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Abstract

In this work, we examine a finite-dimensional linear inverse problem
where the measurements are disturbed by an additive normal noise.
The problem is solved both in the frequentist and in the Bayesian
frameworks. Convergence of the used methods when the noise tends
to zero is studied in the Ky Fan metric. The obtained convergence rate
results and parameter choice rules are of a similar structure for both
approaches.

1 Introduction

We are interested in the linear problem

y = Ax (1)

where A ∈ Rm×n is a known matrix, x ∈ Rn and y ∈ Rm. In this work,
we consider problems where the matrix A is ill-conditioned. Such problems
arise, in particular, when A is a discretized version of a compact operator
between infinite-dimensional Hilbert spaces.

Given the exact data y, a least squares solution to the inverse problem (1)
is a vector z ∈ Rn such that

‖Az − y‖ = min
w∈Rn

‖Aw − y‖.

If the null space N (A) of the matrix A is nontrivial, there exist several least
squares solutions. An additional requirement is needed for the uniqueness.

The least squares minimum norm solution x† to (1) is the least squares
solution with the minimal norm, i. e.,

x† := arg min
z∈Rn

{
‖z‖ : ‖Az − y‖ = min

w∈Rn
‖Aw − y‖

}
.
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For the linear problem (1),
x† = A†y

where A† is the Moore–Penrose inverse of A. Furthermore, the set of all
least squares solutions is x† +N (A).

We assume that the measurements are disturbed by an additive noise.
Since problem (1) is unstable, observed inexact data yε cannot be used
directly to infer an approximate solution A†yε to (1) but some regularization
technique must be applied to obtain an approximate solution xε.

A regularization method should naturally be such that less noise leads
to a better approximation. An accepted quality criterion are convergence
rate results in terms of the noisy data, i. e., results of the form

ρx(xε, x†) = O(f(ρy(yε, y))) (2)

where ρx and ρy are suitable metrics.
In the deterministic regularization theory, the noise in the data is as-

sumed to be bounded, i. e., ‖yε − y‖ ≤ δ for some δ > 0. We are interested
in the case where the noise can be modelled by a normal random variable.
Then, in principle, ‖yε − y‖ can be arbitrarily large. Hence the results of
the deterministic theory cannot be utilized and less restrictive stochastic
concepts must be used.

When the noise is considered as a random variable, the regularized so-
lution is also a random variable. Hence the distance between x† and the
regularized solution needs to be measured in an appropriate metric in the
space of random variables. Often, convergence results in the presence of
a stochastic noise are given in the terms of the mean squares error (cf.
[1, 25, 20, 8]). In [10, 9], the Ky Fan metric (a quantitative version of the
convergence in probability) was used to deduce convergence results for linear
inverse problems.

In addition to the frequentist approach (see section 2), the Bayesian
inversion theory (see section 4) is a widely used tool to tackle stochastic
inverse problems. A main argument in favor of the Bayesian approach is
that not only a single regularized solution is computed (as it is done in the
frequentist setting) but that a whole distribution can be obtained. The first
convergence results for the posterior distribution were presented in [13].

In this work, we use the metric of Ky Fan to derive convergence rate
results in the framework of an additive normal noise for Tikhonov type of
regularized solutions (i. e., the frequentist setting). Moreover, we show that
with an analogous approach, similar results can be obtained for the MAP
estimate in the Bayesian framework. By coupling the metric of Ky Fan with
the metric of Prokhorov, we can even obtain corresponding results for the
posterior distribution.

This paper can be seen as a step towards the building of a bridge between
these two—seemingly different—statistical approaches to inverse problems,
i.e., between the frequentist and the Bayesian inversion theories.
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2 Frequentist approach to linear inverse problems

The frequentist inversion theory is the stochastic counterpart to the de-
terministic inversion theory. In the frequentist approach stochastic inverse
problems are solved by using some regularization technique. Possible prior
information about the true solution to the problem is taken into account in
regularization. Since the measured data yε usually can be modelled by a
random variable, the regularized solution is also a random variable. Con-
vergence results in the frequentist framework are given in the terms of an
appropriate metric in the space of random variables.

We suppose that model (1) for the measurement situation is exact and
the true solution x is deterministic. We assume that the measurements are
perturbed by an additive noise, i. e.,

yε(ω) = Ax + ε(ω) (3)

where ε is a random variable from a probability space (Ω,F ,P) to Rm. The
distribution of the noise ε is known and possibly allows also large values
with small probability.

In the frequentist framework, all probabilities correspond to the fre-
quences of random events. Hence, for a known x ∈ Rn the frequences of
events {yε ∈ B} related to repeated measurements approximate the proba-
bilities of the random events {ω ∈ Ω : Ax + ε(ω) ∈ B} where B is a Borel
set in Rm.

In some application, another least squares solution to the linear prob-
lem (1) than the least squares minimum norm solution x† may be of interest,
e. g., the least squares solution that minimized another norm than the Eu-
clidean norm. Let G ∈ Rn×n be a positive definite symmetric matrix and
x0 ∈ Rn. The least squares (G, x0)-minimum norm solution x†G,x0

to (1) is

x†G,x0
:= arg min

z∈Rn

{
‖z − x0‖G : ‖Az − y‖ = min

w∈Rn
‖Aw − y‖

}

where ‖z‖G := (z,Gz)1/2 is the norm defined by the matrix G. For the
linear problem (1),

x†G,x0
= x† +

(
G1/2PN (A)

)†
G1/2

(
x0 − x†

)

where PN (A) is the orthogonal projection onto N (A) [18, theorem (20.9)].
Obviously, x† = x†I,0.

