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Abstract

The Twin Dragon and Rauzy fractals are intersected with the real axis. In the
Twin Dragon case, unexpectedly from its fractal nature, the intersection is an
interval characterized by a finite automaton. For the case of the Rauzy fractal,
it is proved that the intersection has infinitely many components.



1

1. Introduction

In the present paper, we shall study the intersection of certain plane frac-
tals with lines, especially the first coordinate axis. The famous result due to
J. M. Marstrand [33] reads that if a set X ⊂ R2 has Hausdorff dimension d > 1
and finite positive d-dimensional Hausdorff measure, then for almost all lines L,
the Hausdorff dimension of X ∩L is d− 1. However, apart from metrical results
like Marstrand’s, the authors could not find nontrivial 1 examples on concrete
fractals and lines in the literature.

In the sequel, we will prove some very concrete results on well known fractals
such as the Twin Dragon F and Rauzy-Thurston fractal T . Readers shall find
unexpected ‘rational’ phenomena in these fractals.

The method employed for the Twin Dragon F is to introduce a finite automaton
to describe its intersection. This method essentially relies on the fact that F
has a self similar structure with ‘rational times π’ angle. It implies that the
intersection with the real axis is an interval (Theorem 2.9). Furthermore, the real
line intersects with its boundary ∂F only in two points (Theorem 2.12). This
is quite unexpected from its fractal nature. From [28] follows, that dimH ∂F =
2 log λ/ log 2 = 1.523627 . . ., where λ is the real root of λ3−λ2−2 = 0. Therefore,
the real line is exceptional in the sense of the Marstrand result.

For a Rauzy-Thurston fractal T , we will show firstly that the largest negative
real point on the boundary is very close to −2/3 (Theorem 3.1). We use the
graph directed self similar structure of the boundary to show this. This method
of computation should be applicable to a rather big class of attractors. Moreover
we will show that the intersection with the negative real axis has infinitely many
components (Theorem 3.9). To prove this, we use the special structure of this
fractal set. The idea is to find a contractive map around −1 which preserves the
local structure. We expect results of similar type for the Rauzy-Thurston fractal
corresponding to cubic Pisot units having complex conjugates.

These results have some applications for purely periodic expansions (Theorem
2.16,3.5, 3.10).

2. The Twin Dragon and the coordinate axes

First we review some definitions and known results on canonical number sys-
tems.

Definition 2.1. Let P (x) = bnxn + bn− 1x
n−1 + . . . + b0 ∈ Z[x] be such that

n ≥ 1 and bn = 1. Let R = Z[x]/P (x)Z[x]. Then each γ ∈ R can be represented
uniquely as

γ = g0 + g1x + . . . + gn−1x
n−1

with gi ∈ Z.

1Occasionally the problem becomes trivial. For instance, the intersection of the Sierpinski
Gasket and a horizontal line which touches the boundary is an interval.
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Let N = {0, 1, . . . , |b0| − 1}. The pair (P (x),N ) is called a canonical number
system in R (for short CNS), if each γ ∈ R admits a unique representation

(2.1) γ = d0 + d1x + . . . + dh−1x
h−1

with di ∈ N , dh−1 6= 0 and di = 0 for i ≥ h. In this case, P (x) is called a CNS
polynomial. The number h is called the length of the representation.

If P (x) is irreducible, then let α be one of its zeros. In this case R is isomorphic
to Z[α], the Ring generated by Z and α. Therefore we may replace x by α in the
above expansions. In this case, we simplify the notation (P (x),N ) to (α,N ) and
α is called base of this CNS.

This setting provides a natural generalization of the ordinary b-ary number
systems in N. In the ordinary case, it is clear that each integer b ≥ 2 can
serve as a base. The CNS case, however, seems to be much more complicated.
Despite the fact that there has been much research on this topic, a complete
characterization of all CNS polynomials still does not exist. Quadratic CNS have
been completely characterized in a series of papers by Gilbert, Kátai, Kovács and
Szabó (cf. [20, 26, 27, 28]).

However, already the cubic case is quite difficult. In a recent paper, Akiyama
et al. [4] proved several results for special cubic polynomials. For higher degrees,
there exist characterization results for polynomials with descending coefficients
(cf. Kovács-Pethő [29]) or with large b0 (cf. Akiyama-Pethő [6], Akiyama-Rao [7]
and Scheicher-Thuswaldner [39]). Finally we want to mention that Brunotte [16,
15] characterized CNS for trinomials. Brunotte also provided the fastest currently
known algorithm to determine if an arbitrary polynomial is CNS or not. A recent
survey on CNS is given in [3].

CNS are intimately related to tilings. Following [34, 37], we define the funda-
mental domain of (P (x),N ). Let α(i) be the zeros of P (x), ordered in a way such
that α(i), i = 1, . . . , r1 are real and α(i), i = r1 + 1, . . . , r1 + 2 r2 = n are complex
with

α(r1+2j−1) = α(r1+2j)

=α(r1+2j−1) = −=α(r1+2j) > 0

for j = 1, . . . , r2. In order to exclude trivial cases, we will assume that all α(i)

are different. Kovács-Pethő [29] remarked that P (x) can be a CNS polynomial
only if |α(i)| > 1 for all i ∈ {1, . . . , n}. In this case, P (x) is called expanding.

