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Question: How to model the volatility (σt)t≥0.
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Figure 1: Deseasonalised 5 minutes log-returns of Intel (February 1 - May 31,

2002) and estimated volatility.



Stylized facts of volatility:

(1) volatility is random;

(2) volatility has heavy-tailed marginals (higher moments do not exist);

(3) volatility has skewed marginals (leverage effect);

(4) volatility is a stochastic process with long-range dependence effect;

(5) volatility is a stochastic process with clusters in the extremes.



Recall discrete time GARCH(1,1) model

Yn = σnZn i.i.d. innovations (Zn)n∈N0,

Volatility process: Define for σ2 the random recurrence equation

σ2
n = β + λY 2

n−1 + δσ2
n−1, n ∈ N.

Reorganise and iterate the recurrence:

σ2
n = β + λY 2

n−1 + δσ2
n−1 = β + (δ + λZ2

n−1)σ
2
n−1

= β
n−1∑

i=0

n−1∏

j=i+1

(δ + λZ2
j ) + σ2

0

n−1∏

j=0

(δ + λZ2
j ) (1)

Under appropriate conditions: σ2
n

d
→ σ2

∞
d
= β

∑∞
i=0

∏i
j=1(δ + λZ2

j ).



Continuous time GARCH(1,1)

Idea: start with (1) and replace the sum by an integral

⇔ σ2
n =


β

∫ n

0

exp


−

[s]∑

j=0

log(δ + λZ2
j ) ds


 + σ2

0


 exp



n−1∑

j=0

log(δ + λZ2
j )




Replace Zj by jumps of a Lévy process L and take β, η = − log δ, ϕ = λ/δ.

Then for a finite r.v. σ2
0 define the volatility process

σ2
t =

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt t ≥ 0.

with auxiliary process

Xt = tη −
∑

0<s≤t

log(1 + ϕ(∆Ls)
2) t ≥ 0.



Recall: (Lt)t≥0 is Lévy process if EeisLt = etψL(s), s ∈ R, with

ψL(s) = iγLs− τ2
L

s2

2
+

∫

R

(eisx − 1 − isxI{|x|<1})ΠL(dx), s ∈ R.

(γL, τL,ΠL) characteristic tripel, ΠL Lévy measure:
∫
|x|<ε

x2ΠL(dx) <∞.

Define the COGARCH(1,1)process by

Gt =

∫

(0,t]

σt− dLt t ≥ 0.

(Note: this defines the martingale part of the price process.)
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First: Simulated VG driven COGARCH(1,1) process with β = 0.04, η = 0.053 and ϕ = 0.038;

second: differenced COGARCH process (G
(1)
t );

third: volatility process (σt);

last: VG process (Lt) with characteristic function EeiuL1 = (1 + u2/(2C))−C and C = 1;



Properties

• G jumps at the same times as L with jump size ∆Gt = σt∆Lt.

• (Xt)t≥0 is spectrally negative, has drift η, no Gaussian part, Lévy measure

ΠX([0,∞)) = 0 ΠX((−∞,−x]) = ΠL({|y| ≥
√

(ex − 1)ϕ}) for x > 0.

• dσ2
t = (β − ησ2

t−) dt+ ϕσ2
t−d[L,L]

(d)
t

where [L,L]
(d)
t =

∑
0<s≤t(∆Ls)

2 and

σ2
t = σ2

0 + βt− η

∫ t

0

σ2
sds+ ϕ

∑

0<s≤t

σ2
s−(∆Ls)

2 t ≥ 0. (2)

•

∫

R

log
(
1 + ϕx2

)
ΠL(dx) < η ⇐⇒ EX1 > 0

⇐⇒ σ2
t

d
→ σ2

∞
d
= β

∫ ∞

0

e−Xt dt.



Sample path behaviour

• From (2) we know that σ2
t has only upwards jumps.

• If (Lt)t≥0 is compound Poisson with jump times 0 = T0 < T1 < . . .,

σ2
t =

β

η
+

(
σ2
Tj

−
β

η

)
e−(t−Tj)η, t ∈ (Tj, Tj+1).

