Multiscale modeling and simulation of crowded transport in the life and social sciences

Publications


Peer Reviewed Journal Publication
  • Hittmeir, Sabine; Ranetbauer, Helene; Schmeiser, Christian; Wolfram, Marie-Therese (2017) Derivation and analysis of continuum models for crossing pedestrian traffic. Math. Models Meth. Appl. Sci., Bd. 27 (7), S. 1301-1325.
  • Burger, Martin; Lorz, Alexander; Wolfram, Marie-Therese (2017, online: 2016) BALANCED GROWTH PATH SOLUTIONS OF A BOLTZMANN MEAN FIELD GAME MODEL FOR KNOWLEDGE GROWTH. Kinet. Relat. Mod., Bd. 10 (1), S. 117-140.
  • Burger, Martin; Lorz, Alexander; Wolfram, Marie-Therese (2017, online: 2016) Existence of balanced growth path solutions to a Boltzmann mean field game model for knowledge growth. KRM, Bd. 10 (1), S. 117-140.
  • Carrillo, Jose A.; Ranetbauer, Helene; Wolfram, Marie-Therese (2016, online: 2016) Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys., Bd. 327, S. 186-202.
  • Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese (2016) Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures. Journal of Nonlinear Science, Bd. 27 (2), S. 1-33.
  • Markowich, Peter; Teichmann, Josef; Wolfram, Marie-Therese (2016) Parabolic free boundary price formation models under market size fluctuations. SIAM MMS, Bd. 14 (4), S. 1211-1237.
  • E. Carlini, A. Festa, F.J. Silva, M-T. Wolfram (2016) Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow. Dyn. Games Appl., Bd. 1, S. 1-23.
  • Festa, Adriano (2016, online: 2016) RECONSTRUCTION OF INDEPENDENT SUB-DOMAINS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS AND APPLICATION TO PARALLEL COMPUTING. ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., Bd. 50 (4), S. 1223-1240.
  • Festa, Adriano; Vinter, Richard B. (2016, online: 2016) Decomposition of Differential Games with Multiple Targets. J. Optim. Theory Appl., Bd. 169 (3), S. 848-875.
  • Burger, Martin; Lorz, Alexander; Wolfram, Marie-Therese (2016) ON A BOLTZMANN MEAN FIELD MODEL FOR KNOWLEDGE GROWTH. SIAM J. Appl. Math., Bd. 76 (5), S. 1799-1818.
  • Carrillo, Jose A.; Martin, Stephan; Wolfram, Marie-Therese (2016) An improved version of the Hughes model for pedestrian flow. Math. Models Meth. Appl. Sci., Bd. 26 (4), S. 671-697.
  • Burger, Martin; Hittmeir, Sabine; Ranetbauer, Helene; Wolfram, Marie-Therese (2016) Lane formation by side-stepping. SIAM Journal on Mathematical Analysis (SIMA), Bd. 48 (2), S. 981-1005.
  • Langer, U.; Repin, S.; Wolfmayr, M. (2015) Functional a posteriori error estimates for parabolic time-periodic boundary value problems. Computational Methods in Applied Mathematics, Bd. 15 (3), S. 353-372.
  • D. Gomes, R. Velho, M.T. Wolfram (2014, online: 2014) Socio economic applications of finite state mean field games. Proceedings of the Royal Society A, Bd. 372 (2028), S. NaN.
  • M. Burger, L. Caffarelli, P.A. Markowich, M.T. Wolfram (2014) On the asymptotic behaviour of a Boltzmann type price formation model. CMS, Bd. 12 (7), S. 1353-1361.
  • F. Achleitner, C.M. Cuesta, S. Hittmeir (2014, online: 2014) Travelling waves for a non-local Korteweg-de Vries-Burgers equation. Journal of Differential Equations, Bd. 257 (3), S. 720-758. (link)
  • M. Burger, M. Di Francesco, P.A. Markowich and M.T. Wolfram (2014, online: 2014) Mean field games with nonlinear mobilities in pedestrian dynamics. Discete and Dynamical Systems-B, Bd. 19 (5), S. 1311-1333.
  • Wolfmayr, Monika (online: 2016 A note on functional a posteriori estimates for elliptic optimal control problems. Numerical Methods for Partial Differential Equations, Bd. 33 (2), S. 403–424.
  • Jose A. Carrillo, Stephan Martin and Marie-Therese Wolfram A local version of the Hughes model for pedestrian flow. Mathematical Model and Methods in the Applied Sciences, Bd. 26 (4), S. 671-697.

Conference Contribution: Publication in Proceedings
  • Achleitner, Franz; Hittmeir, Sabine; Schmeiser, Christian (2014) On nonlinear conservation laws regularized by a Riesz-Feller operator. In: Ancona, Fabio; Bressan, Alberto; Marcati, Pierangelo; Marson, Andrea (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications, S. 241-248.

Contribution in Collection
  • Wolfmayr, M. (2015, online: 2015) Functional a posteriori estimates for elliptic optimal control problems. In: G. Zavarise, P. Cinnella and M. Campiti (Hrsg.), PAMM; Lecce: WILEY-VCH Verlag, S. 621-622. (link)