Let G ∈ Rn×n and S ∈ Rm×m be positive definite symmetric matrices
and x0 ∈ Rn. Given a measurement yε(ω), we construct the regularized
solution xε

α,S,G,x0
to the linear problem (1) as a minimizer of the functional

‖Ax− yε(ω)‖2
S + α‖x− x0‖2

G
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where α > 0. Pointwise regularization is considered here, i. e., the functional
depends on the realization yε(ω), not on the random variable yε. When
G = I, S = I, and x0 = 0, the minimizer is called the Tikhonov regularized
solution.

For the linear problem (1) the regularized solution can be given explicitly;
with the regularization parameter α and the noisy data yε(ω) it is

xε
α,S,G,x0

(ω) =
(
AT SA + αG

)−1 (
AT Syε(ω) + αGx0

)
. (4)

As a linear transformation of yε, the regularized solution xε
α,S,G,x0

is also a
random variable.

In deterministic convergence results it is assumed that ‖y − yε(ω)‖ ≤ δ
for some δ > 0, i.e., the noise is bounded. In contrast, in this work we want
to allow unbounded noise. Hence the results of the deterministic theory
cannot be utilized and less restrictive stochastic concepts must be used.

Distances between random variables can be measured with several dif-
ferent metrics. Here, we utilize the metric of Ky Fan:

Definition 1 (Ky Fan metric). Let ξ1 and ξ2 be random variables in a
probability space (Ω,F ,P) with values in a metric space (X, dx). The distance
between ξ1 and ξ2 in the Ky Fan metric is defined as

ρk(ξ1, ξ2) := inf {δ > 0 : P (dx(ξ1(ω), ξ2(ω)) > δ) < δ} .

The Ky Fan metric gives a quantitative version of the convergence in
probability; for some background on this metric see [7, 11, 3]. The Ky Fan
distance has been used to study convergence in stochastic inverse problems
in [10, 9, 12, 13].

The following theorem combines the Ky Fan distance between the reg-
ularized solution (4) and the least squares (G, x0)-minimum norm solution
with the Ky Fan distance between the noisy and the noiseless measurements.

Theorem 2. Let G ∈ Rn×n and S ∈ Rm×m be positive definite symmetric
matrices and x0 ∈ Rn. Furthermore, let xε

α,S,G,x0
be the regularized solu-

tion (4) to the linear problem (1) with the regularization parameter α and
the data yε where yε satisfies the additive noise model (3). Then

ρk

(
xε

α,S,G,x0
, x†G,x0

)
(5)

≤ max

{
α

λ2
p + α

√
λG

max

λG
min

∥∥∥x†G,x0
− x0

∥∥∥ +
1

2
√

α

√
λS

max

λG
min

ρk(yε, y), ρk(yε, y)

}

where λG
min and λG

max are the minimal and the maximal eigenvalues of G,
respectively, λS

max is the maximal eigenvalue of S, and λp is the minimal
positive singular value of S1/2AG−1/2.
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Proof. We may rewrite

xε
α,S,G,x0

(ω)

= G−1/2
(
G−1/2AT SAG−1/2 + αI

)−1
G−1/2AT S (yε(ω)−Ax0) + x0.

Thus G1/2(xε
α,S,G,x0

(ω) − x0) is the Tikhonov regularized solution to the
linear inverse problem

S1/2AG−1/2z = S1/2(y −Ax0) (6)

with the regularization parameter α and the noisy data S1/2(yε(ω)−Ax0).
The least squares minimum norm solution to (6) is

z† = (AG−1/2)†(y −Ax0).

By using the singular value decomposition of the matrix S1/2AG−1/2 we can
estimate

∥∥∥xε
α,S,G,x0

(ω)− (x0 + G−1/2z†)
∥∥∥

≤ α

λ2
p + α

√
‖G−1‖

∥∥∥z†
∥∥∥ +

1
2
√

α

√
‖G−1‖ ‖S‖ ‖yε(ω)− y‖.

According to the definition of the Moore-Penrose inverse x0 + G−1/2z† =
x†G,x0

. Therefore

∥∥∥xε
α,S,G,x0

(ω)− x†G,x0

∥∥∥

≤ α

λ2
p + α

√
λG

max

λG
min

∥∥∥x†G,x0
− x0

∥∥∥ +
1

2
√

α

√
λS

max

λG
min

‖yε(ω)− y‖. (7)

The point-wise obtained norm bound (7) can be lifted to be bound (5) in
the Ky Fan metric according to [13, theorem 6].

Remark 3. The Ky Fan metrics in theorem 2 are calculated by assuming
that the underlying metrics in Rn and Rm are the Euclidean metrics, not
the metrics introduced by the G-norm and the S-norm, respectively. The
appearance of the eigenvalues of G and S in (5) is the consequence of that
choice.

The above estimate gives a bound on the error in the Ky Fan metric
and leads to parameter choice rules for α that ensure convergence rates for
the error as in (2) as ρk(yε, y) → 0. Such results have been obtained in,
e. g., [10, chapter 3] when G = I, S = I, and x0 = 0.

Since the upper bound (5) depends on the matrix A through the mini-
mal positive singular value of S1/2AG−1/2, convergence rate results will not
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be independent of A. Especially, when A is ill-conditioned, constants in
convergence rate results can be significantly big.

In the deterministic inversion theory, convergence rate results for lin-
ear inverse problems independent of the matrix A are only possible when
additional assumptions on the solution are imposed (see, e. g., [4]). These as-
sumptions can, for instance, be formulated in terms of abstract smoothness
conditions, so called source conditions.

