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Social Learning

I Learning from prices (Hayek (1945)):

• Rational expectations equilibrium: Grossman (1981).

• Strategic Foundations: Wilson (1977), Milgrom (1981), Pesendorfer
and Swinkels (1997), and Reny and Perry (2006).

I Learning from Local Interactions:

• Decentralized markets: Wolinsky (1990), Blouin and Serrano (2002).

• Word-of-mouth learning: Banerjee and Fudenberg (2004).
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Example: Federal Funds Market

Duffie and Ashcraft (2007)

I pricing of overnight loans of federal funds

I decentralized inter-bank market in which these loans are traded

I During a direct bilateral contact, counterparties exchange information
and decide whether to forego a trade or to continue ”shopping
around”.
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Information Percolation

Duffie and Manso (2007):

I The cross-sectional distribution of information is a solution to a
Boltzmann-type evolution equation!

I Explicit solution to the evolution equation = explicit cross-sectional
distribution of information.
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The Power of Decentralized Learning

Duffie, Giroux, and Manso (2008)

I convergence of beliefs is exponential

I extreme decentralization: the rate of convergence does not depend on
the number of agents in each meeting.
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This Paper: Endogenous Search Intensity

Two issues arise that may slow down, or even stop, learning:

I Externality Problems

I Coordination Problems
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Other Papers with Failures of Social Learning

I Prices:
• Grossman and Stiglitz (1976)

• Vives (1993)

I Local interactions:
• Bikhchandani, Hirshleifer, and Welch (1992)

• Banerjee (1992)
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Model

Model Primitives

I continuum of agents

I random variable of interest to all agents: Y

I agents endowed with pairwise independent signals

I signals are jointly Gaussian with Y

I agent i is initially endowed with Ni0 signals.
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Model

Model Primitives

I each agent stays in the market for an exponentially distributed time
with parameter η′.

I at exit, agents choose an action A, with cost (Y −A)2.

I optimal choice A = E(Y | Fit), and expected exit cost equals
Fit-conditional variance

σ2
it =

1− ρ2

1 + ρ2(Nit − 1)

of Y .
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Model

Information Transmission

I Upon matching, agents exchange their information.

I Gaussian setting: enough to tell their mean E(Y | Fit) and precision
Nit.

I Post-meeting precision is just the sum of pre-meeting precisions.
Agents i and j meet, their precisions become Nit + Njt.
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Model

Search Technology

I Random matching

I Given current effort c, mean arrival rate is cbqb, where b is a level of
effort and qb is the proportion of agents exerting effort level b.

I Exerting effort c costs K(c) to the agent, where c ∈ [cL, cH ].

Externality and Coordination Problems

Duffie, Malamud and
Manso Information Percolation 13



Model

Search Technology

I Random matching

I Given current effort c, mean arrival rate is cbqb, where b is a level of
effort and qb is the proportion of agents exerting effort level b.

I Exerting effort c costs K(c) to the agent, where c ∈ [cL, cH ].

Externality and Coordination Problems

Duffie, Malamud and
Manso Information Percolation 13



Model

Agent’s Utility

Given a discount rate r, the agent’s lifetime utility (measuring time from
the point of that agent’s market entrance) is

U(φ) = E

(
−e−rτσ2

iτ −
∫ τ

0
e−rtK(φt) dt

)
,

where τ is the exit time and K(c) is the cost rate for search effort level c,
which is chosen at each time from some interval [cL, cH ] ⊂ R+.

Duffie, Malamud and
Manso Information Percolation 14



Model

Entry and Exit Rates

I Agents enter the market at a rate proportional to the current mass qt

of agents in the market, for some proportional “birth rate” η > 0.

I Agents entering the market have precision distribution π.

I Agents exit the market pairwise independently at intensity η′,

I The law of large numbers implies that the total quantity qt of agents
in the market at time t is qt = q0e

(η−η′)t almost surely.
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Model

Cross-Sectional Distribution of Information Precision

The cross-sectional distribution µt of information precision at time t is
defined, at any set B of positive integers, as the fraction

µt(B) = α({i : Nit ∈ B})/qt

of agents whose precisions are currently in the set B.
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Model

Dynamics of Information Transmission

Assuming that a search effort policy C : N → [cL, cH ] is used by all
agents, the cross-sectional precision distribution satisfies (almost surely)
the differential equation

d

dt
µt = η(π − µt) + µC

t ∗ µC
t − µC

t µC
t (N),

where µC
t (n) = Cnµt(n) is the effort-weighted measure and

µC
t (N) =

∞∑
n=1

Cn µt(n)

is the cross-sectional average search effort.

