Quadratic hedging and utility indifference pricing in stochastic volatility models with jumps

Jan Kallsen

CAU Kiel

Linz, September 22, 2008
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Affine stochastic volatility models

- (discounted) asset price process

\[S_t = S_0 \exp(X_t) \]

- \(X \) return process
- stylized facts: e.g. semi-heavy tails, volatility clustering
- generality vs. tractability?
- examples of affine stochastic volatility models
 - \(X \) Lévy process (e.g. BM, VG, NIG; volatility still constant)
 - Stein & Stein (1991)
 - Heston (1993)
 - Bates (1996)
 - Barndorff-Nielsen & Shephard (2001)
 - Carr, Geman, Madan, Yor (2003)
 - Carr & Wu (2003)
 - Carr & Wu (2004)
 - …
Affine stochastic volatility models (ct’d)
for $S_t = S_0 \exp(X_t)$

- Barndorff-Nielsen & Shephard (2001)
 \[
 dX_t = \delta v_t \, dt + \sqrt{v_t} \, dW_t \\
 dv_t = -\lambda v_t \, dt + dZ_t
 \]
 - W Brownian motion
 - Z increasing Lévy process

- Carr, Geman, Madan, Yor (2003)
 \[
 X_t = L V_t \\
 dV_t = v_t \, dt \\
 dv_t = -\lambda v_t \, dt + dZ_t
 \]
 - L Lévy process
 - Z increasing Lévy process
 - reduces to BNS for Brownian motion L
Consider bivariate process \((X, v)\).

\((b, c, K)\): (differential) characteristics of semimartingale \((X, v)\)

- interpretation: local Lévy-Khintchine triplet
- \(b\): local drift coefficient
- \(c\): local diffusion coefficient
- \(K\): local Lévy measure

\((X, v)\) affine semimartingale:

\[
\begin{align*}
b_t &= b + \tilde{b}v_{t^-} \\
c_t &= c + \tilde{c}v_{t^-} \\
K_t &= K + \tilde{K}v_{t^-}
\end{align*}
\]

- \((b, c, K), (\tilde{b}, \tilde{c}, \tilde{K})\) Lévy-Khintchine triplets on \(\mathbb{R}^2\)
- triplet of \((X, v)\) is affine function of current value \(v_{t^-}\)
Conditional characteristic function of \((X, \nu)\)

\[
E\left(\exp(iu_1 X_{s+t} + iu_2 \nu_{s+t}) \middle| \mathcal{F}_s \right) = \exp\left(\psi(t, iu) + \tilde{\psi}(t, iu) \nu_s \right),
\]

where

- \(\tilde{\psi}\) solution to generalized Riccati equation

\[
\tilde{\psi}(0, u) = u, \quad \frac{d}{dt} \tilde{\psi}(t, u) = -\tilde{\psi}(\tilde{\psi}(t, u))
\]

- \(\psi\) obtained by integration

\[
\psi(t, u) = -\int_0^t \psi((\tilde{\psi}(s, u))ds
\]

- \(\psi, \tilde{\psi}\) Lévy exponents of \((b, c, K), (\tilde{b}, \tilde{c}, \tilde{K})\)

\[
\psi(u) = u^\top b + \frac{1}{2} u^\top c u + \int (e^{u^\top x} - 1 - u^\top x)K(dx)
\]

\[
\tilde{\psi}(u) = u^\top \tilde{b} + \frac{1}{2} u^\top \tilde{c} u + \int (e^{u^\top x} - 1 - u^\top x)\tilde{K}(dx)
\]
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Quadratic hedging
The problem

- discounted asset price process $S_t = S_0 \exp(X_t)$
- contingent claim $H = f(S_T)$
- How to hedge the risk from selling the claim?

\[
\min_{v_0, \varphi} E \left(\left(v_0 + \int_0^T \varphi_t dS_t - H \right)^2 \right) =: \varepsilon^2
\]

- v_0^* variance-optimal initial endowment
- φ^* variance-optimal hedging strategy
- ε^2 expected squared hedging error
Quadratic hedging
The martingale case (Föllmer & Sondermann 1986)

- assume \(S \) to be martingale.
- define \(V_t := E(H | \mathcal{F}_t) \)
- variance-optimal initial endowment
 \[v_0^* = V_0 \]