Definition 4. The least squares minimum norm solution x† to the linear
problem (1) satisfies a deterministic source condition with source function
f if there exist v ∈ Rn and τ > 0 such that

x† = f(AT A)v and ‖v‖ ≤ τ. (8)

Typical choices of the source function are f(λ) = λν , ν ≤ 1 and f(λ) =
(− log λ)−ν (see [4, 14]).

Definition 5. The source function f allows the deterministic convergence
rate h if there exists an increasing function h such that h(0) = 0 and

x ∈
{

z ∈ N (A)⊥ : z = f
(
AT A

)
v, ‖v‖ ≤ τ

}
=⇒ ‖x− xα‖ ≤ τh(α)

for any A ∈ Rm×n and τ > 0 where xα := (AT A + αI)−1AT Ax .

For the Hölder and the logarithmic source functions f above, it has been
shown that f = h (see [4] and [14], respectively). Nevertheless, this is not
the case in general, e. g., when saturation occurs (cf., e. g., [4]). For some
general results on connections between f and h, using weak assumptions
only (e. g., monotonicity or concavity of f) we refer to [22, 24].

Theorem 6. Let G ∈ Rn×n and S ∈ Rm×m be positive definite symmetric
matrices and x0 ∈ Rn. Furthermore, let xε

α,S,G,x0
be the regularized solu-

tion (4) to the linear problem (1) with the regularization parameter α and
the data yε where yε satisfies the additive noise model (3). Assume that the
source function f allows the deterministic convergence rate h and that there
exist v ∈ Rn and τ > 0 such that

G1/2
(
x†G,x0

− x0

)
= f

(
G−1/2AT SAG−1/2

)
v and ‖v‖ ≤ τ. (9)

Then

ρk

(
xε

α,S,G,x0
, x†G,x0

)

≤ max

{
τh(α)√

λG
min

+
1

2
√

α

√
λS

max

λG
min

ρk(yε, y), ρk(yε, y)

}
(10)

where λG
min is the minimal eigenvalue of G and λS

max is the maximal eigenvalue
of S.
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Proof. According to assumption (9) the least squares minimum norm solu-
tion z† to problem (6) satisfy the deterministic source condition (8) with the
source function f and the constant τ > 0. Hence by the stability bounds for
(deterministic) Tikhonov regularization (see [4, chapter 5]),

∥∥∥xε
α,S,G,x0

(ω)− x†G,x0

∥∥∥ ≤ τh(α)√
λG

min

+
1

2
√

α

√
λS

max

λG
min

‖yε(ω)− y‖. (11)

The point-wise obtained norm bound (11) can be lifted to be bound (10) in
the Ky Fan metric according to [13, theorem 6].

If yε has a known distribution, the bounds in (5) and (10) can be trans-
lated into a more concrete shape. In particular, if the distribution of yε is
normal, a convergence result in terms of the covariance matrix is of interest.

3 Convergence rates for the frequentist approach

Let y0 ∈ Rm and Σ ∈ Rm×m be a positive definite symmetric matrix. A
normal m-dimensional random variable with mean y0 and covariance ma-
trix Σ is a measurable function from a probability space (Ω,F ,P) to Rm

whose probability distribution is absolutely continuous with respect to the
m-dimensional Lebesgue measure and has the probability density

π(y) =
(

1
(2π)m|Σ|

) 1
2

exp
(
−1

2
(y − y0)T Σ−1(y − y0)

)

where | · | is the determinant of matrices. The corresponding distribution is
denoted by N (y0, Σ).

In this paper, we examine the situation in which there is an additive
normal noise in the measurements. Let Σ ∈ Rm×m be a positive definite
symmetric matrix. We suppose that the distribution of the noise ε is normal
with mean 0 and covariance matrix σ2Σ with some σ > 0. The matrix Σ
describes the cross-correlation between the coordinates of the noise and σ is a
tuning parameter. Without loss of generality we may assume that ‖Σ‖ = 1.

According to the model (3) the distribution of yε is N (y, σ2Σ). An upper
bound for the Ky Fan distance ρk(yε, y) between the noisy and the exact
measurements is given in the following lemma for small enough σ.

Lemma 7. ([13, lemma 7]) Let y0 ∈ Rm and Σ ∈ Rm×m be a positive
definite symmetric matrix such that ‖Σ‖ = 1. Let ξ be a random variable
with values in Rm. Assume that the distribution of ξ is N (y0, σ

2Σ) for some
σ > 0. Let us define κ(m) := max{1,m− 2} and C(m) to be

C(m) :=

{
2π

(m+1)2
if m is odd,

2m

m2 if m is even.
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Then there exists a positive constants σ(m) such that

ρk(ξ, y0) ≤ σ
√
− log

(
C(m)σ2κ(m)

)

for all σ < σ(m).

In deterministic regularization theory, convergence rates are calculated
when the noise level tends to zero. If the noise is assumed to be normal,
an interesting situation is the case when the noise tends to the zero random
variable. When σ is small, the distribution of the noise is more concentrated
around the origin and can be seen as a smooth approximation of the point
measure at the origin. Therefore, intuitively the noise should approach to
zero as σ → 0. According to the above lemma this intuitive property is valid
in the Ky Fan metric, i. e., ρk(ε, 0) → 0 as σ → 0. Therefore the situation
of interest in this paper is σ → 0.