• For the stationary process, we have σ2
∞ ≥

β

η
a.s.
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Sample paths of σ2
t (solid line) and bσ2

t (dotted line) of one simulation of a VG process.



Theorem Suppose that EL1 = 0, var(L1) = 1. Define Ee−sXt = etΨX(s).

Assume that the volatility process is stationary, and define G
(1)
i :=

∫ i
i−r

σs−dLs.

If ΨX(1) < 0, then

EG
(1)
i = 0, E(G

(1)
i )2 =

rβ

−ΨX(1)
EL2

1 and corr(G
(1)
i , G

(1)
i+h) = 0.

If EL4
1 <∞, ΨX(2) < 0 and

∫
R
x3 νL(dx) = 0, then for k, p > 0

corr((G
(1)
i )2, (G

(1)
i+h)

2) = ke−hp, h ∈ N. 2

Theorem Assume that L1 is symmetric and that there exists κ > 0 such that

|L1|
κ log+ |L1| <∞ and ΨX(κ/2) = 1.

Then a stationary version of the volatility process exists with

P (σt > x) ∼ cx−κ/2, x→ ∞. 2



Stylized facts of volatility:

(1) volatility is random;

(2) volatility has heavy-tailed marginals (higher moments do not exist:

K., Lindner and Maller (2004), Fasen, K., Lindner (2004));

(3) volatility has skewed marginals (leverage effect introduced in Haug et al.)

(4) volatility is a stochastic process with long-range dependence effect

(acf decreases geometrically: K., Lindner and Maller (2004));

(5) volatility is a stochastic process with clusters in the extremes:

Fasen: Extremes of genOU processes (2006, 2007).



Question: Can we find a discrete time skeleton, which approximates the

COGARCH(1,1) process, and is a GARCH(1,1) process.

The following approximation, called first jump approximation shows that (under

some technical conditions) the solution of a Lévy-driven SDE can be approximated

arbitrarily close, by replacing the Lévy process with its first jump approximation.

Theorem [Szimayer and Maller (2007), Haug and Stelzer (2007)]

Let L be a Lévy process in R
d, which has no Brownian part, drift γL and Lévy

measure ΠL and satisfies EL2(1) = 1.

For n ∈ N let 1 > ε(n) ↓ 0 and 0 = t
(n)
0 < t

(n)
1 < t

(n)
2 · · · ↑ ∞.

Set δ(n) := supi∈N(t
(n)
i − t

(n)
i−1) and assume that limn→∞ δ(n) = 0. Assume that

lim
n→∞

δ(n)(Π({x ∈ R
d : |x| > ε(n)})2 = 0 . (3)



Define for all n ∈ N

γ(n) := γL −

∫

ε(n)<|x|≤1

xΠL(dx)

τ
(n)
i := inf{t : t

(n)
i−1 < t ≤ t

(n)
i , |∆Lt| > ε(n)} ∀i ∈ N

L̃
(n)
t := γ(n)t+

∑

{i∈N:τ
(n)
i ≤t}

∆L
τ
(n)
i

∀t ≥ 0

L
(n)

t := L̃
(n)

t
(n)
i−1

.

Then

L̃(n) → L in ucp as n→ ∞ and dS(L
(n)
, L)

P
→ 0 n→ ∞.

2



Remark (i) Whenever one of the sequences (δ(n)) or (ε(n)) are given, one can

always choose the other such that (3) holds.

(ii) Note that the time grid is not necessarily equidistant. The construction allows

for discrete sampling of a continuous-time Lévy-driven model. This is useful for

high-frequency data.

(iii) The construction allows also the embedding of a discrete-time model into a

continuous-time jump model. 2

Example [COGARCH(1,1) and its GARCH(1,1) approximation]

Maller, Müller and Szimayer (2007) specify this approach and apply it to:

(1) Parameter estimation by pseudo MLE.

(2) Option pricing using the approach of Ritchken and Trevor (1999).