- variance-optimal hedging strategy
 \[\varphi_t^* = \frac{d\langle V, S \rangle_t}{d\langle S, S \rangle_t} \]
 (i.e. \(\langle V, S \rangle = \varphi^* \cdot \langle S, S \rangle \))
- expected squared hedging error
 \[\varepsilon^2 := E \left(\langle V, V \rangle_T - (\varphi^*)^2 \cdot \langle S, S \rangle_T \right) \]

How to compute \(v_0^*, \varphi^*, \varepsilon^2 \) more explicitly?
Quadratic hedging

The general case (Černý & K. 2007)

- find opportunity process \(L \) and adjustment process \(\tilde{a} \) (both defined by some characteristic equation)
- define \(N_t := \mathcal{L}(L) - \tilde{a} \cdot S - [\tilde{a} \cdot S, \mathcal{L}(L)] \)
- define \(V_t := E(HE(N - N^t)_T | \mathcal{F}_t) \)
- define opportunity-neutral measure \(P^* \) with density
 \[
 \frac{dP^*}{dP} := \frac{1}{E(L_0)E(A\mathcal{L}(L))_T}
 \]
- define \(\xi_t := \frac{d\langle V, S\rangle_t^{P^*}}{d\langle S, S\rangle_t^{P^*}} \)
- variance-optimal initial endowment \(v_0^* = V_0 \)
- variance-optimal hedging strategy
 \[
 \varphi_t^* = \xi_t - (v_0 + \varphi^* \cdot S_t - V_t)\tilde{a}_t
 \]
- expected squared hedging error
 \[
 \varepsilon^2 := E\left(L \cdot (\langle V, V\rangle^{P^*} - (\varphi^*)^2 \cdot \langle S, S\rangle^{P^*})_T \right)
 \]
- How to compute \(v_0^*, \varphi^*, \varepsilon^2 \) more explicitly?
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Concrete calculations in affine models

Problems

- need to compute
 - $V, \varphi^*, \varepsilon^2$ (martingale case) or
 - $L, \tilde{a}, N, V, \xi, \varphi^*, \varepsilon^2$ (general case)

- luckily:
 closed form expression for L, \tilde{a}, N in many affine models

- problem:
 no closed form expression for V (and hence $\xi, \varphi^*, \varepsilon^2$)

- way out:
 integral transform representation
Integral representation of options

- consider option of the form

\[H = \int_{R-i\infty}^{R+i\infty} S_T^z \ell(z) dz \]

- e.g. \(R > 1, \)

\[\ell(z) = \frac{1}{2\pi i} \frac{K^{1-u}}{u(u-1)} \]

for \(H = (S_T - K)^+ \)

- compute \(V, \xi, \varphi^*, \varepsilon^2 \) for \(H = S_T^z \)
 (explicit solutions exist)

- then use linearity of \(V, \xi, \varphi^* \) in \(H \)
 (resp. biliniarity of \(\varepsilon^2 \))
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Solution in the Barndorff-Nielsen & Shephard model
non-martingale case

denote by ψ^Z characteristic exponent of Lévy process Z

define $V(z)_t = e^{\psi_0(T-t,z) + \psi_1(T-t,z)v_t + zX_t}$ with

$\alpha_2(t) = \frac{(\delta + 1)^2}{\lambda} (e^{-\lambda t} - 1)$,

$\alpha_1(t) = \int_0^t \psi^Z(\alpha_2(\tau)) d\tau$,

$\Psi_1(t, z) = \frac{-z(z-1)}{2\lambda} (e^{\lambda(t)} - 1)$,

$\Psi_0(t, z) = \int_0^t \left(\psi^Z(\Psi_1(\tau, z) + \alpha_2(\tau)) - \psi^Z(\alpha_2(\tau)) \right) d\tau$

define $V_t = \int_{R-i\infty}^{R+i\infty} V(z)_t \ell(z) dz$

define $\xi_t = \int_{R-i\infty}^{R+i\infty} \frac{V(z)_t}{S_t} z\ell(z) dz$

variance-optimal initial endowment: $v^*_0 = V_0$

variance-optimal hedging strategy:

$\varphi^*_t = \xi_t - (v_0 + \varphi^* \cdot S_{t-} - V_{t-}) \frac{\delta + 1/2}{S_t}$
Solution in the Barndorff-Nielsen & Shephard model

