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Portfolio Liquidation

The Model

• Agent holds θ units of American-style claim, payoff per-unit
claim C (Y ) (or C (Y , θ) where Y is asset value
• Perpetual case, can exercise over infinite horizon
• Risk averse agent cannot trade Y so incomplete market
• In complete market, standard perpetual American option problem
(Samuelson/McKean (1965)/Dixit and Pindyck (1994)) - exercise
threshold independent of quantity
• How you can divide up the claim important in incomplete market
- we assume claim is infinitely divisible



Portfolio Liquidation

• Assume Y is transient to zero with scale function S, chosen such
that S(0) = 0
• Denote by Θt the number of options remaining at time t, Θ0 = θ
• The agent with initial wealth x solves

max
(Θt)∈M,Θ0=θ

EU

(

x +

∫ ∞

t=0
C (Yt ,Θt)|dΘt |

)

where M is the set of positive decreasing processes (Θt)t≥0.
Rewrite as

max
(τφ)0≤φ≤θ ,τφ∈T

EU

(

x +

∫ θ

φ=0
C (Yτφ , φ)dφ

)

where T is the family of decreasing stopping times parameterised
by quantity φ which represents the number of unexercised claims,
here τφ = inf{t : Θt ≤ φ}.



Portfolio Liquidation

The canonical example

• Consider American call option so C (Y ) = (Y − K )+

• Asset value Y follows

dY

Y
= νdt + ηdW

for constants ν, η where ν ≤ η2/2. Then S(y) = yβ where
β = 1 − 2ν/η2.
• Work with discounted quantities so K is constant with respect to
the bond numeraire
• Agent has exponential utility, U(x) = −e−γx/γ or power utility
U(x) = x1−α/(1 − α).



Applications and Literature

Applications and Literature

Applications

• Real options - Y not financial asset
• Executive stock options - Y is stock, but executive restricted
from trading it
Literature

• Henderson (2004) - perfectly indivisible
• Grasselli and Henderson (2006) - finitely divisible

• Jain and Subramanian (2004)
• Grasselli (2005)
• Rogers and Scheinkman (2007)
• Leung and Sircar (2007)

• Bank and Becherer
• Schied and Schöneborn (2008)



Finding the Optimal boundary
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Figure: A generic threshold h(φ).



Finding the Optimal boundary

The total revenue
We solve for the value function for an arbitrary boundary and use
calculus of variations to determine the optimal boundary
Consider exercising the infinitesimal θth (to go) unit of option, the
first time, if ever, Y exceeds h(θ), where h decreasing, continuous,
differentiable and h(θ) ≥ K . ie. let Θt = h−1(max0≤s≤t Ys)
In region θ < h−1(y) we have that total exercise revenue is

R = −

∫ ∞

0
C (Ys ,Θs)dΘs =

∫ θ

0
dφC (h(φ), φ)i(S≥h(φ))

where S = max0≤t≤∞ Yt.

In the region θ > h−1(y) we have

R =

∫ θ

h−1(y)
C (Y0, φ)dφ+

∫ h−1(y)

0
dφC (h(φ), φ)i(S≥h(φ))

Note that conditional on S , R is non-random.



Finding the Optimal boundary

The utility of total revenue

Proposition

For y ≤ h(θ)

E
y ,θ[U(x + R)] = U(x)

+S(y)

∫ θ

0
dφ(S(h(φ)))−1C (h(φ), φ)U ′

(

x +

∫ θ

φ
dψC (h(ψ), ψ)

)



Finding the Optimal boundary

Sketch of Proof:
R(s) denote the revenue conditional on S = s:

R(s) =

∫ θ

0
dφC (h(φ), φ)i(s≥h(φ)) =

∫ θ

h−1(s)
dφC (h(φ), φ).

