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Overview

• Contracting to align objectives

• Investing under constraints on the law of terminal wealth

• Investment under law-invariant coherent risk measure constraints

• Contracting for optimal investment under LI coherent risk measure constraints
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Aligning objectives.
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• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

If

UP (x− ϕ(x)) = kUA(ϕ(x))

then the agent is optimising the same objective as the principal!
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Aligning objectives.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

If

UP (x− ϕ(x)) = kUA(ϕ(x))

then the agent is optimising the same objective as the principal!

• What about the agent’s effort?

• What about misreporting?
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Aligning objectives.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

If

UP (x− ϕ(x)) = kUA(ϕ(x))

then the agent is optimising the same objective as the principal!

• What about the agent’s effort?

• What about misreporting?

• What if infx>0 UP (x) < infx>0 UA(x)?
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Aligning objectives.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

If

UP (x− ϕ(x)) = kUA(ϕ(x))

then the agent is optimising the same objective as the principal!

• What about the agent’s effort?

• What about misreporting?

• What if infx>0 UP (x) < infx>0 UA(x)?

Insist wT ≥ x, then make

UP (x− ϕ(x)) = k{UA(ϕ(x)) − UA(0) } + UP (x)
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Proposition. If UP and UA are strictly increasing, the function ϕ : [x,∞) → R
+ is

well defined by

UP (x− ϕ(x)) = k{UA(ϕ(x)) − UA(0) } + UP (x).

It is increasing, and u ≡ UA ◦ ϕ is concave.
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Proposition. If UP and UA are strictly increasing, the function ϕ : [x,∞) → R
+ is

well defined by

UP (x− ϕ(x)) = k{UA(ϕ(x)) − UA(0) } + UP (x).

It is increasing, and u ≡ UA ◦ ϕ is concave.

PROOF. Monotonicity obvious.
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Proposition. If UP and UA are strictly increasing, the function ϕ : [x,∞) → R
+ is

well defined by

UP (x− ϕ(x)) = k{UA(ϕ(x)) − UA(0) } + UP (x).

It is increasing, and u ≡ UA ◦ ϕ is concave.

PROOF. Monotonicity obvious. If concavity fails, for some x1, x2 ≥ x,

p = 1 − q ∈ (0, 1), with x = px1 + qx2

u(x) = UA(ϕ(x))

< pu(x1) + qu(x2)

= pUA(ϕ(x1)) + qUA(ϕ(x2))

≤ UA(pϕ(x1) + qϕ(x2)),

and so ϕ(x) < pϕ(x1) + qϕ(x2).
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+ is

well defined by
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It is increasing, and u ≡ UA ◦ ϕ is concave.

PROOF. Monotonicity obvious. If concavity fails, for some x1, x2 ≥ x,

p = 1 − q ∈ (0, 1), with x = px1 + qx2

u(x) = UA(ϕ(x))

< pu(x1) + qu(x2)

= pUA(ϕ(x1)) + qUA(ϕ(x2))

≤ UA(pϕ(x1) + qϕ(x2)),

and so ϕ(x) < pϕ(x1) + qϕ(x2). Hence

u(x) = UA(ϕ(x)) = UP (x− ϕ(x))

> UP (x− pϕ(x1) − qϕ(x2))

≥ pUP (x1 − ϕ(x1)) + qUP (x2 − ϕ(x2))

= pUA(ϕ(x1)) + qUA(ϕ(x2)).
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How does it look?
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Investing under constraints on the law of wT .
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Wealth dynamics:
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state-price density process (κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.
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Investing under constraints on the law of wT .

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt),

state-price density process (κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Principal wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ.
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Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt),

state-price density process (κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Principal wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the principal’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT .
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decreasing ψ to maxE[U(ψ(ζT ))] subject to
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and other constraints on the law of wT . Knowing ψ, define a utility u by

u′(x) = ψ(x);
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he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the principal’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

u′(x) = ψ(x);

then an agent with initial wealth w0 and maximizing Eu(wT ) will choose

wT = ψ(ζT ).
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Investing under constraints on the law of wT .

