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Motivation

Treat the top 50 stocks in the SPX as if they were
the whole index.

Build models of dependence on the 50 stocks and
price options on this basket.

Match market SPX options by pricing to acceptabil-
ity at market implied stress levels.



Outline

Pricing and Hedging to Acceptability
Market Implied Surface of Stress Levels

Time Changed Gaussian One Factor Copula Depen-
dence

Correlated Levy Dependence



Stress Surfaces

e Top 50 SPX Basket Stress Surface for Time Changed

Gaussian Copula

e Stress Surface for Correlated Levy Dependence
— VG and CGMY marginals
— Physical Levy Marginals
— Physical Scaled Marginals

— Risk Neutral Marginals



Hedging Basket Options to
Acceptability

e Static Hedging of Basket Options using single name
options
— Hedged and Unhedged Prices

— Hedged and Unhedged Cash Flows



Pricing and Hedging to
Acceptability

e The first principle to be understood is where risk neu-
tral pricing is relevant and why for structured prod-
ucts risk neutral pricing is not relevant.

e The critical principle underlying risk neutral pricing
is the idea of pricing all products under a single, so
called risk neutral measure.

e The main motivation is linearity of the pricing oper-
ator backed by the recognition that in the absence
of such a linearity there is a simple arbitrage, buy or
sell the component cash flows A, B and sell or buy
the package (A + B).



e This argument requires trading in both directions at

the same price.

e For structured products buying is at an ask price with
sales at the bid and these are widely different.



The Relatively Liquid
Hedging Assets

e \We can view the structured product as a scenario or

path contingent vector of total present value payouts
= (rs,s=1,---, M).

e Next we introduce the relatively liquid assets with
bidirectional prices and by financing the trades we
generate zero cost cash flows Y5 for asset j on sce-

nario s.



Acceptable Risks

If we charge the price a and adopt the hedge that
takes the position «; in liquid asset j then our resid-
ual cash flow is

a+adY —2af

If this position is zero or nonnegative, it is clearly
acceptable.

More Generally Acceptable Risks have been effec-
tively defined as a convex cone containing the posi-
tive orthant.

Intuitively, if a sufficient number of counterparties
value the gains in excess of the losses, then the risk

Is acceptable.



Let B be the matrix of such valuation measures used
for testing acceptability. (See Carr, Geman, Madan
JFE 2002 for greater details).

For the risk to be acceptable we must have

a+ ('Y —2YB>0



The Ask Price Problem

The Ask price problem is to find a(x) such that

a(x) = Minga a
S.T. (:U’ — o/Y) B <a

The ask price is the smallest value needed to cover
all the valuation shortfalls net of the hedge.

By virtue of being a minimization problem defined
with respect to a linear constraint set defined by x it
is clear that a(x) will be a convex functional of the
cash flows x and linear or risk neutral pricing does
not hold.



Law Invariant Cones of
Acceptability

Suppose we wish decide on the acceptablity of a ran-
dom cash flow C' based solely on its probability law
or equivalently its distribution function F'(c).

Cherny and Madan (2008) show how this is related
to expectation under concave distortion.

One introduces a collection of concave distribution
functions W%(u) defined on the unit interval 0 <
u < 1 and indexed by the real number « such that
we have acceptability at level « just if

/ ~ W (F(c)) > 0

Equivalently we may write

/ O; WY (F(c))f(c)de > 0



and we see that one is computing an expectation
under the change of probability

V' (F(c))

that depends on the claim being priced via its distri-
bution function F'(c).



The New Acceptability
Cones: MINVAR

The first family of concave distortions we considered
was

Vi(y) =1—-(1—y)"

It is simple to observe that X is acceptable under this
distortion just if the expectation of the minimum of
x independent draws from the distribution of X is
still just positive.

Hence we refer to this measure as MINV AR as it
Is based on the expectation of minima.



e T[he measure change in this case is

Z—g:(a:—l—l)(l—FX(X))x, z € R,

e A potential drawback is that large losses have a max-
imum weight of (z + 1).

e Asymptotically large gains receive a weight of zero.