In deterministic regularization theory, the regularization parameter is
chosen in dependence of the noise level (and maybe also the noisy data) to
obtain convergence (cf. [4]). If the noise is assumed to be normal and the
distance between random variables is measured in the Ky Fan metric, the
norm of the covariance matrix of the noise and the regularization parameter
are related.

Theorem 8. Let G ∈ Rn×n, S ∈ Rm×m, and Σ ∈ Rm×m be positive definite
symmetric matrices, ‖Σ‖ = 1, and x0 ∈ Rn. Let ε be a random variable
with values in Rm. Assume that the distribution of ε is N (0, σ2Σ) for some
σ > 0. Furthermore, let xε

α,S,G,x0
be the regularized solution (4) to the linear

problem (1) with the regulatization parameter α and the data yε where yε

satisfies the additive noise model (3). If α(σ) fulfils

α(σ) −→ 0 and σ

√
− log

(
C(m)σ2κ(m)

)

α(σ)
−→ 0 (12)

as σ → 0 where the constants C(m) and κ(m) are given in lemma 7,

ρk

(
xε

α(σ),S,G,x0
, x†G,x0

)
−→ 0

as σ → 0.

Proof. By combining the results of theorem 2 and lemma 7 there exists a
positive constant σ(m) such that

ρk

(
xε

α,S,G,x0
, x†G,x0

)
≤ α

λ2
p + α

√
λG

max

λG
min

∥∥∥x†G,x0
− x0

∥∥∥

+ max

{
1

2
√

α

√
λS

max

λG
min

, 1

}
σ
√
− log

(
C(m)σ2κ(m)

)
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for all σ < σ(m) where λG
min and λG

max are the minimal and the maximal
eigenvalues of G, respectively, λS

max is the maximal eigenvalue of S, and λp

is the minimal positive singular value of S1/2AG−1/2. By choices (12) the
Ky Fan distance between the regularized solution (4) and the least squares
(G, x0)-minimum norm solution converges to zero.

Theorem 2 and lemma 7 lead also to convergence rate results. But
when x†G,x0

satisfies a specific smoothness condition, we may use theorem 6
and obtain convergence rate results independent of the matrix A. In the
following theorem, the result for the Hölder type of smoothness condition is
presented.

Theorem 9. Let G ∈ Rn×n, S ∈ Rm×m, and Σ ∈ Rm×m be positive definite
symmetric matrices, ‖Σ‖ = 1, and x0 ∈ Rn. Let ε be a random variable
with values in Rm. Assume that the distribution of ε is N (0, σ2Σ) for some
σ > 0. Let xε

α,S,G,x0
be the regularized solution (4) to the linear problem (1)

with the regulatization parameter α and the data yε where yε satisfies the
additive noise model (3). Suppose that there exist v ∈ Rn and τ > 0 such
that

G1/2
(
x†G,x0

− x0

)
=

(
G−1/2AT SAG−1/2

)ν
v and ‖v‖ ≤ τ

for some 0 < ν ≤ 1. Furthermore, let α be chosen as

α ∼
(

σ
√
− log

(
C(m)σ2κ(m)

)) 2
2ν+1

(13)

where the constants C(m) and κ(m) are given in lemma 7. Then

ρk

(
xε

α,S,G,x0
, x†G,x0

)
≤ O

((
σ
√
− log

(
C(m)σ2κ(m)

)) 2ν
2ν+1

)
. (14)

Proof. The source function f(λ) = λν allows the deterministic convergence
rate h(λ) = λν [4, (5.18)]. Therefore by combining the results of theorem 6
and lemma 7 there exists a positive constant σ(m) such that

ρk

(
xε

α,S,G,x0
, x†G,x0

)

≤ ταν

√
λG

min

+ max

{
1

2
√

α

√
λS

max

λG
min

, 1

}
σ
√
− log

(
C(m)σ2κ(m)

)

for all σ < σ(m) where λG
min is the minimal eigenvalue of G and λS

max is the
maximal eigenvalue of S. Due to the first term we need α → 0. Conse-
quently, the maximum in the second term is equal to

√
λS

max/2
√

αλG
min as

α → 0. By choice (13) the two terms are balanced and rate (14) is re-
ceived.
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The exponent κ depends on the dimension of the measurement. Hence
the convergence rate also depends on the dimension unlike in the determin-
istic regularization theory. Nonetheless, the dimension-dependence appears
only in the logarithmic factor, i. e., it diminishes the rate when σ is large,
but the influence becomes smaller as σ → 0.

The dimension-dependence of (14) seems to resemble a general compli-
cation when working with Gaussian random variables in infinite-dimensional
spaces. The dimension-dependence can be attributed to the fact that in such
a setup the perturbation ε(ω) in (3) (and consequently yε(ω) as well) cannot
as a Gaussian random variable belong to the underlying Hilbert space if the
covariance of ε(ω) is not a trace-class operator (cf. [17, theorem 2.3]).

In the following, we show that the conceptually different Bayesian ap-
proach leads to similar convergence rate results and parameter choice rules.

4 Bayesian approach to linear inverse problems

In this section, we summarise the main ideas of the Bayesian inversion the-
ory. A comprehensive introduction into the topic can be found in [16].

The basis of the Bayesian approach to inverse problems is different from
the deterministic and the frequentist inversion theories. In the Bayesian
framework all quantities included in the model are treated as random vari-
ables. In contrast to the frequentist approach, the probabilities appearing in
the Bayesian approach need not correspond to frequencies of random events,
but they are also used to describe the confidence or the degree of belief that
one has into a particular initial guess.