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt),

state-price density process (κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Principal wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the principal’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

u′(x) = ψ(x);

then an agent with initial wealth w0 and maximizing Eu(wT ) will choose

wT = ψ(ζT ). If the risk-constrained principal offers the agent ϕ, where

kUA(ϕ(x)) − a = u(x),

then the unconstrained agent implements the principal’s optimum.
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Law-invariant coherent risk measures.
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡

Z

ρa(X) µ(da),
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡

Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡

Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)).
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡

Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)). Hence

ρa(X) = −a−1

Z a

0
F−1
X

(x) dx = −a−1

Z 1

1−a
ψ(F−1

ζ
(y)) dy
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡

Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)). Hence

ρa(X) = −a−1

Z a

0
F−1
X

(x) dx = −a−1

Z 1

1−a
ψ(F−1

ζ
(y)) dy

and

ρµ(X) = −

Z

ψ(z)


Z 1

1−Fζ(z)
a−1 µ(da)

ff

Fζ(dz)

= −E[ψ(ζ)gµ(ζ)]

for some non-negative increasing gµ.
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The optimization problem.

max
ψ↓,ψ≥x

EU(ψ(ζT )), w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M

where

gµ(z) =

Z 1

1−Fζ(z)
a−1 µ(da).
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The optimization problem.

max
ψ↓,ψ≥x

EU(ψ(ζT )), w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M

where

gµ(z) =

Z 1

1−Fζ(z)
a−1 µ(da).

Suppose M = {µ1, . . . , µn}, gi ≡ gµi , and gi(−∞) = 0.
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The optimization problem.

max
ψ↓,ψ≥x

EU(ψ(ζT )), w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M

where

gµ(z) =

Z 1

1−Fζ(z)
a−1 µ(da).

Suppose M = {µ1, . . . , µn}, gi ≡ gµi , and gi(−∞) = 0. Lagrangian:

L(ψ, z) ≡ E

»

U(ψ(ζ)) + λ(w0 − ζψ(ζ)) +

n
X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}

–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −

n
X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.
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The optimization problem.
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X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}

–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −

n
X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.

Dual-feasibility: α ≥ 0,
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n
X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}

–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −

n
X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.

Dual-feasibility: α ≥ 0, and

λ ≥ sup
x>0

Pn
i=1 αi gi(x)

x
.
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The optimization problem.

max
ψ↓,ψ≥x
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U(ψ(ζ)) + λ(w0 − ζψ(ζ)) +

n
X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}

–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −

n
X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.

Dual-feasibility: α ≥ 0, and

λ ≥ sup
x>0

Pn
i=1 αi gi(x)

x
.

Complementary slackness: α · z = 0.
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b

–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b

–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing.

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 10/14



supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b

–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say.
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b

–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say. Now set H(x) ≡
R x

0 h̃(y) dy, and let H be the greatest convex minorant of

H, which we may express as

H(x) = H(x) + η(x)

for some η ≤ 0, η(0) = η(1) = 0.
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b

–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say. Now set H(x) ≡
R x

0 h̃(y) dy, and let H be the greatest convex minorant of

H, which we may express as

H(x) = H(x) + η(x)

for some η ≤ 0, η(0) = η(1) = 0. Now estimate

Ψ =

Z 1

0
{U(ψ̃(x)) − ψ̃(x)(h̃(x) + η′(x))} dx+

Z 1

0
ψ̃(x)η′(x) dx

≤

Z 1

0
Ũ(h̃(x) + η′(x)) dx+ [ψ̃(x)η(x)]10 −

Z 1

0
η(x) dψ̃(x).
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Some remarks

• The optimal ψ̃ is given by

ψ̃(x) = (U ′)−1(h̃(x) + η′(x))
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• To deal with bound ψ ≥ x, we just take

ψ̃(x) = (U ′)−1(h̃(x) + η′(x)) ∨ x
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ψ̃(x) = (U ′)−1(h̃(x) + η′(x))

• To deal with bound ψ ≥ x, we just take

ψ̃(x) = (U ′)−1(h̃(x) + η′(x)) ∨ x

• This allows us to replace the prinicpal’s constrained problem with an

unconstrained problem for the agent. (Slight mismatch irrelevant in practice).
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Some remarks

• The optimal ψ̃ is given by

ψ̃(x) = (U ′)−1(h̃(x) + η′(x))

• To deal with bound ψ ≥ x, we just take

ψ̃(x) = (U ′)−1(h̃(x) + η′(x)) ∨ x

• This allows us to replace the prinicpal’s constrained problem with an

unconstrained problem for the agent. (Slight mismatch irrelevant in practice).

• The numerical approach is to minimize the dual value over the Lagrange

multipliers.
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How does it look?
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µ = δa for a = 0.05, b = 0.9
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gi(x) = a−1
i I{x>1−ai}

, i = 1, 2, a1 = 0.65, a2 = 0.05, g3(x) = β−1 log( β
min(1−x,β)

);

b = (1, 1.05, 1).
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Conclusions

• Simple wage schedule aligns objectives of principal and agent

• Risk-measure constrained principal cares only about the law of terminal

wealth, so can find his optimum as a decreasing function of ζT

• Principal reverse-engineers a utility u from his optimal wealth

• Principal offers a wage schedule to make the agent’s utility into u
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