MAXVAR

e The next concave distortion is based on the maxima
of independent draws and is defined by

1
U (y) = yi+e

e Here we take expectations from a distribution G such
that the law of the maxima of x independent draws
from this distribution matches the distribution of X.

e The measure change now is

K (X)), e Ry

dP 14z

e Large losses now receive unbounded large weights
in the determining system, but large gains have a

minimum weight of (z 4+ 1)1



MAXMINVAR and
MINMAXVAR

We combine the two distortions in two ways to define
MAXMINVAR by

Wi (y) = (1-(1- ,y)“l)f'%“1

and MINMAXVAR by

1 \2+l
Vi (y) =1- (1 — yfﬂ“)

The densities in the determining system now have
weights tending to infinity for large losses and zero
for large gains.

We shall use MINMAXVAR.



Acceptability Pricing and
Distorted Expectations

e Consider now the pricing of a hedged or unhedged
liability with cash flow C' by distorted expectation up
to some level a to charge the price a.

e \We must then have that the cash flow
Y =a-C

with distribution function Fy-(y) is just acceptable
at distortion a.

e Hence
> «
| ydw(Fy () = 0
— 00

We now recognize that

Fy(y) = F_c)(y — a)



and so we get that

| yave (F o)y =) =0

e Making the change of variable ¢ = y —a we get that

/ o:o(c + a)dv® (F_cy(c)) = 0

or that

a = — /_O:O dea (F(_C)(C))

Hence the price is the negative of the distorted ex-
pectation of the cash flow —C.



Market Implied Stress
Levels

e \We may choose a stress level and compute the neg-
ative of the « distorted expectation of —C' as the
ask price.

e Alternatively, given the market price a we may solve
for the market implied stress level, much like an im-
plied volatility.

e This leads us to stress surfaces for options and we
shall work with MINMAXV AR stress surfaces.



Time Changed Gaussian
One Factor Copula
Dependence

e Qiwen Chen (2008), one of my students, proposed
using the copula of the multivariate VG model in the
original Madan and Seneta (1990) VG paper as a
model of dependence. He reports positively on the
performance of this model in terms of capturing the
dependence in returns.

e The multivariate VG (M V (G) time changes all coor-
dinates of a multivariate Brownian motion by a single
gamma time change.

e Here we just use this procedure to generate corre-
lated uniforms after transforming MV G outcomes
to uniforms using their marginal VG distribution
functions.



e \We then generate actual coordinate outcomes using
inverse uniform and prespecified marginal distribu-
tions.

e Following this suggestion, we consider here the re-
striction of the multivariate Brownian to that of a
one factor Gaussian copula model.

e [he model for the correlated uniforms is then ob-
tained as

u;, = Fyg(X;)
X; = \/§(P¢Z+ 1—p§Zz'>

Z, Zés independent Gaussians
g is gamma distributed with

mean unity and variance v

e [ he actual centered data are then obtained as

Y; = Fyé ().



Results on time changed
one factor MVG copula

e We then generate 50 dependent uniforms and the
inverse of the marginal distribution function to gen-
erate outcomes for the individual names with which
we form the basket outcome and use it to price a
basket option by computing discounted distorted ex-
pectations using one of the four distortions.

e It is unlikely that all strikes and maturities will be
priced at the same stress levels

e We first extracted the market implied stress levels.



Basketof50 Surface Calibrated to Index Options using Implied Distortions
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e \We then graphed the stress levels as a function of
strike and maturity



Sress Levels

14

1 1 1 1 1
70 80 920 100 110 120 130

A regression of log stress and log strike and maturity
suggested a linear relationship at the log level or the
functional form for the stress level
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Calibration Results

e For the data of 20080220 we then adopted this stress
level model with three parameters along with our de-
pendence model with 6 parameters given by v and
five correlations with the latent systematic compo-
nent to calibrate options on baskets of the top 50
stocks to the prices of index options. The estimated

parameters were as follows.

