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Common problem: 
A trader needs to liquidate a large long (short) position by the end of the day 
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Execution algorithms can 
sometimes significantly reduce 
the overall price impact 



How to optimally execute a large block order?

Need first:

• How do stock prices react to large orders?

• What is a good model for this?

• How to formulate and solve the optimization problem?

Interesting because:

• Relevant in applications

• Liquidity risk in its purest form

• Interesting mathematics
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Overview

0. Intuition for market impact

1. Optimal execution in a limit order book

2. Optimal execution and risk aversion

3. Multi-agent equilibrium

3



Limit order book before market order
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Limit order book after market order

buyers’ bid offers sellers’ ask offers

new bid-ask spread

new best 
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Resilience of the limit order book after market order
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1. Optimal execution in a limit order book model

Block-shaped limit order book:

[1] A. Obizhaeva and J. Wang: Optimal Trading Strategy and

Supply/Demand Dynamics. To appear in J. Financial Markets

LOB with general shape function and linear constraints:

[2] (A. Alfonsi, A. Fruth, and A.S.): Optimal execution strategies in

limit order books with general shape functions. Preprint, 2007

[3] (A. Alfonsi, A. Fruth, and A.S.): Constrained portfolio

liquidation in a limit order book model. To appear in
Banach Center Publications.
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Limit order book model without large trader

buyers’ bid offers sellers’ ask offers

unaffected best ask priceunaffected best bid price,
is martingale



Limit order book model after large trades



Limit order book model at large trade



Limit order book model immediately after large trade



Limit order book model with resilience



The LOB model:

f(x) = shape function = densities of bids for x < 0, asks for x > 0

B0
t = ‘unaffected’ bid price at time t, is martingale

Bt = bid price after market orders before time t

DB
t = Bt −B0

t

If sell order of ξt ≥ 0 shares is placed at time t:

DB
t changes to DB

t+, where
Z DB

t

DB
t+

f(x)dx = ξt

and
Bt+ := Bt + DB

t+ −DB
t = B0

t + DB
t+,

=⇒ nonlinear price impact
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The LOB model:

A0
t = ‘unaffected’ ask price at time t, satisfies B0

t ≤ A0
t

At = bid price after market orders before time t

DA
t = At −A0

t

If buy order of ξt ≤ 0 shares is placed at time t:

DA
t changes to DA

t+, where

Z DA
t+

DA
t

f(x)dx = −ξt

and
At+ := At + DA

t+ −DA
t = A0

t + DA
t+,
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If the large investor is inactive during the time interval [t, t + s[,
there are two possibilities:

• Exponential recovery of the extra spread

DB
t+s = e−ρsDB

t

• Exponential recovery of the order book volume

EB
t+s = e−ρsEB

t

where

EB
t =

Z 0

DB
t

f(x) dx =: F (DB
t ).

In both cases: analogous dynamics for DA or EA
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The optimization problem:

• N + 1 market orders: ξn shares placed at time tn = nτ s.th.
1) ξn is adapted and bounded from below (can be negative),

2) we have
NX

n=0

ξn = X0

• When selling ξn ≥ 0 shares, we sell f(x) dx shares at price B0
t + x

with x ranging from DB
t+ to DB

t , i.e., the revenues are positive:

ρtn(ξn) :=
Z DB

tn

DB
tn+

(B0
tn

+ x)f(x) dx = ξnB0
tn

+
Z DB

tn

DB
tn+

xf(x) dx
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• When buying shares (ξn ≤ 0), the revenues are negative:

ρtn(ξn) := ξnA0
tn
−

Z DA
tn+

DA
tn

xf(x) dx

• The expected revenues from the strategy ξ = (ξn) are

R(ξ) = E
h NX

n=0

ρtn(ξn)
i

The goal is to maximize the expected revenues over all admissible
strategies.
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Theorem 1 (Optimal strategy for exponential recovery of volume).
Suppose that the LOB has infinite depth, i.e., |F (x)|→∞ as
|x|→∞, and that the function

h(u) := e−ρτF−1(e−ρτu)− F−1(u)

is one-to-one. Let ξ∗0 be the unique solution of the equation

F−1
°
Nξ∗0

°
1− e−ρτ

¢
−X0

¢
=

h(−ξ∗0)
1− e−ρτ

,

and
ξ∗1 = · · · = ξ∗N−1 = ξ∗0

°
1− e−ρτ

¢
,

as well as
ξ∗N = X0 − ξ∗0 − (N − 1)ξ∗0

°
1− e−ρτ

¢
.