For an alternative approach, see Kallsen and Vesenmayer (2007).



Example [COGARCH(1,1) and its GARCH(1,1) approximation,

Maller, Müller and Szimayer (2007)]

We use the notation as in the theorem and assume that all assumptions hold.

For n ∈ N set ∆ti(n) := t
(n)
i − t

(n)
i−1 and define ∆L

τ
(n)
i

as the first jump of size

larger than ε(n) in (t
(n)
i−1, t

(n)
i ]. Define

Zi,n =
1
{τ

(n)
i }<∞

∆L
τ
(n)
i

− ν
(n)
i

ξ
(n)
i

, i ∈ N.

By the strong Markov property (1
{τ

(n)
i <∞}

∆L
τ
(n)
i

)i∈N is an iid sequence with

distribution

Π(dx)1{|x|>ε(n)}

Π({x ∈ Rd : |x| > ε(n)}

(
1 − e−η∆ti(n)Π({x∈R

d : |x|>ε(n)})
)
, x ∈ R \ {0}.



Then (Zi,n)i∈N is an iid sequence with mean 0 and variance 1.

Now recall

dσ2
t = (β − ησ2

t−) dt+ ϕσ2
t−d[L,L]

(d)
t and Gt =

∫

(0,t]

σt−dLt t > 0.

We discretise as follows: for G0,n = G0 = 0 set

Gi,n −Gi−1,n = σi−1,n

√
∆ti(n)Zi,n, i ∈ N,

and

σ2
i,n = β∆ti(n) +

(
1 + ϕ∆ti(n)Z2

i,n

)
e−η∆ti(n)σ2

i−1,n, i ∈ N.

This defines a discrete time GARCH(1,1) random recurrence equation; cf. p. 4.



Follow the construction as before and introduce continuous-time versions

(piecewise constant) of the auxiliary process Xi,n, σ
2
i,n and Gi,n. Then with

the usual technical efforts, it is shown that

dS((Gn, σ
2
n), (G, σ

2))
P
→ 0 n→ ∞. 2



Question: Can we define a reasonable multivariate COGARCH model.

Definition [Multivariate COGARCH(1,1) model, Stelzer (2007)]

Let L be a d-dimensional Lévy process and

A,B ∈Md(R) (the d× d matrices),

C ∈ S
+
d (the d× d positive semi-definite matrices) and set

[L,L]
(d)
t :=

∑
0<s≤t∆Ls(∆Ls)

∗.

Then the process G = (Gt)t∈R+ solving

dGt = V
1/2
t− dLt

dVt = (B(Vt− − C) + (Yt− − C)B∗)dt+AV
1/2
t− d[L,L]

(d)
t V

1/2
t− A∗

with G0 ∈ R
d and Y0 ∈ S

+
d is a multivariate COGARCH(1,1) process.

Note: This definition agrees for d = 1 with the COGARCH(1,1) process.

For details see work by Robert Stelzer.



Question: Can we find a class of models, where the COGARCH(1,1) and the

Barndorff-Nielsen and Shephard model belong to.

Recall the COGARCH(1,1) volatility process:

σ2
t = e−Xt−

(
β

∫ t

0

eXsds+ σ2
0

)
t ≥ 0

where (Xt)t≥0 is a spectrally negative Lévy process with positive drift.

Compare to the Barndorff-Nielsen and Shephard OU process

σ̃2
t = e−αt

(∫ t

0

eαsdLαs + σ̃2
0

)
t ≥ 0

where (Lt)t≥0 is a subordinator.



This motivates the definition of the generalised Ornstein-Uhlenbeck (genOU)

process

Vt = e−ξt
(∫ t

0

eξs−dηs + V0

)
t ≥ 0 (4)

where (ξt, ηt)t≥0 is a bivariate Lévy process and V0 is an independent starting

random variable.

This process has global properties concerning stationarity and second order

behaviour, which explains the similarity between the COGARCH model and the

BN-S OU model.

The similarity breaks down for the extremal behaviour.

See work by Vicky Fasen and Alexander Lindner.
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