Parameter Value

o 0.0964
3 4.224

Y 0.2850
v 0.0061
1 0.9964
P3 0.3214
P4 0.3801

Ps 0.5319



We used 52 options with 13 strikes across four maturities
and the fit statistics were

RMSE 0.0953
AAE  0.0813
APE  0.0325



Hedging Basket Options
with Single Name Options

e Finally we consider a hedged option price where we
seek positions in single name options against the bas-
ket liability to construct the residual cash flow as

RCF =axHCF —TCF

e We find o to minimize the ask price for the residual
cash flow defined as the negative of distorted expec-
tation of this cash flow.

e For minmaxvar at stress level 5, .5 the unhedged and
hedged prices are

5 5
unhedged 24.4875 4.0047
hedged 45285  2.6904



e \We present a graph of the unhedged and hedged cash
flows and a graph of the hedge positions on a basket
put struck 10% down.



Unhedged and Hedged Cash Flows from Selling a Basket Put Option
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Correlated Levy
Dependence

e We take the marginal processes to be zero mean uni-
variate Lévy processes (X;(t),t > 0).

e These processes accomodate the possibility of being
skewed by having a representation as Brownian with
drift time changed by subordinators (G;(t),t > 0)
with unit expectation that are independent across 2
and independent of the Brownian motions.

o \We write

Xi(t) = 0, (Gi(t) — t) + oW, (Gi(2))

for Brownian motions (W;(t),t > 0).



e The variance gamma model arises when G;(t) is a
gamma process with unit mean rate, variance rate

v; and density at unit time given by

1 1l 491 _z
flx) = — Vi e Vi

e Many other subordinators are potential candidates
including the inverse Gaussian for NIG, the gen-
eralized inverse Gaussian for GH, and the suitably
shaved stable Y/2,1/2 for the CGMY and Meixner

Processes.

e We shall work with CGMY in addition to the V.



e At unit time with GG; = G;(1) we may also express
Xz' — Xz(]-) as

X;=0;(G;—1)+0,/GiZ;

where the Z{s are standard normal variates.

e In our correlated Lévy model we suppose that

E|ZZ;] = pij.

e There is now dependence between unit returns as

E|X;X;| = 0j0,E [\/E%] B\Gi] piy



Return Correlation and
Brownian Correlation

We observe that

E|X?| > 0?E[G)] = o7

It follows that observed return correlations

<oVl <,

Furthermore we estimate Brownian correlations as
E|X;X;]
0,0, E /G| E [, /Gj}

Pij =

This estimate is readily available once marginal laws

have been estimated as we then have the moments
G; and o;.



e \When the estimates are greater than one and we have
just a symmetric matrix that is not a correlation we
follow Qi and Sun to construct the closest correlation
matrix.



e \We present a sample of VG marginals on the tech-
nology sector.



TABLE 1

VG parameter estimates
for the period 1/4/2002 to 6/18/2008
using daily log price relative returns

TICKER o v 6 in basis points
AAPL 0.0257 0.5737 13.6183
AMZN  0.0287 1.1043 30.6629
BAC 0.0166 2.7696 -22.1156
C 0.0201 2.4699 0.0004
CSCO 0.0218 0.7300 -9.5081
DELL 0.0188 0.7543 0.2387
F 0.0237 0.6088 25.1879
GM 0.0238 0.9076 24.0957
GS 0.0179 0.5790 0.0352
IBM 0.0146 0.8653 0.0167
INTC 0.0224 0.6473 -1.5322
KO 0.0109 0.7669 -0.2736
LEH 0.0275 2.6239 -31.2588
MER 0.0200 0.8421 0.0410
MMM 0.0126 0.8760 -0.0734
MS 0.0213 0.9177 -0.0457
MSFT 0.0202 2.7847 -23.4115
ORCL 0.0235 1.0347 -0.0021
QCOM  0.0239 0.6561 29.4362