E
y,θ [U(x + R)]

=

∫

∞

y

P(S ∈ ds)U(x + R(s))

= −P
y(S ≥ s)U(x + R(s))|∞y +

∫

∞

y

P
y (S ≥ s)R ′(s)U ′(x + R(s))ds

= U(x) +

∫ h(0)

h(θ)

P
y(S ≥ s)

∣

∣

∣

∣

d

ds
h−1(s)

∣

∣

∣

∣

C (s, h−1(s))U ′(x + R(s))ds

= U(x) +

∫ θ

0

P
y (S ≥ h(φ))dφC (h(φ), φ)U ′(x +

∫ θ

φ

dψC (h(ψ), ψ))



Finding the Optimal boundary

Theorem

Let c(·, θ) = C−1(·, θ). The optimal h satisfies

h′(φ) = −

[

cφ − A(h, φ;w0, θ0)C
2cz + 2Cφcz + CCφczz + Cczφ

]

[2Cxcz + B(S, h(φ))Ccz + CCxczz ]
(1)

where (1) is evaluated at x = h(φ) and z = C (h(φ), φ) and

A(h, φ;w , θ) =
U ′′(w +

∫ θ
φ C (h(ψ), ψ)dψ)

U ′(w +
∫ θ
φ C (h(ψ), ψ)dψ)

B(S, h(φ)) =
S ′′(h(φ))

S ′(h(φ))
− 2

S ′(h(φ))

S(h(φ))



The optimal boundary for exponential utility

For exponential utility and call options

max
h≥K

EU(x+R) = −
1

γ
e−γx min

h≥K
Ee−γR = −

1

γ
e−γx [1−yβ max

h≥K
Dh(θ)]

where

Dh(θ) = γ

∫ θ

0
dφ h(φ)−β(h(φ) − K )e−γ

R θ

φ
dψ(h(ψ)−K) .

Rescale problem with α = γθK and h(ψ) = Kf (ψ/θ) = Kf (x).
Define

A(α) = max
f ≥1

∫ 1

0
dxf (x)−β(f (x) − 1)e−α

R 1
x

dz(f (z)−1)

Suppose α = 0. Provided β > 1 the max is F (x) = β
β−1 , or

F (x) = ∞ if β ≤ 1.

Dixit and Pindyck (1994)/McDonald and Siegel (1986)



The optimal boundary for exponential utility

Let g(x) =
∫ 1
x
(f (z) − 1)dz . Maximise

−

∫ 1

0
dx(1 − g ′(x))−βg ′(x)e−αg(x).

By calculus of variations, the maximiser g̃ satisfies

(1−g̃ ′(x))−β g̃ ′(x)e−αg̃(x)−g̃ ′
∂

∂g̃ ′

[

(1 − g̃ ′(x))−β g̃ ′(x)e−αg̃(x)
]

= constant



The optimal boundary for exponential utility

Definition

Let β = 1 − 2ν/η2 and suppose β > 0. For β > 1 define
E (β) = β/(β − 1), and set E (β) = ∞ otherwise. For
1 < y < E (β) define

I (y) =
2

(y − 1)
−(1+β) ln

(

y

y − 1

)

+i(β>1) [(1 + β) ln β − 2(β − 1)] ,

and for β > 1 and y ≥ E (β) set I (y) = 0. Finally, let J be the
inverse to I with J(0) = E (β) for β > 1 and J(0) = ∞ otherwise.



The optimal boundary for exponential utility

Theorem

Suppose β > 0. For 0 < y <∞ and 0 ≤ θ <∞ define
Λ(y , θ; γ,K ) = Λ(y , θ) by







1 − yβJ(γθK )−(β+1)K−β(β − (β − 1)J(γθK )) y ≤ KJ(γθK )

βe−(y/K−1)(γθK−I (y/K))(1 − K/y) KJ(γθK ) < y < KE (β)

e−γ(y−K)θ KE (β) ≤ y (if β > 1).

Then

V = V (x , y , θ) = −
1

γ
e−γxΛ(y , θ)

and the optimal strategy is to take

Θt =
1

γK
I

(

1

K
max

0≤s≤t
Ys

)



The optimal boundary for exponential utility
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Figure: Plots of I (y) in the two cases β > 1, and 0 < β ≤ 1. The lower line
corresponds to β = 5 and the upper line β = 0.5.



The optimal boundary for power utility and stock

Example: Power utility

U(x) = x1−α/(1 − α), lognormal dynamics and stock C (x) = x .

The problem becomes to maximise

∫ θ

0
h(θ)1−β

(

x +

∫ θ

φ
h(ψ)dψ

)−α

If ν < 0 so that β > 1 then the problem is degenerate and all
stock is sold instantly.