Then ξ∗n > 0 for all n, and ξ∗ is the unique optimal strategy.
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The optimal strategy for the minimization  
of the expected liquidation costs is deterministic: 
 
 
 
 
 
 
 
 
 
 
 ... 
ξ0

* ξN
* ξ2

* 

Optimal sell market orders for N+1 equidistant time steps 



Remark: The impact of ξ∗ is such that

DB
tk+1

= e−ρτDB
tk+

for all k.

Corollary 2 (Closed-form solution for block-shaped LOB).
In a block-shaped LOB, the unique optimal strategy ξ∗ is

ξ∗0 = ξ∗N =
X0

(N − 1)(1− e−ρτ ) + 2
and ξ∗1 = · · · = ξ∗N−1 =

X0 − 2ξ∗0
N − 1

.

Improves the entangled forward-backward recursive scheme by
Obizhaeva and Wang (Xt = number of shares at time t):
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ξ∗n =
1
2
δn+1 [≤n+1Xtn − φn+1Dtn ] , n = 0, . . . , N − 1,(1)

ξ∗N = XT ,

δn :=
≥ 1

2q
+ αn − βnκe−ρτ + γnκ2e−2ρτ

¥−1

≤n := λ + 2αn − βnκe−ρτ(2)

φn := 1− βne−ρτ + 2γnκe−2ρτ .

αN =
1
2q
− λ and αn = αn+1 −

1
4
δn+1≤

2
n+1,

βN = 1 and βn = βn+1e
−ρτ +

1
2
δn+1≤n+1φn+1,(3)

γN = 0 and γn = γn+1e
−2ρτ − 1

4
δn+1φ

2
n+1.
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Further Theorems:

• Analogous (but different) result for exponential recovery of EB.

• Explicit solution for inhomogeneous recovery (block-shaped LOB)

• Explicit solutions under linear constraints (block-shaped LOB).
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Example shape functions:

1 2 3 4 5

2000

4000

6000

8000

10000

12000

14000

16000
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Example Recovery of E Recovery of D

number f(x) ξ∗0 ξ∗1 ξ∗N ξ∗0 ξ∗1 ξ∗N

0 q 10,223 8,839 10,223 10,223 8,839 10,223

1 q√
|x|+1

10,257 8,869 9,925 10,756 8,724 10,726

2 q
|x|+1 10,303 8,909 9,520 13,305 8,154 13,305

3 qe|x| 10,139 8,767 10,962 9,735 8,947 9,741

4 q
10 |x| + q 10,211 8,829 10,326 10,130 8,860 10,131

5 q
10x2 + q 10,192 8,812 10,498 10,101 8,868 10,091

Table 1: The table shows optimal strategies for various choices of the
shape function f . We set X0 = 100, 000 and q = 5, 000 shares, ρ = 20,
T = 1 and N = 10.
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Sketch of proof:

1. Step: reduction to deterministic optimization problem

Introduce simplified dynamics with collapsed bid-ask spread

• E0 = D0 = 0 and

Et = F (Dt) and Dt = F−1(Et).

• Regardless of the sign of ξn,

Etn+ = Etn + ξn and Dtn+ = F−1 (ξn + F (Dtn)) .

• For k = 0, . . . , N − 1,

Dtk+1 = e−ρτDtk+

Then
EB

t ≤ Et ≤ EA
t and DB

t ≤ Dt ≤ DA
t .
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Introduce simplified revenues

ρtn
(ξn) := B0

tn
ξn +

Z Dtn

Dtn+

xf(x) dx,

They satisfy

ρtn
(ξn) ≥ ρtn(ξn) with equality if ξk ≥ 0 for all k.

The simplified revenues functional is

R(ξ) = E
h NX

n=0

ρtn
(ξn)

i
.

