\beta}{\min(1-x, \beta)} \right) \); \(b = (1, 1.05, 1) \).
Conclusions
Conclusions

- Simple wage schedule aligns objectives of principal and agent
Conclusions

- Simple wage schedule aligns objectives of principal and agent
- Risk-measure constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T
Conclusions

- Simple wage schedule aligns objectives of principal and agent
- Risk-measure constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T
- Principal reverse-engineers a utility u from his optimal wealth
Conclusions

- Simple wage schedule aligns objectives of principal and agent
- Risk-measure constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T
- Principal reverse-engineers a utility u from his optimal wealth
- Principal offers a wage schedule to make the agent’s utility into u