Information Percolation with Equilibrium Search Dynamics

Darrell Duffie Stanford GSB Semyon Malamud ETH Zurich Gustavo Manso MIT Sloan

Advanced Modeling in Finance and Insurance Linz. September 25, 2008.

Social Learning

- Learning from prices (Hayek (1945)):
 - Rational expectations equilibrium: Grossman (1981).
 - Strategic Foundations: Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels (1997), and Reny and Perry (2006).
- Learning from Local Interactions:
 - Decentralized markets: Wolinsky (1990), Blouin and Serrano (2002).
 - Word-of-mouth learning: Banerjee and Fudenberg (2004).

Example: Federal Funds Market

Duffie and Ashcraft (2007)

- pricing of overnight loans of federal funds
- decentralized inter-bank market in which these loans are traded
- During a direct bilateral contact, counterparties exchange information and decide whether to forego a trade or to continue "shopping around".

Information Percolation

Duffie and Manso (2007):

- The cross-sectional distribution of information is a solution to a Boltzmann-type evolution equation!
- Explicit solution to the evolution equation = explicit cross-sectional distribution of information.

The Power of Decentralized Learning

Duffie, Giroux, and Manso (2008)

- convergence of beliefs is exponential
- extreme decentralization: the rate of convergence does not depend on the number of agents in each meeting.

This Paper: Endogenous Search Intensity

Two issues arise that may slow down, or even stop, learning:

- Externality Problems
- Coordination Problems

Other Papers with Failures of Social Learning

Prices:

- Grossman and Stiglitz (1976)
- Vives (1993)

Local interactions:

- Bikhchandani, Hirshleifer, and Welch (1992)
- Banerjee (1992)

Outline of the Talk

Model

2 Stationary Measure

3 Optimality

4 Equilibrium

O Policy Interventions

Search Subsidy Educating Agents at Birth

Outline of the Talk

Model

- **2** Stationary Measure
- Optimality
- equilibrium
- **G** Policy Interventions

Search Subsidy Educating Agents at Birth

Model Primitives

- continuum of agents
- \blacktriangleright random variable of interest to all agents: Y
- agents endowed with pairwise independent signals
- \blacktriangleright signals are jointly Gaussian with Y
- agent *i* is initially endowed with N_{i0} signals.

Model Primitives

- \blacktriangleright each agent stays in the market for an exponentially distributed time with parameter $\eta'.$
- at exit, agents choose an action A, with cost $(Y A)^2$.
- optimal choice $A = E(Y | \mathcal{F}_{it})$, and expected exit cost equals \mathcal{F}_{it} -conditional variance

$$\sigma_{it}^2 = \frac{1 - \rho^2}{1 + \rho^2 (N_{it} - 1)}$$

of Y.

Information Transmission

- ▶ Upon matching, agents exchange their information.
- Gaussian setting: enough to tell their mean $E(Y | \mathcal{F}_{it})$ and precision N_{it} .
- Post-meeting precision is just the sum of pre-meeting precisions. Agents i and j meet, their precisions become $N_{it} + N_{jt}$.

Search Technology

- Random matching
- ▶ Given current effort *c*, mean arrival rate is *cbq_b*, where *b* is a level of effort and *q_b* is the proportion of agents exerting effort level *b*.
- Exerting effort c costs K(c) to the agent, where $c \in [c_L, c_H]$.

Externality and Coordination Problems

Search Technology

- Random matching
- ▶ Given current effort *c*, mean arrival rate is *cbq_b*, where *b* is a level of effort and *q_b* is the proportion of agents exerting effort level *b*.
- Exerting effort c costs K(c) to the agent, where $c \in [c_L, c_H]$.

Externality and Coordination Problems

Model

Agent's Utility

Given a discount rate r, the agent's lifetime utility (measuring time from the point of that agent's market entrance) is

$$U(\phi) = E\left(-e^{-r\tau}\sigma_{i\tau}^2 - \int_0^\tau e^{-rt}K(\phi_t)\,dt\right),\,$$

where τ is the exit time and K(c) is the cost rate for search effort level c, which is chosen at each time from some interval $[c_L, c_H] \subset \mathbb{R}_+$.

Entry and Exit Rates

- Agents enter the market at a rate proportional to the current mass q_t of agents in the market, for some proportional "birth rate" η > 0.
- Agents entering the market have precision distribution π .
- Agents exit the market pairwise independently at intensity η' ,
- ► The law of large numbers implies that the total quantity qt of agents in the market at time t is qt = q0e^{(η-η')t} almost surely.

Cross-Sectional Distribution of Information Precision

The cross-sectional distribution μ_t of information precision at time t is defined, at any set B of positive integers, as the fraction

$$\mu_t(B) = \alpha(\{i : N_{it} \in B\})/q_t$$

of agents whose precisions are currently in the set B.