With Xt = X0 −
P

tk<t ξk for t ≤ T and XtN+1 := 0,

NX

n=0

B0
tn

ξn = −
NX

n=0

B0
tn

(Xtn+1 −Xtn) = X0B0 +
NX

n=1

Xtn(B0
tn
−B0

tn−1
).
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Hence,
R(ξ) = B0X0 + E

£
R(ξ0, . . . , ξN )

§
,

where for any deterministic strategy (x0, . . . , xN )

R(x0, . . . , xN ) :=
NX

n=0

Z Dtn

Dtn+
xf(x) dx.

2. Step: deterministic optimization problem

Let

Ξ :=
n

(x0, . . . , xN ) ∈ RN+1
ØØ

NX

n=0

xn = X0

o
.

We will show that R has a unique minimum on Ξ that coincides with
the optimal strategy.
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With

eF (x) =
Z x

0
yf(y) dy, G(x) = eF (F−1(x)), and a := e−ρτ

we have

R(x0, . . . , xN ) =
NX

n=0

≥
eF

°
F−1 (Etn)

¢
− eF

°
F−1 (Etn+)

¢¥

=
NX

n=0

°
G (Etn)−G (Etn + xn)

¢

= G (0)−G (x0)

+G (ax0)−G (ax0 + x1)

+G
°
a2x0 + ax1

¢
−G

°
a2x0 + ax1 + x2

¢

+ . . .

+G
°
aNx0 + · · · + axN−1

¢
−G

°
aNx0 + · · · + xN

¢
.
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Lemma 3 We have R(x0, . . . , xN )−→−∞ for |ξ|→∞, and
therefore there exists a local maximum of R in Ξ.

Thanks to Lemma 3, there is at least one optimal strategy
ξ∗ = (x∗0, . . . , x∗N ) ∈ Ξ, and so there exists a Lagrange
multiplier ν ∈ R such that

∂

∂xj
R(x∗0, . . . , x

∗
N ) = ν for j = 0, . . . , N .

Note
G0(x) = F−1(x).
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∂

∂xj
R(x0, . . . , xN ) = a

∑
∂

∂xj+1
R(x0, . . . , xN ) + G0 °a(ajx0 + · · · + xj)

¢∏

− G0 °ajx0 + · · · + xj

¢

Hence
ν = aν + h(ajx∗0 + · · · + x∗j ).

and

x∗0 = h−1 (ν (1− a))

x∗j = x∗0 (1− a) for j = 1, . . . , N − 1

x∗N = X0 − x∗0 − (N − 1)x∗0 (1− a) .

More computations now yield equation for x∗0....................
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2. Optimal execution and risk aversion

Risk-neutral evaluation does not capture volatility risk. Must
introduce risk aversion.
The limit order book model is too complicated.
Results are based on simpler model.

• Almgren & Chriss, Almgren & Lorenz: mean-variance optimization.

• with Torsten Schöneborn: expected utility maximization
- absolute risk aversion determines qualitative behavior
of optimal strategies.

- CARA case is special.
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Temporary and permanent price impacts 

time t 

intraday 
stock 
price 

immediate 
impact 

permanent 
impact 

  a few minutes 



Liquidation time: T ∈ [0,∞].

Strategy: X adapted with X0 > 0 fixed and XT = 0.
Admissible: Xt bounded, absolutely continuous in t.

Market impact model: Following Almgren (2003),

SX
t = S0 + σBt + γ (Xt −X0) + h(−Ẋt)

↑ ↑ ↑ ↑
initial Brownian permanent temporary

price motion impact impact

(linear) (nonlinear)

Most common model in practice, drift, multiple assets possible.
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Assumption:
f(x) := xh(x)

is convex, C1, and satisfies f(x)/x→∞ for |x|→∞.
E.g., h(x) = α sign(x)

p
|x| + βx.

Sales revenues:

RT (X) =
Z T

0
(−Ẋt)SX

t dt = . . .

= S0X0 −
γ

2
X2

0 + σ

Z T

0
Xt dBt −

Z T

0
f(−Ẋt) dt.

Goal: maximize expected utility

E[u(RT (X)) ]

over admissible strategies for u increasing, concave.
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Setup as control problem

• Control process ξt, corresponding to −Ẋt.