Duffie, Malamud and
Manso Information Percolation 17



Model

The Terms in the Equation

I The term η(π − µt) represents the replacement of agents with newly
entering agents;

I the convolution term

(µC
t ∗ µC

t )(n) =
n−1∑
k=1

µt(k)C(k)C(n− k)µt(n− k)

is the rate at which new agents of a given precision are created
through matching and information sharing;

I the term µC
t (n) µC

t (N) is the rate of replacement of agents with prior
precision n with those of some new posterior precision.
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Model

Separability Between Posterior Precision and Mean

Proposition For any search-effort policy function C, the cross-sectional
distribution ft of precisions and posterior means of the agents is almost
surely given by

ft(n, x, ω) = µt(n) pn(x |Y (ω)), (1)

where µt is the unique solution of the differential equation for the
evolution of the cross-sectional distribution of information precision and
pn( · |Y ) is the Y -conditional Gaussian density of E(Y |X1, . . . , Xn), for
any n signals X1, . . . , Xn.
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Stationary Measure

Stationary Measure

In a stationary setting, this precision distribution µ solves

0 = η(π − µ) + µC ∗ µC − µC µC(N),

which can be viewed as a form of algebraic Ricatti equation.
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Stationary Measure

Stationary Measure

Lemma Given a policy C, there is a unique measure µ satisfying the
stationary-measure equation. This measure µ is characterized as follows.
For any C̄ ∈ [cL, cH ], construct a measure µ̄(C̄) by the algorithm:

µ̄1(C̄) =
η π1

η + C1 C̄

and then, inductively,

µ̄k(C̄) =
η πk +

∑k−1
l=1 Cl Ck−l µ̄l(C̄) µ̄k−l(C̄)

η + Ck C̄
.

There is a unique solution C̄ to the equation C̄ =
∑∞

n=1 µ̄n(C̄)C̄. Given
such a C̄, we have µ = µ̄(C̄).
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Stationary Measure

Stability

Proposition Suppose that there is some integer N such that Cn = CN for
n ≥ N and that η ≥ cHCN . Then the unique solution µt of the evolution
equation converges pointwise to the unique stationary measure µ.
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Stationary Measure

Outline of stability proof
I Denote

cH − Ci = fi ≥ 0;

I Rewrite the equation as

µ′k = η πk − (η + c2
H) µk + cH fk µk

+ Ck µk

∞∑
i=1

fi µi +
k−1∑
l=1

Clµl Ck−lµk−l; (2)

I Taylor expand in ”powers” of f = (fi) :

µk =
∞∑

j=0

µk j(t),

with

µk j =
1
j!

∂jµk

∂f j

∣∣
f=0

(f, · · · , f).
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Stationary Measure

Convergence

I Key idea: µk j are nonnegative and solve simpler ODEs. Comparison
theorem for ODEs implies that

∞∑
j=0

µk j(t) ≤ µk (3)

and hence the expansion converges;

I µk j solve simple, linear ODEs and limt→∞ µk j(t) exists;

I use comparison theorem for ODEs to get uniform tail estimates for
(3) and get

lim
t→∞

∞∑
j=0

µk j(t) =
∞∑

j=0

lim
t→∞

µk j(t).
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Stationary Measure

Trigger Policies

A trigger policy CN , for some integer N ≥ 1, is defined by

CN
n = cH , n < N,

= cL, n ≥ N.

Condition for convergence in the previous proposition becomes η ≥ cHcL.
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Stationary Measure

Information Sharing Opportunities

Proposition Let µM and νN be the unique stationary measures
corresponding to trigger policies CM and CN respectively. Let
µC,N

n = µN
n CN

n denote the associated search-effort-weighted measure. If
N > M , then µC,N has the first order dominance (FOSD) property over
µC,M .

This is only true for trigger policies! Just the opposite can occur for
general policies. More intensive search at given levels of information can in
some cases lead to a poorer information sharing.
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Stationary Measure

The Source of Problems with the FOSD Property

I average search intensity C̄ = C̄((Ci)) is increasing in (Ci);

I Components
µk = µk((Ci), C̄)

of the stationary measure are increasing in (Ci) but decreasing in C̄;

I two competing mechanisms, determining the change of the upper tail∑
k≥n

Ck µk((Ci), C̄),

needed for the FOSD property.
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Optimality

Hamilton-Jacobi-Bellman Equation

The value function Vn for precision n satisfies the
Hamilton-Jacobi-Bellman equation for optimal search effort given by

0 = − (r + η′) Vn + η′un + sup
c∈[cL,cH ]

{−K(c) + c

∞∑
m=1

(Vn+m − Vn)µC
m}.
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Optimality

Monotonicity of the Policy Function

Proposition: Suppose that K is increasing, convex, and differentiable.
Then, given (µ,C), the optimal search effort Γn is monotone decreasing in
the current precision n.