All information available before performing the measurements about the
quantity of primary interest is coded in a probability distribution, the so-
called prior distribution. Even though the quantity of primary interest is
assumed to be deterministic, it is modelled by a random variable whose
distribution is the prior distribution.

The Bayesian inversion theory is based on the Bayes formula. The solu-
tion to the inverse problem after performing the measurements is the pos-
terior distribution of the random variables of interest. The Bayes formula
describes how the prior information and measurements have to be combined
to give the posterior distribution; by this formula the posterior distribution
is proportional to the product of the prior distribution and the likelihood
function which is given by the model for the indirect measurements.

Consequently, in the Bayesian approach not just a single regularized so-
lution to (1) is obtained (as it is done in the deterministic and the frequentist
settings) but instead a whole distribution is computed.

We examine the common case where all distributions are assumed to
be normal. Since now the prior information is coded via random variables,
we need a notation that differs slightly from the previous sections. We
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denote random variables by capital letters and their realizations by lower
case letters.

Let X and Y be random variables from a probability space (Ω,F ,P)
to Rn and Rm, respectively. We suppose that the random variable X is
unobservable and of our primary interest and Y is directly observable. We
call X the unknown, Y the measurement and its realization ydata in the
actual measurement process the data. We assume that we have a linear
model for the measurements with additive noise

Y = AX + E (15)

where A ∈ Rm×n is a known matrix and E : (Ω,F ,P) → Rm is a ran-
dom variable. We suppose that X and E are mutually independent normal
random variables with probability densities

πpr(x) ∝ exp
(
− 1

2γ2
(x− x0)T Γ−1(x− x0)

)
(16)

and

πnoise(e) ∝ exp
(
− 1

2σ2
eT Σ−1e

)
(17)

where γ, σ > 0, x0 ∈ Rn, and Γ ∈ Rn×n and Σ ∈ Rm×m are positive definite
symmetric matrices. Hence the covariance matrices of the prior distribution
and the noise are γ2Γ and σ2Σ, respectively. The matrices Γ and Σ describe
the cross-correlation of the coordinates of the prior distribution and the
noise, respectively, and γ and σ are tuning parameters.

For the additive noise model (15), the Bayes theorem yields the posterior
probability density

πpost(x) ∝ πpr(x)πnoise(y −Ax)

(independently of the particular structure of πpr and πnoise). For the case
of normal random variables, this posterior distribution can be computed
explicitly:

Theorem 10. ([16, theorem 3.7 ]) Let x0 ∈ Rn, Γ ∈ Rn×n and Σ ∈ Rm×m be
positive definite symmetric matrices, and γ, σ > 0. Let X and E be indepen-
dent random variables with probability densities (16) and (17), respectively.
Assume that the measurement Y satisfies the additive noise model (15).
Then the posterior distribution µpost of X conditioned on the data ydata is
normal and has the probability density

πpost(x) ∝ exp
(
−1

2
(x− x̄)T Γ−1

post(x− x̄)
)

where the posterior mean is

x̄ =
(

AT Σ−1A +
σ2

γ2
Γ−1

)−1 (
AT Σ−1ydata +

σ2

γ2
Γ−1 x0

)
(18)
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and the posterior covariance matrix is

Γpost = σ2

(
AT Σ−1A +

σ2

γ2
Γ−1

)−1

. (19)

In the following section, we show that the Bayesian approach leads to
similar convergence rate results as the frequentist framework when conver-
gence is measured in the Ky Fan metric.

5 Convergence rates for the Bayesian approach

In this section we investigate convergence rate results for the Bayesian ap-
proach in the Ky Fan metric. Let x0 ∈ Rn, Γ ∈ Rn×n and Σ ∈ Rm×m be
positive definite symmetric matrices, and γ, σ > 0. We assume that the
prior distribution of the unknown is N (x0, γ

2Γ) and the noise has the distri-
bution N (0, σ2Σ) (as in theorem 10). The data ydata is a realization of the
random variable Y . Since the true solution is supposed to be deterministic
and hence the noiseless measurement is equal to y, the distribution of Y is
N (y, σ2I). Without loss of generality we may assume that ‖Γ‖ = ‖Σ‖ = 1.

Instead of the posterior distribution µpost the maximum a posteriori
(MAP) estimate

xMAP = arg max
x∈Rn

πpost(x)

is often given as a solution to an inverse problem in the Bayesian approach.1

At first we determine convergence results for this particular value. They es-
sentially resemble the results for the frequentist inversion theory, considered
in the first part of this paper.

In paper [13] convergence results for the whole posterior distribution in
the Bayesian approach were presented when Γ = I and Σ = I. We show
that similar results can be obtained for arbitrary positive definite symmetric
Γ and Σ with ‖Γ‖ = ‖Σ‖ = 1 and emphasise the similarities with the results
related to the frequentist approach and the MAP estimate.

5.1 Convergence rates for the MAP estimate

Under the above assumptions the MAP estimate xMAP is actually a realiza-
tion of the random variable

XMAP(ω) =
(

AT Σ−1A +
σ2

γ2
Γ−1

)−1 (
AT Σ−1Y (ω) +

σ2

γ2
Γ−1 x0

)

(cf. (18)). The MAP estimate resembles the regularized solution (4) to the
linear problem (1) with the regularization parameter α := σ2/γ2 and the
noisy data Y (ω) when G = Γ−1 and S = Σ−1.

1Also the conditional mean (CM) estimate could be used (see [16, chapter 3]). In our
setup, the MAP and CM estimates coincide.