Dynamics of Information Transmission

Assuming that a search effort policy $C : \mathbb{N} \to [c_L, c_H]$ is used by all agents, the cross-sectional precision distribution satisfies (almost surely) the differential equation

$$\frac{d}{dt}\mu_t = \eta(\pi - \mu_t) + \mu_t^C * \mu_t^C - \mu_t^C \mu_t^C(\mathbb{N}),$$

where $\mu_t^C(n) = C_n \mu_t(n)$ is the effort-weighted measure and

$$\mu_t^C(\mathbb{N}) = \sum_{n=1}^{\infty} C_n \, \mu_t(n)$$

is the cross-sectional average search effort.

The Terms in the Equation

- The term η(π μ_t) represents the replacement of agents with newly entering agents;
- the convolution term

$$(\mu_t^C * \mu_t^C)(n) = \sum_{k=1}^{n-1} \mu_t(k) C(k) C(n-k) \mu_t(n-k)$$

is the rate at which new agents of a given precision are created through matching and information sharing;

► the term µ^C_t(n) µ^C_t(N) is the rate of replacement of agents with prior precision n with those of some new posterior precision.

Separability Between Posterior Precision and Mean

Proposition For any search-effort policy function C, the cross-sectional distribution f_t of precisions and posterior means of the agents is almost surely given by

$$f_t(n, x, \omega) = \mu_t(n) p_n(x | Y(\omega)), \tag{1}$$

where μ_t is the unique solution of the differential equation for the evolution of the cross-sectional distribution of information precision and $p_n(\cdot | Y)$ is the Y-conditional Gaussian density of $E(Y | X_1, \ldots, X_n)$, for any n signals X_1, \ldots, X_n .

Outline of the Talk

Model

2 Stationary Measure

Optimality

equilibrium

G Policy Interventions

Search Subsidy Educating Agents at Birth

Stationary Measure

In a stationary setting, this precision distribution μ solves

$$0 = \eta(\pi - \mu) + \mu^C * \mu^C - \mu^C \mu^C(\mathbb{N}),$$

which can be viewed as a form of algebraic Ricatti equation.

Stationary Measure

Lemma Given a policy C, there is a unique measure μ satisfying the stationary-measure equation. This measure μ is characterized as follows. For any $\overline{C} \in [c_L, c_H]$, construct a measure $\overline{\mu}(\overline{C})$ by the algorithm:

$$\bar{u}_1(\bar{C}) = \frac{\eta \pi_1}{\eta + C_1 \bar{C}}$$

and then, inductively,

$$\bar{\mu}_k(\bar{C}) = \frac{\eta \, \pi_k \, + \, \sum_{l=1}^{k-1} \, C_l \, C_{k-l} \, \bar{\mu}_l(\bar{C}) \, \bar{\mu}_{k-l}(\bar{C})}{\eta \, + \, C_k \, \bar{C}}.$$

There is a unique solution \bar{C} to the equation $\bar{C} = \sum_{n=1}^{\infty} \bar{\mu}_n(\bar{C})\bar{C}$. Given such a \bar{C} , we have $\mu = \bar{\mu}(\bar{C})$.

Stability

Proposition Suppose that there is some integer N such that $C_n = C_N$ for $n \ge N$ and that $\eta \ge c_H C_N$. Then the unique solution μ_t of the evolution equation converges pointwise to the unique stationary measure μ .

Outline of stability proof

Denote

$$c_H - C_i = f_i \ge 0;$$

Rewrite the equation as

$$\mu'_{k} = \eta \pi_{k} - (\eta + c_{H}^{2}) \mu_{k} + c_{H} f_{k} \mu_{k} + C_{k} \mu_{k} \sum_{i=1}^{\infty} f_{i} \mu_{i} + \sum_{l=1}^{k-1} C_{l} \mu_{l} C_{k-l} \mu_{k-l}; \quad (2)$$

▶ Taylor expand in "powers" of $f = (f_i)$:

$$\mu_k = \sum_{j=0}^{\infty} \mu_{kj}(t),$$

with

$$\mu_{kj} = \frac{1}{j!} \frac{\partial^j \mu_k}{\partial f^j} \Big|_{f=0} (f, \cdots, f).$$

Duffie, Malamud and Manso

Convergence

Key idea: μ_{kj} are nonnegative and solve simpler ODEs. Comparison theorem for ODEs implies that

$$\sum_{j=0}^{\infty} \mu_{kj}(t) \leq \mu_k \tag{3}$$

and hence the expansion converges;

- ▶ μ_{kj} solve simple, linear ODEs and $\lim_{t\to\infty} \mu_{kj}(t)$ exists;
- use comparison theorem for ODEs to get uniform tail estimates for
 (3) and get

$$\lim_{t \to \infty} \sum_{j=0}^{\infty} \mu_{kj}(t) = \sum_{j=0}^{\infty} \lim_{t \to \infty} \mu_{kj}(t).$$

Trigger Policies

A trigger policy C^N , for some integer $N \ge 1$, is defined by

$$C_n^N = c_H, \quad n < N,$$

= $c_L, \quad n \ge N.$

Condition for convergence in the previous proposition becomes $\eta \ge c_H c_L$.

