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Motivation

� Treat the top 50 stocks in the SPX as if they were
the whole index.

� Build models of dependence on the 50 stocks and
price options on this basket.

� Match market SPX options by pricing to acceptabil-
ity at market implied stress levels.



Outline

� Pricing and Hedging to Acceptability

� Market Implied Surface of Stress Levels

� Time Changed Gaussian One Factor Copula Depen-
dence

� Correlated Levy Dependence



Stress Surfaces

� Top 50 SPX Basket Stress Surface for Time Changed
Gaussian Copula

� Stress Surface for Correlated Levy Dependence

� VG and CGMY marginals

� Physical Levy Marginals

� Physical Scaled Marginals

� Risk Neutral Marginals



Hedging Basket Options to
Acceptability

� Static Hedging of Basket Options using single name
options

� Hedged and Unhedged Prices

� Hedged and Unhedged Cash Flows



Pricing and Hedging to
Acceptability

� The �rst principle to be understood is where risk neu-
tral pricing is relevant and why for structured prod-
ucts risk neutral pricing is not relevant.

� The critical principle underlying risk neutral pricing
is the idea of pricing all products under a single, so
called risk neutral measure.

� The main motivation is linearity of the pricing oper-
ator backed by the recognition that in the absence
of such a linearity there is a simple arbitrage, buy or
sell the component cash �ows A;B and sell or buy
the package (A+B):



� This argument requires trading in both directions at
the same price.

� For structured products buying is at an ask price with
sales at the bid and these are widely di¤erent.



The Relatively Liquid
Hedging Assets

� We can view the structured product as a scenario or
path contingent vector of total present value payouts
x = (xs; s = 1; � � � ;M):

� Next we introduce the relatively liquid assets with
bidirectional prices and by �nancing the trades we
generate zero cost cash �ows Yjs for asset j on sce-
nario s:



Acceptable Risks

� If we charge the price a and adopt the hedge that
takes the position �j in liquid asset j then our resid-
ual cash �ow is

a+ �0Y � x0

� If this position is zero or nonnegative, it is clearly
acceptable.

� More Generally Acceptable Risks have been e¤ec-
tively de�ned as a convex cone containing the posi-
tive orthant.

� Intuitively, if a su¢ cient number of counterparties
value the gains in excess of the losses, then the risk
is acceptable.



� Let B be the matrix of such valuation measures used
for testing acceptability. (See Carr, Geman, Madan
JFE 2002 for greater details).

� For the risk to be acceptable we must have

a+ (�0Y � x0)B � 0



The Ask Price Problem

� The Ask price problem is to �nd a(x) such that

a(x) = Mina;� a

S:T:
�
x0 � �0Y

�
B � a

� The ask price is the smallest value needed to cover
all the valuation shortfalls net of the hedge.

� By virtue of being a minimization problem de�ned
with respect to a linear constraint set de�ned by x it
is clear that a(x) will be a convex functional of the
cash �ows x and linear or risk neutral pricing does
not hold.



Law Invariant Cones of
Acceptability

� Suppose we wish decide on the acceptablity of a ran-
dom cash �ow C based solely on its probability law
or equivalently its distribution function F (c).

� Cherny and Madan (2008) show how this is related
to expectation under concave distortion.

� One introduces a collection of concave distribution
functions 	�(u) de�ned on the unit interval 0 �
u � 1 and indexed by the real number � such that
we have acceptability at level � just ifZ 1

�1
cd	�(F (c)) � 0

� Equivalently we may writeZ 1
�1

c	�0(F (c))f(c)dc � 0



and we see that one is computing an expectation
under the change of probability

	�0(F (c))

that depends on the claim being priced via its distri-
bution function F (c):



The New Acceptability
Cones: MINVAR

� The �rst family of concave distortions we considered
was

	x(y) = 1� (1� y)x

� It is simple to observe thatX is acceptable under this
distortion just if the expectation of the minimum of
x independent draws from the distribution of X is
still just positive.

� Hence we refer to this measure as MINV AR as it
is based on the expectation of minima.



� The measure change in this case is
dQ

dP
= (x+ 1) (1� FX(X))x ; x 2 R+

� A potential drawback is that large losses have a max-
imum weight of (x+ 1):

� Asymptotically large gains receive a weight of zero.



