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Topics in this talk
— No-arbitrage requirements restrict model choice.

— Discerning the relationship between arbitrage and the class of ad-
missible trading strategies.

— From the point of view of arbitrage, which properties of stochastic
processes matter ?

— Frictionless markets, markets with (proportional) transaction costs,
liquidity constraints.



Semimartingales and free lunches I
(Qafa (ft)te[O7T]7P)
(St)iejo,r): adapted cadlag process, locally bounded

Simple predictable integrands: 7; increasing sequence of stopping
times, 1+ =1,...,n+ 1;

n
F = Z fil]ﬁﬂ’z’—i—l]’ fi € fﬂ;;i =1,...,n.

i=1
Elementary stochastic integral:

(F-S)r = Z fi(Sr, L nr — SpaT)-

=1



Frictionless model of trading
We assume O initial capital. Stock price: S , bond price =1 .
Fi represents number of stock held in the portfolio at time ¢ .

Interpretation: portfolio rebalanced at the stopping times 7; in a pre-
dictable way.

Predictability: practical and technical justification.
Portfolio terminal value:



Semimartingales and free lunches II
Arbitrage: If there is FF s.t. V(F) >0 a.s., P(V(F) >0) >0 .
Free lunch with vanishing risk for simple integrands: a simple pre-
dictable sequence Fj, s.t. V(Fy) > —1/n a.s. and V(F,) — M € [0, o0]

a.s., P(M >0)>0.

Theorem. (Delbaen and Schachermayer '94) No free lunch with
vanishing risk for simple integrands implies that S is a semimartingale.



(Counter)example
Fractional Brownian motion with Hurst parameter H # 1/2: BH |
Continuous centered Gaussian process satisfying
EBH B = (121 + s2H — |t — 5|21)

Not a semimartingale for H = 1/2 : admits free lunches for simple
integrands ! There is even arbitrage, Rogers '97, etc. ..



Restrictions on strategies I: time lag

Cheridito '03, Jarrow, Protter and Sayit '08: furthermore stipulate
that ;41 > 7+ h for each ¢, for some h > 0 .

Cheridito '03: (geometric) FBM has no arbitrage with respect to the
restricted class.

“Discrete-time trading.”

In practice S can be identified along a discrete sequence of time
instants only. (Microstructure ?7)



Model perturbation I

Theorem. (Jarrow, Protter and Sayit '08) If S is continuous, admits
an equivalent local martingale measure, (S) satisfies a technical con-
dition then S 4+ C' has no arbitrage w.r.t. the restricted class for any
adapted cadlag bounded C' .

Recurrent phenomenon: absence of arbitrage insensitive to certain
perturbations of S .



Restrictions on strategies II: smoothness

Assume S continuous with a quadratic variation d(S); = ¢2(S;)dt and
satisfies a small ball condition.

o() is C1 with linear growth.

Forward integral: F - S is definable for e.g. F, = f(S;) with f € C1
and Itd formula holds, Follmer '81.

Theorem. (Bender, Sottinen and Valkeila '08) If F}; is a C! functional
of t , S; the average and the running maximum (minimum) of S at ¢
then V(F) cannot be an arbitrage.



Model perturbations II

Example. If S = exp{BY + W} where W is BM and H > 1/2 then
this model is arbitrage-free for the ‘“smooth’” strategies above.

(BT +w)=W))
If strategies are smooth, only quadratic variation of the process mat-

ters and finer probabilistic structure (i.e. long-range dependence)
doesn’'t (from the arbitrage point of view).
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Markets with friction
Bid- and ask prices: S; < S; , adapted and continuous (for simplicity)

Simple strategies:

@)
F= Zl fjl]TjaTj—l—l]’ Jj€Fm 1=1,...
]:

where sup; 7, > T a.s. and Fp = Fp =0 .

For each w € €2 there are finitely many transactions.
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Value and admissibility

j=1
Y By — P 2)
j=1

F is simple x -admissible if for each stopping time o there is 7 > o
such that V(Fly, + Fol, ) = —x ass.

F' is simple admissible if it is simple z -admissible for some = > 0 .
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General trading strategies 1

A process G is a (general) x -admissible strategy if Fr(w,t) — G(w,1t)
for each w and t for some simple x 4+ 1/n -admissible Fj, .

Robust no free lunch with vanishing risk (Schachermayer '04): there
are Sy < 9} < ?; < Sy such that the market (§’,§') has no free lunches
with vanishing risk for simple admissible strategies. (RNFLVR)
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Restrictions on strategies III: FV

Proposition. (Guasoni and Rasonyi '08) (RNFLVR) for simple strate-
gies implies that each & is a finite variation process.

Proposition. If S, S are bounded then a process G is an x -admissible
strateqgy iff it is predictable with finite variation and for each 6 > O
and each stopping time o there is a stopping time > o with

V(Gl[O,U] —|— Ggl(aﬂ_]) 2 —Xr — 5

a.S.
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General trading strategies 11
Terminal value of trading with portfolio G :

G = Gt — G~ : minimal decomposition with G1,G~ predictable in-
creasing.

V(G) = — JT5,dGE + [T SudGy

Stieltjes-integral.
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Dual variables
A consistent price system is (Q,Z2) s.t. Q ~ P, Z is a Q -martingale
S < Z; < St a.s. forallte[0,T] .
(Shadow price.)
Strictly consistent price system: strict inequalities.

Analogue of equivalent martingale measures (Jouini and Kallal '95,
Kabanov and Stricker '00, Schachermayer '04).