12



For the Tikhonov type of regularization methods the choice of the regu-
larization parameter plays a crucial role. If we have some external informa-
tion about the quantity of primary interest, e.g., structural information or
previous measurements, the Bayesian approach allows us to use all available
a-priori information to choose an appropriate regularization parameter since
the MAP estimate is a regularized solution.

Because of the specific form of the MAP estimate we may use the conver-
gence results of section 3. The MAP estimate converges to the least squares
(Γ−1, x0)-minimum norm solution as σ → 0 if the norm of the covariance
matrix of the prior distribution depends on σ and satisfies certain conditions:

Theorem 11. Let the assumption of theorem 10 be valid and ‖Γ‖ = ‖Σ‖ =
1. Let us denote the least squares (Γ−1, x0)-minimum norm solution by x‡.
If γ(σ) satisfies

σ

γ(σ)
−→ 0 and γ(σ)

√
− log(C(m)σ2κ(m)) −→ 0

as σ → 0 where the constants C(m) and κ(m) are given in lemma 7,

ρk

(
XMAP, x‡

)
−→ 0

as σ → 0.

The proof is analogous to the proof of theorem 8. For example, γ(σ) ∼ ση

with some 0 < η < 1 fulfills the requirements of theorem 11.
Besides this convergence result, also convergence rate results can be ob-

tained. When the least squares (Γ−1, x0)-minimum norm solution satisfies
a specific smoothness condition, the convergence rate results do not depend
on the matrix A. The proof of the following theorem is similar to the proof
of theorem 9.

Theorem 12. Let the assumption of theorem 10 be satisfied and ‖Γ‖ =
‖Σ‖ = 1. Let us denote the least squares (Γ−1, x0)-minimum norm solution
by x‡. Suppose that there exist v ∈ Rn and τ > 0 such that

Γ−1/2
(
x‡ − x0

)
=

(
Γ1/2AT Σ−1AΓ1/2

)ν
v and ‖v‖ ≤ τ

for some 0 < ν ≤ 1. Furthermore, let γ be chosen as

γ ∼
(

σ2ν/
√
− log(C(m)σ2κ(m)

) 1
2ν+1

where the constants C(m) and κ(m) are given in lemma 7. Then

ρk

(
XMAP, x‡

)
≤ O

((
σ
√
− log

(
C(m)σ2κ(m)

)) 2ν
2ν+1

)
.
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In theorem 11 as well as 12 we require that the parameter γ must tend to
zero in order to obtain the convergence of XMAP to the least squares (Γ−1, x0)-
minimum norm solution. This condition on γ seems obvious when theorem 8
is combined with the fact that σ2/γ2 plays the role of the regularization
parameter α in the Bayesian approach. Nonetheless, it is counter-intuitive
to the common notion of the Bayesian approach, where γ = 0 essentially
implies that the mean of the prior distribution should be taken as a true
solution. To explain this discrepancy, it should be noted that, compared with
the norm of the covariance matrix of the noise, the norm of the covariance
matrix of the prior distribution does tend to infinity (γ/σ → ∞), i. e., the
prior distribution becomes non-informative.

5.2 Convergence rates for the posterior distribution

A main argument in favor of the Bayesian approach is that not only a single
solution (such as xMAP above) is computed but that a whole distribution can
be obtained. The first convergence results for the posterior distribution were
presented in [13] when Γ = I and Σ = I. In this section those results are
generalized for arbitrary positive definite symmetric Γ and Σ with ‖Γ‖ =
‖Σ‖ = 1. The technique for proving the convergence results in the general
case is the same as in [13]. Furthermore, we emphasise the similarities with
the results for the frequentist approach and the MAP estimate.

As we have seen in theorem 10, the posterior distribution with the data
ydata is given as

N (xMAP, Γpost)

with xMAP and Γpost defined in (18) and (19), respectively. As noticed before,
the mean of this distribution is a realization of the random variable XMAP

while the covariance matrix is constant. Therefore, we may consider the
posterior distribution as a random variable,

µpost(ω) := N (XMAP(ω),Γpost),

i. e., a measurable function from (Ω,F ,P) to (M(Rn), ρp), the space of Borel
measures on Rn equipped with the Prokhorov metric ρp:

Definition 13 (Prokhorov metric). Let µ1 and µ2 be Borel measures in
a metric space (X, dx). The distance between µ1 and µ2 in the Prokhorov
metric is defined as (see, e. g., [2, 3, 15, 23])

ρp(µ1, µ2) := inf
{

δ > 0 : µ1(B) ≤ µ2

(
Bδ

)
+ δ ∀B ∈ B(X)

}

where B(X) is the Borel σ-algebra in X. The set Bδ is the δ-neighbourhood
of B, i.e.,

Bδ :=
{

x ∈ X : inf
z∈B

dx(x, z) < δ

}
.
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For some additional background of the Prokhorov distance and a com-
parison with the Ky Fan metric see, e. g., [11]. The Prokhorov metric has
been used to deduce convergence results for stochastic inverse problems
in [6, 5, 10, 9, 12, 13].

Since µpost is a random variable on a metric space, we can compute the
distance between µpost and the constant random variable δx‡ in the Ky Fan
metric where δx‡ is the point measure at the least squares (Γ−1, x0)-minimum
norm solution x‡.

Theorem 14. Let the assumption of theorem 10 be satisfied and ‖Γ‖ =
‖Σ‖ = 1. Let us denote the least squares (Γ−1, x0)-minimum norm solution
by x‡. Then

ρk (µpost, δx‡) ≤ max

{
ρk(Y, y), (20)

σ2

γ2λ2
p + σ2

1√
λΓ

min

∥∥∥x‡ − x0

∥∥∥ + ρp(N (0, Γpost), δ0) +
γ

2σ
√

λΣ
min

ρk(Y, y)

}

where λΓ
min and λΣ

min are the minimal eigenvalues of Γ and Σ, respectively,
and λp is the minimal positive singular value of Σ−1/2AΓ1/2.