Information Sharing Opportunities

Proposition Let μ^M and ν^N be the unique stationary measures corresponding to trigger policies C^M and C^N respectively. Let $\mu_n^{C,N}=\mu_n^N C_n^N$ denote the associated search-effort-weighted measure. If N>M, then $\mu^{C,N}$ has the first order dominance (FOSD) property over $\mu^{C,M}$.

This is only true for trigger policies! Just the opposite can occur for general policies. More intensive search at given levels of information can in some cases lead to a poorer information sharing.

Information Sharing Opportunities

Proposition Let μ^M and ν^N be the unique stationary measures corresponding to trigger policies C^M and C^N respectively. Let $\mu_n^{C,N}=\mu_n^N C_n^N$ denote the associated search-effort-weighted measure. If N>M, then $\mu^{C,N}$ has the first order dominance (FOSD) property over $\mu^{C,M}$.

This is only true for trigger policies! Just the opposite can occur for general policies. More intensive search at given levels of information can in some cases lead to a poorer information sharing.

The Source of Problems with the FOSD Property

- average search intensity $\overline{C} = \overline{C}((C_i))$ is increasing in (C_i) ;
- Components

 $\mu_k = \mu_k((C_i), \bar{C})$

of the stationary measure are increasing in (C_i) but decreasing in \overline{C} ;

two competing mechanisms, determining the change of the upper tail

$$\sum_{k\geq n} C_k \,\mu_k((C_i), \bar{C}),$$

needed for the FOSD property.

The Source of Problems with the FOSD Property

- average search intensity $\overline{C} = \overline{C}((C_i))$ is increasing in (C_i) ;
- Components

$$\mu_k = \mu_k((C_i), \bar{C})$$

of the stationary measure are increasing in (C_i) but decreasing in \overline{C} ;

two competing mechanisms, determining the change of the upper tail

$$\sum_{k\geq n} C_k \,\mu_k((C_i), \bar{C}),$$

needed for the FOSD property.

The Source of Problems with the FOSD Property

- average search intensity $\overline{C} = \overline{C}((C_i))$ is increasing in (C_i) ;
- Components

$$\mu_k = \mu_k((C_i), \bar{C})$$

of the stationary measure are increasing in (C_i) but decreasing in \overline{C} ;

▶ two competing mechanisms, determining the change of the upper tail

$$\sum_{k\geq n} C_k \,\mu_k((C_i), \bar{C}),$$

needed for the FOSD property.

Outline of the Talk

Model

2 Stationary Measure

3 Optimality

O Equilibrium

G Policy Interventions

Search Subsidy Educating Agents at Birth

Hamilton-Jacobi-Bellman Equation

The value function V_n for precision n satisfies the Hamilton-Jacobi-Bellman equation for optimal search effort given by

$$0 = -(r+\eta')V_n + \eta' u_n + \sup_{c \in [c_L, c_H]} \{-K(c) + c \sum_{m=1}^{\infty} (V_{n+m} - V_n)\mu_m^C \}.$$

Monotonicity of the Policy Function

- **Proposition:** Suppose that K is increasing, convex, and differentiable. Then, given (μ, C) , the optimal search effort Γ_n is monotone decreasing in the current precision n.
- **Corollary:** Suppose that $K(c) = \kappa c$ for some scalar $\kappa > 0$. Then, given (μ, C) , there is a trigger policy C^N that is optimal for all agents.

Outline of the Talk

Model

- **2** Stationary Measure
- Optimality

4 Equilibrium

G Policy Interventions

Search Subsidy Educating Agents at Birth

Equilibrium Definition

An equilibrium is a search-effort policy function C satisfying:

- there is a unique stationary cross-sectional precision measure μ induced by C;
- 2 taking as given the market properties (μ, C) , the policy function C is indeed optimal for each agent.

Existence of Equilibrium

Theorem Suppose that $K(c) = \kappa c$ for some scalar $\kappa > 0$. Then there exists a trigger policy that is an equilibrium.

Sketch of the Proof

- We let $\mathcal{N}(N) \subset \mathbb{N}$ be the set of trigger levels that are optimal given the conjectured market properties (μ^N, C^N) associated with a trigger level N.
- 2 We can look for an equilibrium in the form of a fixed point of the optimal trigger-level correspondence $\mathcal{N}(\cdot)$, that is, some N such that $N \in \mathcal{N}(N)$.
- **3** Lemma: The correspondence $\mathcal{N}(N)$ is increasing in N.
- Lemma: There exists a uniform upper bound on N(N), independent of N, given by

$$\overline{N} = \max\{j : c_H \eta'(r + \eta')(\overline{u} - u(j)) \ge \kappa\}.$$

Algorithm to Compute Equilibria

Start with $N = \overline{N}$.