Corollary: Suppose that K(c) = κc for some scalar κ > 0. Then, given
(µ,C), there is a trigger policy CN that is optimal for all agents.
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Equilibrium
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Equilibrium

Equilibrium Definition

An equilibrium is a search-effort policy function C satisfying:

1 there is a unique stationary cross-sectional precision measure µ
induced by C;

2 taking as given the market properties (µ,C), the policy function C is
indeed optimal for each agent.
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Equilibrium

Existence of Equilibrium

Theorem Suppose that K(c) = κc for some scalar κ > 0. Then there
exists a trigger policy that is an equilibrium.
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Equilibrium

Sketch of the Proof

1 We let N (N) ⊂ N be the set of trigger levels that are optimal given
the conjectured market properties (µN , CN ) associated with a trigger
level N .

2 We can look for an equilibrium in the form of a fixed point of the
optimal trigger-level correspondence N ( · ), that is, some N such that
N ∈ N (N).

3 Lemma: The correspondence N (N) is increasing in N .

4 Lemma: There exists a uniform upper bound on N (N), independent
of N , given by

N = max{j : cHη′(r + η′)(u− u(j)) ≥ κ}.
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Equilibrium

Algorithm to Compute Equilibria

Start with N = N .

1 Compute N (N). If N ∈ N (N), then output CN (an equilibrium of
the game). Go to the next step.

2 If N > 0, go back to Step 1 with N = N − 1. Otherwise, quit.
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Equilibrium

There is Never an Equilibrium with “Too Much”
Search

Proposition If CN is an equilibrium of the game then it Pareto dominates
any outcome in which all agents employ a policy CN ′

for a trigger level
N ′ < N .

Externality problem:

I An agent with a high search intensity produces an indirect benefit to
other agents;

I agents do not take this externality into account =⇒ social learning
may slow down or even collapse.
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Equilibrium

Equilibrium with Minimal Search

Let V 0 be the values function corresponding to the minimal search case.
Theorem The minimal-search policy C, that with C(n) = cL for all n, is
an equilibrium if and only if κ ≥ B, where

B = cL

∞∑
m=1

(V 0
1+ m − V 0

1 ) µ0
m. (4)

In particular, if cL = 0 , then B = 0 and minimal search is always an
equilibrium.

Coordination Problem:

For sufficiently small κ there always exist multiple equilibria, both with and
without search.
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Policy Interventions Search Subsidy
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Policy Interventions Search Subsidy

Format of the Search Subsidy

I a tax τ is charged of each agent entering the market

I the proceeds are used to subsidize search so that the search cost for
each agent becomes K(c) = (κ− δ)c.

Duffie, Malamud and
Manso Information Percolation 41



Policy Interventions Search Subsidy

Effects on Search

Proposition If CN is an equilibrium with subsidy δ, then for any δ′ ≥ δ,
there exists some N ′ ≥ N such that CN ′

is an equilibrium with subsidy δ′.
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Policy Interventions Search Subsidy

Example

1 For some integer N > 1, π0 = 1/2, πN = 1/2, and cL = 0.

2 Choose parameters so that, given market conditions (µN , CN ) agents
slightly prefer policy C0 over CN .

3 Each agent is now taxed at entry and given the search subsidy δ.

4 We can choose this subsidy so that, given market conditions
(µN , CN ), agents strictly prefer CN to C0.

5 For sufficiently large N all agents have strictly higher indirect utility.
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Policy Interventions Educating Agents at Birth
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Policy Interventions Educating Agents at Birth

Format of the Education Policy

I M ≥ 1 additional public signals

I every agent observes those signals when they enter the market

Duffie, Malamud and
Manso Information Percolation 45



Policy Interventions Educating Agents at Birth

Effects of Public Signals on Search

Proposition If CN is an equilibrium with M public signals, then for any
M ′ ≤ M , there exists some N ′ ≥ N such that CN ′

is an equilibrium with
M ′ public signals.
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Policy Interventions Educating Agents at Birth

Example

1 Suppose, for some integer N > 1, that π0 = 1/2, πN = 1/2, and
cL = 0.

2 Choose parameters so that, given market conditions (µN , CN ) agents
are indifferent between policies CN and C0.

3 Give each agent M = 1 public signal at entry.

4 All agents strictly prefer C0 to CN

5 For sufficiently large N all agents have strictly lower indirect utility.
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Policy Interventions Educating Agents at Birth

Conclusion

I Model of social learning with endogenous search intensity.

I Social learning may slow down or even collapse:
• coordination problems.

• externality problems.

I Two policy interventions:
• search subsidy

• education at entry
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