• Xξ
t := X0 −

Z t

0
ξs ds

• controlled diffusion:

Rξ
t = R0 + σ

Z t

0
Xξ

s dBs −
Z t

0
f(ξs) ds

• value function

v(T,X0, R0) = sup
ξ∈XT (X0)

E
£
u(Rξ

T )
§
,

where

XT (X0) =
n

ξ |Xξ is bounded and
Z T

0
ξt dt = X0

o

26



Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
≥
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

¥
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRf(ξ)

¢
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
≥
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

¥
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRf(ξ)

¢

What about the constraint
R T
0 ξt dt = X0?
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Heuristic derivation of HJB equation

dv(T − t,Xξ
t , Rξ

t ) = σvRXξ
t dBt

+
≥
− vt − ξtvX + vRf(ξt) +

σ2

2
(Xξ

t )2vRR

¥
dt

Hence

vt =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRf(ξ)

¢

What about the constraint
R T
0 ξt dt = X0? It is in the initial

condition:

lim
T↓0

v(T,X,R) =





u(R) if X = 0,

−∞ otherwise.
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Theorem: If u(x) = −e−αx for some α > 0, then the unique optimal
strategy ξ∗ is a deterministic function of t. Moreover, v is a classical
solution of the singular HJB equation.
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Theorem: If u(x) = −e−αx for some α > 0, then the unique optimal
strategy ξ∗ is a deterministic function of t. Moreover, v is a classical
solution of the singular HJB equation.

The fact that optimal strategies for CARA investors are
deterministic is very robust. Is also true

• if Brownian motion is replaced by a Lévy process;

• for the limit order book model in part 1.

(A.S., T. Schöneborn, and M. Tehranci, in preparation).
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Example: For linear temporary impact, f(x) = λx2, the optimal
strategy is

ξ∗t = X0

r
ασ2

2λ
·
cosh

≥
(T − t)

q
ασ2

2λ

¥

sinh
≥
T

q
ασ2

2λ

¥

Xξ∗

t = X0 ·
cosh

≥
t
q

ασ2

2λ

¥
sinh

≥
T

q
ασ2

2λ

¥
− cosh

≥
T

q
ασ2

2λ

¥
sinh

≥
t
q

ασ2

2λ

¥

sinh
≥
T

q
ασ2

2λ

¥

The value function is

v(T,R0,X0) = − exp
∑
−α(R0+eS0X0−

γ

2
X2

0 )+X2
0

r
λα3σ2

2
coth

≥
T

r
ασ2

2λ

¥∏
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Results for other utility functions not available at this time, because
of difficult PDE.

=⇒ Consider infinite-time horizon instead

- Assume also linear temporary impact:

f(x) = λx2

- Utility function u ∈ C6(R) such that the absolute risk aversion,

A(R) := −u00(R)
u0(R)

(= constant for exponential utility),

satisfies
0 < Amin ≤ A(R) ≤ Amax <∞.
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Recall

Rξ
t = R0 + σ

Z t

0
Xξ

s dBs − λ

Z t

0
ξ2
s ds.

• Optimal liquidation:

maximize E[u(Rξ
∞) ]

• Maximization of asymptotic portfolio value:

maximize lim
t↑∞

E[u(Rξ
t ) ]

Note: Liquidation enforced by the fact that a risk-averse investor
does not want to hold a stock whose price process is a martingale.
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Recall

Rξ
t = R0 + σ

Z t

0
Xξ

s dBs − λ

Z t

0
ξ2
s ds.

• Optimal liquidation:

maximize E[u(Rξ
∞) ]

• Maximization of asymptotic portfolio value:

maximize lim
t↑∞

E[u(Rξ
t ) ]

Note: Liquidation enforced by the fact that a risk-averse investor
does not want to hold a stock whose price process is a martingale.

Theorem: Both problems are equivalent.
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRξ2

¢

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRξ2

¢

Initial condition:
v(0, R) = u(R).
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HJB equation for finite time horizon:

vt =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRξ2

¢

Guess for infinite time horizon:

0 =
σ2

2
X2vRR − inf

ξ

°
ξvX + vRξ2

¢

Initial condition:
v(0, R) = u(R).

Corresponding reduced-form equation:

v2
X = −2λσ2X2vR · vRR

Not very nice either......