• Compute $\mathcal{N}(N)$. If $N \in \mathcal{N}(N)$, then output C^N (an equilibrium of the game). Go to the next step.

2 If N > 0, go back to Step 1 with N = N - 1. Otherwise, quit.

There is Never an Equilibrium with "Too Much" Search

Proposition If C^N is an equilibrium of the game then it Pareto dominates any outcome in which all agents employ a policy $C^{N'}$ for a trigger level N' < N.

Externality problem:

- An agent with a high search intensity produces an indirect benefit to other agents;
- ▶ agents do not take this externality into account ⇒ social learning may slow down or even collapse.

There is Never an Equilibrium with "Too Much" Search

Proposition If C^N is an equilibrium of the game then it Pareto dominates any outcome in which all agents employ a policy $C^{N'}$ for a trigger level N' < N.

Externality problem:

- An agent with a high search intensity produces an indirect benefit to other agents;
- ▶ agents do not take this externality into account ⇒ social learning may slow down or even collapse.

Equilibrium with Minimal Search

Let V^0 be the values function corresponding to the minimal search case. **Theorem** The minimal-search policy C, that with $C(n) = c_L$ for all n, is an equilibrium if and only if $\kappa \geq B$, where

$$B = c_L \sum_{m=1}^{\infty} (V_{1+m}^0 - V_1^0) \mu_m^0.$$
(4)

In particular, if $c_L = 0$, then B = 0 and minimal search is always an equilibrium.

Coordination Problem:

For sufficiently small κ there always exist multiple equilibria, both with and without search.

Duffie, Malamud and Manso

Equilibrium with Minimal Search

Let V^0 be the values function corresponding to the minimal search case. **Theorem** The minimal-search policy C, that with $C(n) = c_L$ for all n, is an equilibrium if and only if $\kappa \geq B$, where

$$B = c_L \sum_{m=1}^{\infty} (V_{1+m}^0 - V_1^0) \mu_m^0.$$
(4)

In particular, if $c_L = 0$, then B = 0 and minimal search is always an equilibrium.

Coordination Problem:

For sufficiently small κ there always exist multiple equilibria, both with and without search.

Duffie, Malamud and Manso

Outline of the Talk

Model

- **2** Stationary Measure
- Optimality
- equilibrium

O Policy Interventions

Search Subsidy Educating Agents at Birth

Search Subsidy

Outline of the Talk

Model

- 2 Stationary Measure
- Optimality
- **4** Equilibrium

6 Policy Interventions Search Subsidy

Format of the Search Subsidy

- \blacktriangleright a tax τ is charged of each agent entering the market
- the proceeds are used to subsidize search so that the search cost for each agent becomes $K(c) = (\kappa - \delta)c$.

Effects on Search

Proposition If C^N is an equilibrium with subsidy δ , then for any $\delta' \ge \delta$, there exists some $N' \ge N$ such that $C^{N'}$ is an equilibrium with subsidy δ' .

Example

- For some integer N > 1, $\pi_0 = 1/2$, $\pi_N = 1/2$, and $c_L = 0$.
- **2** Choose parameters so that, given market conditions (μ^N, C^N) agents slightly prefer policy C^0 over C^N .
- **③** Each agent is now taxed at entry and given the search subsidy δ .
- We can choose this subsidy so that, given market conditions (μ^N, C^N) , agents strictly prefer C^N to C^0 .
- \bullet For sufficiently large N all agents have strictly higher indirect utility.

Outline of the Talk

Model

- **2** Stationary Measure
- Optimality
- **O** Equilibrium

O Policy Interventions

Search Subsidy Educating Agents at Birth

Format of the Education Policy

- $M \ge 1$ additional public signals
- every agent observes those signals when they enter the market

Effects of Public Signals on Search

Proposition If C^N is an equilibrium with M public signals, then for any $M' \leq M$, there exists some $N' \geq N$ such that $C^{N'}$ is an equilibrium with M' public signals.

Example

- Suppose, for some integer N > 1, that $\pi_0 = 1/2$, $\pi_N = 1/2$, and $c_L = 0$.
- 2 Choose parameters so that, given market conditions (μ^N, C^N) agents are indifferent between policies C^N and C^0 .
- **③** Give each agent M = 1 public signal at entry.
- All agents strictly prefer C^0 to C^N
- \bullet For sufficiently large N all agents have strictly lower indirect utility.

Conclusion

- ► Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy
 - education at entry

Conclusion

- ► Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy
 - education at entry

Conclusion

- ► Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy
 - education at entry