In addition, assume that the source function f allows the deterministic
convergence rate h and that there exist v ∈ Rn and τ > 0 such that

Γ−1/2(x‡ − x0) = f
(
Γ1/2AT Σ−1AΓ1/2

)
v and ‖v‖ ≤ τ.

Then

ρk (µpost, δx‡) (21)

≤ max

{
τh

(
σ2

γ2

)
+ ρp(N (0,Γpost), δ0) +

γ

2σ
√

λΣ
min

ρk(Y, y), ρk(Y, y)

}
.

Let λA,Σ
min and λA,Σ

max denote the minimal and the maximal eigenvalues of
the matrix AT Σ−1A, respectively. Then there exist positive constants γ(n)
and σ(n) such that

ρp(N (0, Γpost), δ0) (22)

≤ γσ√
γ2λA,Σ

min + σ2

√√√√√√− log


C(n)

γ2κ(n)σ2κ(n)

(
γ2λA,Σ

max + σ2(λΓ
min)−1

)κ(n)




for all γ < γ(n) and σ < σ(n) where the constants C(n) and κ(n) are given
in lemma 7.
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Proof. The proof is similar to the proofs of [13, proposition 11 and theo-
rem 13]. Estimates (20) and (21) follow from the triangle inequality of the
Prokhorov metric (e. g., [15]), the translation invariance of the Euclidean
norm, the stability bound (7) and (11) where xε

α,S,G,x0
(ω), S, G, α, yε(ω),

and x†G,x0
are replaced by XMAP(ω), Σ−1, Γ−1, σ2/γ2, Y (ω), and x‡, respec-

tively, and the lifting argument [13, theorem 6]. In addition, λΓ
max = ‖Γ‖ = 1.

Bound (22) is a consequence of [13, proposition 5 and lemma 7]. By
definition (19),

γ2σ2

γ2λA,Σ
max + σ2(λΓ

min)−1
≤ ‖Γpost‖ ≤ γ2σ2

γ2λA,Σ
min + σ2

.

Therefore the upper bounds γ(n) and σ(n) need to be chosen such that they
satisfies the inequality

λA,Σ
min θ(n)γ2 + θ(n)σ2 − γ2σ2 > 0

where θ(n) is the constant of [13, lemma 7].

As for the frequentist approach, we can now use this result and deduce
parameter choice rules for the Bayesian approach to obtain convergence and
convergence rates for the posterior distribution.

Theorem 15. Let the assumptions of theorem 10 be valid and ‖Γ‖ = ‖Σ‖ =
1. Let us denote the least squares (Γ−1, x0)-minimum norm solution by x‡.
Let γ(σ) satisfy

σ

γ(σ)
−→ 0 and γ(σ)

√
− log(C(m,n)σ2κ(m,n)) −→ 0 (23)

as σ → 0 where the constants C(m, n) := C(max(m,n)) and κ(m, n) :=
κ(max(m,n)) are defined in lemma 7. Then

ρk (µpost, δx‡) −→ 0

as σ → 0.

Proof. By combining the results of theorem 14 and lemma 7 there exist
positive constants γ(n) and σ(m, n) such that

ρk (µpost, δx‡)

≤ σ2

γ2λ2
p + σ2

‖x‡ − x0‖√
λΓ

min

+ max

{
γ

2
√

λΣ
min

, σ

} √
− log

(
C(m)σ2κ(m)

)

+
γσ√

γ2λA,Σ
min + σ2

√√√√√√− log


C(n)

γ2κ(n)σ2κ(n)

(
γ2λA,Σ

max + σ2(λΓ
min)−1

)κ(n)




(24)
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for all γ < γ(n) and σ < σ(m,n) where λA,Σ
min and λA,Σ

max are the minimal
and the maximal eigenvalues of AT Σ−1A, respectively, λΓ

min and λΣ
min are the

minimal eigenvalues of Γ and Σ, respectively, and λp is the minimal positive
singular value of Σ−1/2AΓ1/2

The second term on the right hand side of (24) tends to zero when
γ
√
− log(C(m)σ2κ(m)) → 0 as σ → 0. In the first term it is required that

γ/σ → ∞ as σ → 0. For the third term it is enough if γ/σ ≥ 1 and
γ
√
− log(C(n)σ2κ(n)) → 0 as σ → 0. Thus the parameter choice (23) guar-

antees the convergence.

Finally, we turn once more to the case of the Hölder type of smoothness
condition and obtain that the posterior distribution attains (measured in a
combination of the Ky Fan and the Prokhorov metrics) the similar conver-
gence rate as the regularized solution in the frequentist approach (theorem 9)
and the MAP estimate (theorem 12).