32



Way out: consider optimal Markov control in HJB equation

bξ(X,R) = − vX(X,R)
2λvR(X,R)

and let

ec(Y,R) =
bξ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then ec solves

(∗)






ecY =
σ2

4ec
ecRR −

3
2
λececR

ec(0, R) =
q

σ2A(R)
2λ
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Way out: consider optimal Markov control in HJB equation

bξ(X,R) = − vX(X,R)
2λvR(X,R)

and let

ec(Y,R) =
bξ(
√

Y ,R)√
Y

.

If v solves the HJB equation, then ec solves

(∗)






ecY =
σ2

4ec
ecRR −

3
2
λececR

ec(0, R) =
q

σ2A(R)
2λ

Theorem: (∗) admits a unique classical solution ec ∈ C2,4 satisfying
r

σ2Amin

2λ
≤ ec(Y,R) ≤

r
σ2Amax

2λ
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Next, there exists a C2,4-solution ew of the transport equation




ewY = −λec ewR

ew(0, R) = u(R).
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Next, there exists a C2,4-solution ew of the transport equation




ewY = −λec ewR

ew(0, R) = u(R).

Theorem: w(X,R) := ew(X2, R) is a smooth solution of the HJB
equation

0 =
σ2

2
X2wRR − inf

ξ

°
ξwX + wRξ2

¢
, w(0, R) = u(R).

The unique minimizer is

bξ(X,R) = − wX(X,R)
2λwR(X,R)

= ec(X2, R)X
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Estimates on w and a verification argument yield

Theorem: w is the value function:

w(X0, R0) = v(X0, R0) = max
ξ

E[u(Rξ
∞) ].

The unique optimal strategy is given by

ξ∗t = −Ẋ∗
t = bξ

°
X∗

t , RX∗

t

¢
.

Moreover, R 7→ v(X,R) is a utility function for each X and

ec(X,R) =

r
σ2A(X,R)

2λ
,

where A(X,R) is the absolute risk aversion of v(X, ·) at R.
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Corollary: If u(R) = −e−AR, then

Xξ∗

t = X0 exp
≥
− t

r
σ2A

2λ

¥
.
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Corollary: If u(R) = −e−AR, then

Xξ∗

t = X0 exp
≥
− t

r
σ2A

2λ

¥
.

General result:

Theorem: The optimal strategy ξ̂(X,R) is increasing (decreasing)
in R iff A(R) is increasing (decreasing). I.e.,

Utility function Optimal trading strategy

DARA ⇐⇒ Passive in the money

CARA ⇐⇒ Neutral in the money

IARA ⇐⇒ Aggresive in the money
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1 2 3 4 5

0.2

0.4

0.6

0.8

1
Asset postion X ξ̂

t

Time t

1 2 3 4 5

-3

-2

-1

1

2

3

Brownian motion Bt

Time t

Two optimal strategies for the IARA utility function with

A(R) = 2(1.5 + tanh(R− 100))2.
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Theorem: If u1 and u0 are such that A1 ≥ A0 then bξ1 ≥ bξ0.
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Theorem: If u1 and u0 are such that A1 ≥ A0 then bξ1 ≥ bξ0.

Idea of Proof: g := ec1 − ec0 solves

gY =
1
2
agRR + bgR + V g,

where

a =
σ2

2ec0
, b = −3

2
λec1, and V = −σ2ec1

RR

4ec0ec1
− 3

2
λec0

R.

The boundary condition of g is

g(0, R) =

r
σ2A1(R)

2λ
−

r
σ2A0(R)

2λ
≥ 0

Now maximum principle or Feynman-Kac argument....
(plus localization)
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.
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2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

p
bξ

λ

Dependence of the optimal strategy bξ on λ for the DARA utility
function with A(R) = 2(1.2− tanh(15R))2.

40



2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

p
bξ

λ

Dependence of the optimal strategy bξ on λ for the DARA utility
function with A(R) = 2(1.2− tanh(15R))2.

Theorem: IARA =⇒ bξ is decreasing in λ.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.
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IARA utility function with A(R) = 2(1.5 + tanh(R− 100))2 and
parameter λ = σ = 1.
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What about other monotonicity relations?

• Monotonicity in λ: intuitively, an increase in liquidaton costs
should lead to a decrease of liquidation speed.

• Monotonicity in X: intuitively, larger asset position should lead to
an increased liquidation speed.

• Monotonicity in σ: intuitively, an increase in volatility should lead
to an increase in the liquidation speed.
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Thank you for your attention
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