Sample and Implied
Brownian Correlation

AAPL AMZN CSCO DELL IBM

AAPL 1 .2535 3293 3472 .3245
AMZN .4009 1 3622 .3b17 .3089
CSCO  .4885 4956 1 5514 5347

DELL  .5065 4864 (156 1 5072
IBM 4894 4418 (173 .6691 1
INTC 5196 4599 8158  .7428 .7554
MSFT  .4437 3768 6676 .6064 .6684
ORCL  .4133 .3865 6709  .b820 .6604
QCOM .4662 4391 .6698 .6089 .5709
YHOO .3911 .6102 6151  .5416 .5238

INT(
.3526
.3294
.622¢
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5674

6937
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Gaussian and Levy
Chisquare Statistics

chisquares AAPL AMZN CSCO

AAPL
AMZN
CSCO
DELL
IBM
INTC
MSFT
ORCL
QCOM
Y HOO

0
18.72
5.67
24.26
20.27
19.00

129.64

13.91
17.37

164.41

384.61

0
20.69
21.99
24.29
30.52

164.99

18.62
38.08

161.21

329.10
324.42
0
20.17
24.62
32.87
197.02
13.15
25.23
125.50

DELL
302.14
312.77
300.28

11.56
19.38
184.16
25.58
17.67
127.06

IBM
398.79
403.43
448.09
329.65

19.94
183.23
25.91
26.52
122.97



p-values on arbitrary
portfolios

e We exclude MSFT" and Y HQOO as the chisquare
statistics though a lot better than Gaussian were not
that good.

e T[he Blue line is for long short portfolios while the
red is for long only portfolios.



portfolios of 8 tech stocks
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Figure 1: Long-Short portfolio complementary distribu-
tion function of p-values in blue. Long only portfolios are
in red.



Top 50 Levy Correlation

e We constructed the Brownian correlation matrix of
the top 50 stocks using VG and CGMY marginals.

e \We present a sample of the VG and CGMY density
fits.
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We then constructed marginals at option maturities
by running the Lévy process or by scaling.

We also extracted risk neutral marginals and using
our Brownian correlations we constructed top 50 bas-
ket option cash flows.

Finally we worked out implied stress levels for VG
and CGMY, run, scaled and risk neutral as function
of strike for three maturities, six months, 9 months
and one year.

We now present the implied stress functions for SPX
as at 20080220.



Maturity half year

Implied Stress
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Figure 2: Blue, Red Black are VG Levy Scaled and Risk
Neutral Magenta, Green and Yellow are CGMY



Implied Stress

Maturity 9 months




Implied Stress

Maturity one year
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Hedging with Single Name
Options

e \We considered a high stress level of 5 for MINMAX-
VAR and obtained the following hedged and unhedged
prices for a 95 put using risk neutral marginals.

Time Change Copula VG Levy Correlation
UnHedged 24.4875 43.5140 Z
Hedged 4 5285 12.5934 (

e Additionally we graph the unhedged and hedged cash
flows.



Unhedged and Hedged Cash Flows from

Selling a Basket Put Option VGLC
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Unhedged and Hedged Cash Flows from Selling a Basket Put Option CGMY LC
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Conclusion

We have introduced two new form of dependence
modeling, the multivariate VG copula and correlated
Lévy processes via time change and Brownian corre-
lation

We have evaluated these models in the context of
Basket option pricing using implied stress functions
as a metric.

Considerable stress has to be used with physical Lévy
or scaled marginals.

The required stress is reduced with risk neutral mar-
ginals but it is still present for down side puts.

Pricing to acceptability was shown to be an engine
for hedging with hedged prices substantially reduced
for an attainment of the same level of acceptability.



e The hedged cash flows are also a lot less exposed to

negatives.

e These results are conditioned by the path space used
to construct the hedge.