Theorem 16. Let the assumption of theorem 10 be valid and ‖Γ‖ = ‖Σ‖ =
1. Let us denote the least squares (Γ−1, x0)-minimum norm solution by x‡.
Suppose that there exist v ∈ Rn and τ > 0 such that

Γ−1/2(x‡ − x0) =
(
Γ1/2AT Σ−1AΓ1/2

)ν
v and ‖v‖ ≤ τ

for some 0 < ν ≤ 1. Furthermore, let γ be chosen as

γ ∼
(

σ2ν/
√
− log(C(m,n)σ2κ(m,n)

) 1
2ν+1

(25)

where the constants C(m,n) := C(max(m,n)) and κ(m,n) := κ(max(m,n))
are defined in lemma 7. Then

ρk (µpost, δx‡) ≤ O
((

σ
√
− log

(
C(m,n)σ2κ(m,n)

)) 2ν
2ν+1

)
. (26)

Proof. The source function f(λ) = λν allows the deterministic convergence
rate h(λ) = λν [4, (5.18)]. By combining the results of theorem 14 and
lemma 7 there exist positive constants γ(n) and σ(m,n) such that

ρk (µpost, δx‡)

≤ τ

(
σ

γ

)2ν

+ max

{
γ

2
√

λΣ
min

, σ

}√
− log

(
C(m)σ2κ(m)

)

+
γσ√

γ2λA,Σ
min + σ2

√√√√√√− log


C(n)

γ2κ(n)σ2κ(n)

(
γ2λA,Σ

max + σ2(λΓ
min)−1

)κ(n)




(27)

17



for all γ < γ(n) and σ < σ(m,n) where λA,Σ
min and λA,Σ

max are the minimal and
the maximal eigenvalues of AT Σ−1A, respectively, and λΓ

min and λΣ
min are the

minimal eigenvalues of Γ and Σ, respectively.
To obtain a convergence rate for the error the right hand side of (27)

should be minimized for a fixed σ. Since the minimizing γ(σ) is not easy to
derive, we estimate the right hand side of (27) from above. When γ and σ
are small enough and γ/σ ≥ max{1, 2

√
λΣ

min},

ρk (µpost, δx‡) ≤ τ

(
σ

γ

)2ν

+
5γ

2
√

λΣ
min

√
− log

(
C(m,n)σ2κ(m,n)

)
.

By choice (25) the two terms on the right-hand side are balanced and hence
rate (26) is obtained.

6 Conclusions

In this paper, we have examined convergence results in the Ky Fan metric
for different statistical inversion theories, namely the frequentist and the
Bayesian approaches to linear inverse problems. It turned out that con-
vergence rate results and parameter choice rules for both approaches are
similar. This remains also true when in the Bayesian framework the con-
vergence of the whole posterior distribution, not just the MAP estimate, is
considered.

Because the MAP estimate under the assumptions of theorem 10 is of
the form of the regularized solution (4) in the frequentist setting, the conver-
gence results for the MAP estimate (theorems 11 and 12) are special cases
of the results for the regularized solution (theorems 8 and 9).

If the linear problem (1) is over- or exactly determined, i. e., m ≥ n,
the parameter choice rules and the convergence rate obtained in this pa-
per for the posterior distribution (theorems 15 and 16) are the same as for
the MAP estimate. Typically, the true solution x is a discretized version
of an infinite-dimensional object. To assure computational accuracy x lies
in a high dimensional space. On the other hand, only a limited number
of measurements can be performed and hence the data belongs to a low
dimensional space. Therefore, the linear inverse problem (1) is often un-
derdetermined, i. e., m < n. Then the obtained convergence rate for the
posterior distribution is slower than for the MAP estimate since the dimen-
sion of the unknown, not the dimension of the measurements, determines
the speed of convergence (cf. theorem 16). Also the parameter choice rules
are effected by the dimension of the unknown (cf. theorems 15 and 16).

In the frequentist approach, the penalty term in the regularization, i. e.,
the matrix G and the vector x0 define which least squares solution the
regularized solution (4) converges to. The choice of the used metric in the

18



least squares term , i. e., the matrix S appears only in the constant of the
convergence rate result.

For the MAP estimate the matrices G and S are replaced by the inverses
of the normalized covariance matrices of the prior and the noise distributions,
i. e., the matrices Γ−1 and Σ−1, respectively. In addition, the regularization
parameter α is defined as the quotient of the norms of the covariance ma-
trices of the noise and the prior distributions. Hence the prior distribution
in the Bayesian approach should be chosen with a careful consideration.

Throughout this paper, we considered normal distributions. The nor-
mality is an accepted property for the noise, but for the prior information
in the Bayesian inversion theory also different choices are in use (see [16,
chapter 3] for an overview). In the normal case, the MAP estimate and
the posterior distribution can be easily deduced. Alternative prior distri-
butions may lead to better reconstructions, but it is often not possible to
calculate explicit solutions, either posterior distributions or point estimates.
Hence, convergence results similar to the ones presented in this paper are
not straight-forward to achieve for arbitrary prior distributions.

Furthermore, this work is based on the assumption that the model of
the inverse problem is finite-dimensional. The obtained convergence re-
sults are dimension-dependent in a way that prevents generalization to the
infinite-dimensional case. In the frequentist approach to infinite-dimensional
linear inverse problems convergence results in the Ky Fan metric have been
published (see, e. g., [10, 9]). The Bayesian inversion theory in infinite-
dimensional spaces is not completely developed. For Gaussian linear in-
verse problems the forms of the posterior distribution in some special cases
are presented in [21, 19]. Convergence results in the Bayesian approach to
infinite-dimensional inverse problems require more sophisticated stochastic
analysis than used in this paper.

So far, different statistical inversion theories, i. e., the frequentist and
the Bayesian approaches to inverse problems, have mainly been studied by
separate communities. In this paper, we have examined both the frequentist
and the Bayesian frameworks with the same method to better understand
properties and differences of both approaches. We hope this paper will
provide a step towards the building of a bridge between the frequentist and
the Bayesian inversion theories and allow connections with the deterministic
approach to inverse problems.
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