MAXVAR

� The next concave distortion is based on the maxima
of independent draws and is de�ned by

	x(y) = y
1
1+x

� Here we take expectations from a distributionG such
that the law of the maxima of x independent draws
from this distribution matches the distribution of X:

� The measure change now is
dQ

dP
=

1

1 + x
(FX(X))

� x
x+1 ; x 2 R+

� Large losses now receive unbounded large weights
in the determining system, but large gains have a
minimum weight of (x+ 1)�1:



MAXMINVAR and
MINMAXVAR

� We combine the two distortions in two ways to de�ne
MAXMINVAR by

	x(y) =
�
1� (1� y)x+1

� 1
x+1

� and MINMAXVAR by

	x(y) = 1�
�
1� y

1
x+1

�x+1

� The densities in the determining system now have
weights tending to in�nity for large losses and zero
for large gains.

� We shall use MINMAXVAR.



Acceptability Pricing and
Distorted Expectations

� Consider now the pricing of a hedged or unhedged
liability with cash �ow C by distorted expectation up
to some level � to charge the price a:

� We must then have that the cash �ow

Y = a� C

with distribution function FY (y) is just acceptable
at distortion �:

� Hence Z 1
�1

yd	�(FY (y)) = 0

We now recognize that

FY (y) = F(�C)(y � a)



and so we get thatZ 1
�1

yd	�
�
F(�C)(y � a)

�
= 0

� Making the change of variable c = y�a we get thatZ 1
�1

(c+ a)d	�
�
F(�C)(c)

�
= 0

or that

a = �
Z 1
�1

cd	�
�
F(�C)(c)

�
Hence the price is the negative of the distorted ex-
pectation of the cash �ow �C:



Market Implied Stress
Levels

� We may choose a stress level and compute the neg-
ative of the � distorted expectation of �C as the
ask price.

� Alternatively, given the market price a we may solve
for the market implied stress level, much like an im-
plied volatility.

� This leads us to stress surfaces for options and we
shall work with MINMAXV AR stress surfaces.



Time Changed Gaussian
One Factor Copula
Dependence

� Qiwen Chen (2008), one of my students, proposed
using the copula of the multivariate VG model in the
original Madan and Seneta (1990) VG paper as a
model of dependence. He reports positively on the
performance of this model in terms of capturing the
dependence in returns.

� The multivariate VG (MVG) time changes all coor-
dinates of a multivariate Brownian motion by a single
gamma time change.

� Here we just use this procedure to generate corre-
lated uniforms after transforming MVG outcomes
to uniforms using their marginal V G distribution
functions.



� We then generate actual coordinate outcomes using
inverse uniform and prespeci�ed marginal distribu-
tions.

� Following this suggestion, we consider here the re-
striction of the multivariate Brownian to that of a
one factor Gaussian copula model.

� The model for the correlated uniforms is then ob-
tained as

ui = FV G(Xi)

Xi =
p
g

�
�iZ +

q
1� �2iZi

�
Z;Z0is independent Gaussians
g is gamma distributed with
mean unity and variance �

� The actual centered data are then obtained as

Yi = F
�1
V Gi

(ui):



Results on time changed
one factor MVG copula

� We then generate 50 dependent uniforms and the
inverse of the marginal distribution function to gen-
erate outcomes for the individual names with which
we form the basket outcome and use it to price a
basket option by computing discounted distorted ex-
pectations using one of the four distortions.

� It is unlikely that all strikes and maturities will be
priced at the same stress levels

� We �rst extracted the market implied stress levels.
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� We then graphed the stress levels as a function of
strike and maturity
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Calibration Results

� For the data of 20080220 we then adopted this stress
level model with three parameters along with our de-
pendence model with 6 parameters given by � and
�ve correlations with the latent systematic compo-
nent to calibrate options on baskets of the top 50
stocks to the prices of index options. The estimated
parameters were as follows.

Parameter Value
� 0:0964
� 4:224

 0:2850
� 0:0061
�1 0:9964
�2 0:3505
�3 0:3214
�4 0:3801
�5 0:5319



We used 52 options with 13 strikes across four maturities
and the �t statistics were

RMSE 0:0953
AAE 0:0813
APE 0:0325



Hedging Basket Options
with Single Name Options

� Finally we consider a hedged option price where we
seek positions in single name options against the bas-
ket liability to construct the residual cash �ow as

RCF = � �HCF � TCF

� We �nd � to minimize the ask price for the residual
cash �ow de�ned as the negative of distorted expec-
tation of this cash �ow.