So suppose ν > 0. Set χ = (α+ β − 1)/α < 1. We will need
χ > 0 else the problem is degenerate.

So suppose χ > 0. Suppose y ≤ h(θ; x) = h(θ). From calculus of
variations we deduce

h(φ) = x

(

1

χ
− 1

)

1

θ

(

θ

φ

)1/χ



The optimal boundary for power utility and stock

What if x = 0?

More generally, if y > h(θ; x) then sell an initial tranche to reduce
holdings until h(ψ; x + (θ − ψ)y) = y . Then proceed as before.

If y > h(θ; x) then the agent should reduce holdings to ψ where

ψ =
(x + θy)

x
(1 − η)



Portfolios of Options and Price Impact.

Example: Exponential utility, price impact and portfolios of

options

Suppose the payoff of the option depends on the number of
options remaining: C = C (Yt ,Θt). This could be because
• the agent has a portfolio of options, and the order in which she
sells them is prescribed,
• the agent has a portfolio of call options, in which case she sells
the low strike options first,
• the act of selling options impacts upon the price.

The optimal strategy is again of threshold form.

Suppose C (y , θ) = (ye−p(θ−Θ0) − K (θ))+ for K (θ) decreasing.
p is the parameter representing (permanent) price impact.
K (θ) is the strike of the θth-to-go option, if they are sold in order
of increasing strike.



Portfolios of Options and Price Impact.

No price impact; tranches of options

Suppose K (θ) = k1 for θ ≤ θ1; K (θ) = k2 for θ1 ≤ θ ≤ θ2.

By the main Theorem, for φ < θ1 the optimal h solves

h′(φ) = −
γ(h(φ) − k1)

2h(φ)

k1(1 + β) + (1 − β)h(φ)
(2)

which can be solved as before.

Set x̄ = h(θ1−).



Portfolios of Options and Price Impact.

Let x̂ solve
βk1 + (1 − β)x̄

x̄1+β
=
βk2 + (1 − β)x̂

x̂1+β

Then, for θ ∈ (θ1, θ2) the optimal h is given by the inverse to H
where

H(x) = θ1 +
2

γ(x − k2)
−

2

γ(x̂ − k2)
+

(1 + β)

γk2
ln

(

(x − k2)x̂

x(x̂ − k2)

)

.



Portfolios of Options and Price Impact.
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Figure: The solid lines are the thresholds for agent with θ1 = 10 options with
strike k1 = 1.5 and θ2 − θ1 = 15 options with strike k2 = 1. Computations
give x̄ = 1.63 and x̂ = 1.3. Also shown (dotted lines) are h1 and h2 which
satisfy h2 ≤ h ≤ h1. Other parameters are β = 2, γ = 1.



Portfolios of Options and Price Impact.

Price impact; identical options with strike k

Write g(ψ) = e−p(θ0−ψ)h(ψ) and abbreviate p/γ to ξ, so that ξ
measures the relative importance of the price impact and the risk
aversion.

Then the optimal g satisfies

g ′(θ) =
−γg

(

g2 + g(ξ(β − 1) − 2k) + k(k − βξ)
)

g(1 − β) + (β + 1)k
(3)

with g(0) = e−pθ0 h̄ where h̄ = argmax h−β(he−pθ0 − k).



Portfolios of Options and Price Impact.
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Figure: Exercise boundaries for options with strike k = 1. Other parameters
are β = 2 and γ = 1. The rightmost boundary uses price impact parameter
p = 0.05 and for these parameters, g(∞) = 1.2. The leftmost boundary has
no price impact and hence g(∞) = k = 1. Both boundaries have
g(0) = kβ/(β − 1) = 2.



Further extensions

Final Remarks

• We have a method for generating the candidate optimal
threshold/strategy. A verification lemma is required to finish the
analysis.

• The advantage is that we decouple the problems of finding the
value function and the optimal threshold, a more traditional
approach solves for both simultaneously.

• The ideas can apply to incorporate more features: can include
partial hedging in a correlated asset (which increases the
continuation region, which in turn reduces the effective risk
aversion), or Principal/Agent problems with effort.
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