Hedging error

\[\varepsilon^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \vartheta(z_1, z_2) \ell(z_1) \ell(z_2) \, dz_1 \, dz_2 \]

with

- \[\vartheta(z_1, z_2) = \int_0^T J(T - t, z_1, z_2) e^{\alpha_1(T - t)} + \tilde{\psi}_0(T - t, z_1, z_2) + \gamma_0(t, t, z_1, z_2) + \gamma_1(t, z_1, z_2) \nu_0 + (z_1 + z_2) \lambda_0 \, dt \]
- \[\tilde{\psi}_0(t, z_1, z_2) = \psi_0(t, z_1) + \psi_0(t, z_2) \]
- \[\tilde{\psi}_1(t, z_1, z_2) = \psi_1(t, z_1) + \psi_1(t, z_2) + \alpha_2(t) \]
- \[\xi(z_1, z_2) = \frac{\delta(z_1 + z_2) + \frac{1}{2}(z_1 + z_2)^2}{\lambda} \]
- \[\gamma_1(s; t, z_1, z_2) = \xi(z_1, z_2) + \left(\tilde{\psi}_1(t, z_1, z_2) - \xi(z_1, z_2) \right) e^{-\lambda s} \]
- \[\gamma_0(t, z_1, z_2) = \int_0^t \psi^Z(\gamma_1(\tau; t, z_1, z_2)) \, d\tau \]
- \[J(t, z_1, z_2) = \psi^Z(\alpha_2(t) + \psi_1(t, z_1) + \psi_1(t, z_2)) + \psi^Z(\alpha_2(t)) - \psi^Z(\alpha_2(t) + \psi_1(t, z_1)) - \psi^Z(\alpha_2(t) + \psi_1(T - t, z_2)) \]
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Variance-optimal initial endowment
Barndorff-Nielsen & Shephard vs. Black-Scholes model

Mean value (Strike = 100, T = 63)
Variance-optimal initial hedge
Barndorff-Nielsen & Shephard vs. Black-Scholes model

Hedging strategies (Strike = 100, T = 63)
Variance-optimal hedging error
Barndorff-Nielsen & Shephard vs. Black-Scholes model

Hedging error (Strike = 100, T = 63)
Outline

1. Affine stochastic volatility models
2. Quadratic hedging
3. Integral transform methods
4. Semiexplicit solutions
5. Numerical illustration
6. Exponential utility-based pricing and hedging
Utility indifference pricing and hedging

Definition

- Consider ε options that are to be sold.
- Determine $\pi = \pi(\varepsilon)$ such that

$$\max_{\varphi} E(1 - \exp(v + \varphi \cdot S_T)) = \max_{\varphi} E(1 - \exp(v + \varphi \cdot S_T + \varepsilon \pi - \varepsilon H))$$

- Notation: $\varphi(0)$, $\varphi(\varepsilon)$ maximizer on the left resp. right
- $\pi(\varepsilon)$ utility indifference price per unit of H for ε options
- $\frac{\varphi(\varepsilon) - \varphi(0)}{\varepsilon}$ utility-based hedging strategy per unit of H for ε options
Approximate indifference pricing and hedging
as a first-order approximation

- **Goal:** approximate $\pi(\varepsilon)$, $\varphi(\varepsilon)$ for small ε
- **Expansion:**

 \[
 \pi(\varepsilon) = \pi(0) + \varepsilon \gamma + o(\varepsilon)
 \]

 \[
 \varphi(\varepsilon) = \vartheta^* + \varepsilon \xi + o(\varepsilon)
 \]

- **Interpretation:**
 - $\pi(0)$: limiting price for very small number of options (Davis 1997, Karatzas and Kou 1996)
 - γ: risk premium per option that is to be sold
 - ϑ^*: optimal strategy for pure investment problem without options
 - ξ: hedging strategy per option

- **How to determine** $\pi(0)$, ϑ^*, γ, ξ?
Approximate indifference pricing and hedging

- Solve pure investment problem for exponential utility.
- Solve quadratic hedging problem under the minimal entropy martingale measure.
- Obtain $\pi(0)$, ϑ^*, γ, ξ.
Numerical illustration
Barndorff-Nielsen & Shephard model

Indifference prices (Strike = 100, T = 63, −2 ≤ n ≤ 2, β = 1)

π(2)
π(1)
π(0)
π(−1)
π(−2)
Payoff

stock price
Indifference price
Numerical illustration

Barndorff-Nielsen & Shephard model (ct’d)

Trading and hedging strategies (Strike = 100, T = 63, n=1, β=1)

θ * pure investment strategy
φ(1) optimal trading strategy
ξ hedging strategy under Q