� For minmaxvar at stress level 5; :5 the unhedged and
hedged prices are

5 .5
unhedged 24.4875 4.0047
hedged 4.5285 2.6904



� We present a graph of the unhedged and hedged cash
�ows and a graph of the hedge positions on a basket
put struck 10% down.
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Correlated Levy
Dependence

� We take the marginal processes to be zero mean uni-
variate Lévy processes (Xi(t); t � 0):

� These processes accomodate the possibility of being
skewed by having a representation as Brownian with
drift time changed by subordinators (Gi(t); t � 0)

with unit expectation that are independent across i
and independent of the Brownian motions.

� We write

Xi(t) = �i (Gi(t)� t) + �iWi (Gi(t))

for Brownian motions (Wi(t); t � 0):



� The variance gamma model arises when Gi(t) is a
gamma process with unit mean rate, variance rate
�i and density at unit time given by

f(x) =
1

�
1
�i
i �

�
1
�i

�x 1�i�1e� x
�i

� Many other subordinators are potential candidates
including the inverse Gaussian for NIG; the gen-
eralized inverse Gaussian for GH; and the suitably
shaved stable Y=2; 1=2 for theCGMY andMeixner

processes.

� We shall work with CGMY in addition to the V G:



� At unit time with Gi = Gi(1) we may also express
Xi = Xi(1) as

Xi = �i (Gi � 1) + �i
q
GiZi

where the Z0is are standard normal variates.

� In our correlated Lévy model we suppose that

E
h
ZiZj

i
= �ij:

� There is now dependence between unit returns as

E
h
XiXj

i
= �i�jE

�q
Gi

�
E
hq
Gj
i
�ij



Return Correlation and
Brownian Correlation

� We observe that

E
h
X2i

i
� �2iE[Gi] = �2i

� It follows that observed return correlations

E
h
XiXj

i
r
E
h
X2i

i
E
h
X2j

i � E �q
Gi

�
E
hq
Gj
i
�ij � �ij

� Furthermore we estimate Brownian correlations as

�ij =
E
h
XiXj

i
�i�jE

�p
Gi
�
E
hq
Gj
i

� This estimate is readily available once marginal laws
have been estimated as we then have the moments
Gi and �i:



� When the estimates are greater than one and we have
just a symmetric matrix that is not a correlation we
follow Qi and Sun to construct the closest correlation
matrix.



� We present a sample of VG marginals on the tech-
nology sector.



TABLE 1

VG parameter estimates
for the period 1/4/2002 to 6/18/2008
using daily log price relative returns

TICKER � � � in basis points

AAPL 0.0257 0.5737 13.6183
AMZN 0.0287 1.1043 30.6629
BAC 0.0166 2.7696 -22.1156
C 0.0201 2.4699 0.0004
CSCO 0.0218 0.7300 -9.5081
DELL 0.0188 0.7543 0.2387
F 0.0237 0.6088 25.1879
GM 0.0238 0.9076 24.0957
GS 0.0179 0.5790 0.0352
IBM 0.0146 0.8653 0.0167
INTC 0.0224 0.6473 -1.5322
KO 0.0109 0.7669 -0.2736
LEH 0.0275 2.6239 -31.2588
MER 0.0200 0.8421 0.0410
MMM 0.0126 0.8760 -0.0734
MS 0.0213 0.9177 -0.0457
MSFT 0.0202 2.7847 -23.4115
ORCL 0.0235 1.0347 -0.0021
QCOM 0.0239 0.6561 29.4362
SUN 0.0200 0.3400 -52.9221
VZ 0.0157 0.7489 -0.7597
WMT 0.0133 0.5167 12.1704
XOM 0.0140 0.4373 -37.9893
XRX 0.0220 0.9247 0.0506
YHOO 0.0349 3.1129 -0.0023