Discrete-time: satisfactory multidimensional theory.

Basis of dual methods in utility maximisation (Kallsen and Muhle-
Karbe '08).
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Fundamental theorem I
Theorem. (Guasoni and Rasonyi '08) The following are equivalent.
— (RNFLVR) for simple strategies.
— No robust arbitrage for general strategies.

— EXistence of strictly consistent price systems.
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Fundamental theorem II
Special case: proportional transaction costs.
St positive, continuous and adapted. £ > 0 fixed.
Si:=(1—-e)S, Si=(1A+¢€)S
Admissibility in the usual sense: V(F1ig4) > —z a.s. for all ¢ .
Theorem. (Guasoni, Rasonyi and Schachermayer '08) There is ab-

sence of arbitrage for each ¢ > O iff there are strictly consistent price
systems for each € > 0O .
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Technical problems
Admissibility in the usual sense:
— Closedness of the set of attainable payoffs is problematic.
— Easy to check.
Our concept of admissibility:
— Economic interpretation, closedness.
— Difficult to check if a strategy is admissible.

Campi and Schachermayer '06: one more concept.
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Main ingredients

Lemma. If there is no arbitrage with simple admissible strategies and
V(F) > —x for a simple admissible strategy F then F is x -admissible.

Compare to: V(F) > —z implies V(F1ligy,) = —z for ¢t € [0,T] in
frictionless arbitrage-free markets.

(In discrete time: analogous condition implies existence of SCPS in a
strong sense, Rasonyi '08, Kabanov and Stricker '02.)

Lemma. One can approximate G , V(G) uniformly by some simple
F (resp. V(F) ).
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Model classes with SCPS

Sufficient conditions (in the spirit of Levental-Skorohod '97, Guasoni
'06 and Kabanov and Stricker '08).

The following two conditions imply the existence of SCPS for all € > O:

— 0 is a.s. in the (relative) interior of the convex hull of the support
of the conditional distribution of S — S, w.r.t. F, , for all stopping
times o < 7.

— For all stopping times = and for all § > 0O ,

P( sup |Su— Sr| <46|Fr) >0
ue[r,T]
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a.s.on {r<T} .

How to check these conditions 7



Conditional full support
C;;"[u,v] . continuous positive functions on [u,v] starting from = > 0

We say that S has conditional full support if for all v < T,

suppP(S|[u’T] € | Fu) = C’:S!;[u,T]

almost surely.

Example. Any Markov process S with full support on Cé';[o,T] sat-
isfies this. (Stroock and Varadhan '72 support theorem.)

Theorem. (Guasoni, Rasonyi and Schachermayer '08) C. f. s. im-
plies the existence of SCPS for all e > 0 .
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FBM & co.
Sy = exp{BtH} has conditional full support (Guasoni et al. '08).
Gaussian moving averages (Cherny '08).

Mixture models (products of independent processes with c.f.s.).
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A digression back to frictionless models

Take S with conditional full support (satisfying previous assumptions)
and F' simple predictable

n
= Zf’il]Tz',Tz'Jrﬂ’ fi€ Frpi=1,...,n.
=1

1=

where 7; are hitting times of continuous boundaries by S (max.s ).

Then V(F) cannot be an arbitrage. (Bender, Sottinen and Valkeila
'08)
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Smooth trajectories

Lemma. If Xg =0 and X has c.f.s. in the sense

suppP(X|p, 1 € | Fu) = Cx,[u, T] a.s. for each u < T,

then Y; = fé Xsds also has c.f.s. in the above sense.
Corollary: exp{Y} has SCPS and smooth trajectories.

Under proportional transaction costs, trajectorial properties do not
matter from the arbitrage point of view (while probabilistic properties
do).
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Hedging

Theorem. If g is lower semicontinuous and bounded from below, the
asymptotic (¢ — 0 ) superreplication price of ¢g(St) is g(Sp) where g
is the concave envelope of g .

It follows that the superreplication price of (S — K)1 is Sy . (Soner,
Shreve and Cvitanic '95; Levental and Skorohod '97)

T his shows how investors’ hands are tied by transaction costs.

To price options utility-based approach needed. Duality theory. (Ka-
banov, Last, Stricker, Campi, Schachermayer)
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Illiquid markets - an example
Price process replaced by supply curve.
Hypothetical price: dS; = Siu(S)dt + Sio(Sy)dWy .
Buying v units of stock at time ¢ costs
e.g. S(t,v) ;= Se™

with some parameter a« > 0 .
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Illiquid markets -trading

Discrete-time heuristics leads to terminal wealth
T 0
V(F) = (F- ) — | 530%(Su)78 =5 (u, 0)du
where (0/0v)S(u,0) = aS, and strategies are of the form
t
Fy = /o Budu 4+ (v - S)¢

with 3,~ progressively measurable.

Thus it seems that trading strategies should have finite quadratic
variation in this context.

(Liquidation function is smooth at the origin while its derivative jumps
at 0 in the case of proportional transaction costs.)
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Moral I

In frictionless market models discretized trading strategies allow for
(bold) perturbations of the probability as well as the trajectorial struc-
ture.

Smooth trading and pricing of “smooth” options is indifferent to (cer-
tain) probabilistic perturbations as long as quadratic variation remains
unchanged.
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Moral II

Under (proportional) transaction costs trajectorial properties seem to
be irrelevant (jJump case: on-going research). Probabilistic properties

are important.

Illiquid case: strategies with finite quadratic variation appear (transi-
tion from frictionless to transaction cost world).
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