Sample and Implied
Brownian Correlation

AAPL AMZN CSCO DELL IBM INTC MSFT ORCL QCOM YHOO
AAPL 1 :2535 :3293 :3472 :3245 :3529 :2195 :2848 :2694 :2180
AMZN :4009 1 :3522 :3517 :3089 :3294 :1966 :2809 :2675 :3587
CSCO :4885 :4956 1 :5514 :5347 :6228 :3712 :5197 :4351 :3854
DELL :5065 :4864 :7156 1 :5072 :5768 :3429 :4587 :4023 :3451
IBM :4894 :4418 :7173 :6691 1 :5674 :3657 :5034 :3649 :3228
INTC :5196 :4599 :8158 :7428 :7554 1 :3887 :5267 :4416 :3888
MSFT :4437 :3768 :6676 :6064 :6684 :6937 1 :3469 :2702 :2242
ORCL :4133 :3865 :6709 :5820 :6604 :6745 :6099 1 :3489 :3130
QCOM :4662 :4391 :6698 :6089 :5709 :6747 :5667 :5252 1 :2859
Y HOO :3911 :6102 :6151 :5416 :5238 :6158 :4877 :4885 :5323 1



Gaussian and Levy
Chisquare Statistics

chisquares AAPL AMZN CSCO DELL IBM INTC MSFT ORCL QCOM YHOO
AAPL 0 384:61 329:10 302:14 398:79 329:93 832:99 288:80 445:78 597:57
AMZN 18:72 0 324:42 312:77 403:43 337:80 822:63 365:25 496:64 784:37
CSCO 5:67 20:69 0 300:28 448:09 513:44 951:88 354:17 438:46 598:90
DELL 24:26 21:99 20:17 0 329:65 387:29 777:54 281:06 370:39 462:63
IBM 20:27 24:29 24:62 11:56 0 461:33 1056:67 411:56 465:87 564:98
INTC 19:00 30:52 32:87 19:38 19:94 0 907:52 427:22 425:41 527:02
MSFT 129:64 164:99 197:02 184:16 183:23 229:99 0 966:75 1038:19 1226:04
ORCL 13:91 18:62 13:15 25:58 25:91 31:09 202:72 0 432:75 494:15
QCOM 17:37 38:08 25:23 17:67 26:52 26:69 152:09 32:22 0 753:19
Y HOO 164:41 161:21 125:50 127:06 122:97 158:52 241:18 111:40 164:81 0



p-values on arbitrary
portfolios

� We exclude MSFT and Y HOO as the chisquare
statistics though a lot better than Gaussian were not
that good.

� The Blue line is for long short portfolios while the
red is for long only portfolios.
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Figure 1: Long-Short portfolio complementary distribu-
tion function of p-values in blue. Long only portfolios are
in red.



Top 50 Levy Correlation

� We constructed the Brownian correlation matrix of
the top 50 stocks using VG and CGMY marginals.

� We present a sample of the VG and CGMY density
�ts.
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� We then constructed marginals at option maturities
by running the Lévy process or by scaling.

� We also extracted risk neutral marginals and using
our Brownian correlations we constructed top 50 bas-
ket option cash �ows.

� Finally we worked out implied stress levels for VG
and CGMY, run, scaled and risk neutral as function
of strike for three maturities, six months, 9 months
and one year.

� We now present the implied stress functions for SPX
as at 20080220.
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Figure 2: Blue, Red Black are VG Levy Scaled and Risk
Neutral Magenta, Green and Yellow are CGMY
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Hedging with Single Name
Options

� We considered a high stress level of 5 for MINMAX-
VAR and obtained the following hedged and unhedged
prices for a 95 put using risk neutral marginals.

Time Change Copula VG Levy Correlation CGMY Levy Correlation
UnHedged 24.4875 43.5140 37.5166
Hedged 4.5285 12.5934 9.4249

� Additionally we graph the unhedged and hedged cash
�ows.
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Conclusion

� We have introduced two new form of dependence
modeling, the multivariate VG copula and correlated
Lévy processes via time change and Brownian corre-
lation

� We have evaluated these models in the context of
Basket option pricing using implied stress functions
as a metric.

� Considerable stress has to be used with physical Lévy
or scaled marginals.

� The required stress is reduced with risk neutral mar-
ginals but it is still present for down side puts.

� Pricing to acceptability was shown to be an engine
for hedging with hedged prices substantially reduced
for an attainment of the same level of acceptability.



� The hedged cash �ows are also a lot less exposed to
negatives.

� These results are conditioned by the path space used
to construct the hedge.