Consider the embeddings Φ(i) : R 7→ Q(α(i)), 1 ≤ i ≤ n such that

n−1∑
j=0

gjx
j 7→

n−1∑
j=0

gj(α
(i))j.

Then we can define an embedding Φ : R 7→ Rn by

(2.2) Φ := (Φ(1), . . . , Φ(r1),<Φ(r1+1),=Φ(r1+1), . . . ,<Φ(r1+2r2−1),=Φ(r1+2r2−1))T .
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From (2.2), it follows that

Φ(xγ) = BΦ(γ)

for each γ ∈ R where

B := diag
(
α(1), . . . , α(r1), A(1), . . . , A(r2)

)

and

A(j) =

(<α(r1+2j−1) −=α(r1+2j−1)

=α(r1+2j−1) <α(r1+2j−1)

)
.

The fundamental domain F of (P (x),N ) is defined by

(2.3) BF =
⋃

d∈N
(F + Φ(d))

which is equivalent to

(2.4) F =

{ ∞∑
i=1

B−i Φ(di) : di ∈ N
}

.

It was shown in Kátai-Kőrnyei [25] that the set

F + Zn

forms a tiling of Rn. Let

S := {s ∈ Zn \ {0} : F ∩ (F + s) 6= ∅}
and

Fs := F ∩ (F + s), for s ∈ S.

Since F is compact, S is finite. Following [17] the boundary of F is given by

∂F =
⋃
s∈S

Fs.

F and ∂F have been studied in several papers. Topological properties for qua-
dratic CNS are given in [10, 9, 5].

For quadratic polynomials P (x) with imaginary roots, we have that |α(1)| =
|α(2)|, and therefore, F is a self similar set. In this case, the Hausdorff dimension
of ∂F has been computed in [34].

In general, when not all α(i) are equal in modulus, F is self affine rather than
self similar. This case is much harder to deal with. For 1 = bn < bn−1 < · · · < b0,
the box counting dimension of ∂F has been computed in [37, 38].

Theorem 2.2. Assume that P (x) is irreducible and (α,N ) is a CNS. Let γ ∈
Q(α) such that

γ =
g0 + g1α + . . . + gn−1α

n−1

q
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with g0, . . . , gn−1, q ∈ Z. If γ is an inner point of F and q is coprime to b0, then
γ has a purely periodic expansion

(2.5) γ =

∑`
i=1 diα

−i

1− α−`
=

d1

α
+

d2

α2
+ . . . +

d`

α`
+

d1

α`+1
+ . . . +

d`

α2`
+ . . . ,

for some positive integer ` and di ∈ N .

Remark 2.3. This result is the analogue of the fact that every x ∈ Q ∩ (0, 1)
which has a denominator coprime to 10 is purely periodic in decimal base (cf.
Hardy-Wright [23, Theorem 135.]).

Remark 2.4. By the notation γ = .d1d2 . . . , we express an expansion of the
form γ =

∑∞
i=1 diα

−i and by .[d1d2d3 . . . d`]
∞ a periodic expansion as above. The

expansion in (2.1) is unique but the infinite expansions like (2.5) are not necessary
unique.

Proof. Take an integer q coprime to b0 such that qγ ∈ Z[α]. We claim that
α (mod q Z[α]) is a unit in the finite ring Z[α]/q Z[α]. Let β = b0/α. Then
β = −(b1 + b2α + . . . + bnα

n−1) ∈ Z[α] and αβ = b0. There exists a positive
integer i such that bi

0 ≡ 1 (mod q Z). This proves the claim.
We see that αm ≡ 1 (mod q Z[α]) for some m, since α belongs to the unit group

of the finite ring Z[α]/q Z[α]. Therefore (αm − 1) γ = ((αm − 1)/q) qγ belongs
to Z[α]. Note that m can be replaced by its multiple. Since (α,N ) is a CNS,

we have (αm − 1) γ =
∑`

i=0 diα
i for some `. If ` < m, then we already get the

desired expression. If not, take 2m, 3m, . . . . Then we get expressions

γ =

∑`k

i=1 d
(k)
i αi−km

1− α−km
, for k = 1, 2, . . . .

Assume that `k ≥ km for all k. As 1− α−km → 1, we get a sequence

yk =

`k∑
i=1

d
(k)
i αi−km

which converges to γ. Since yk ∈ F+
∑`k

i=km d
(k)
i αi−km, we see that yk is contained

in a translation of F which is not F itself. Recall that Rd is tiled by F and its
translates

Rd =
⋃

z∈Z[α]

F + Φ(z)

and the interior of F does not intersect F + Φ(z) for z ∈ Z[α] \ {0}. Thus γ can
not be an inner point of F . ¤

Remark 2.5. As |α(i)| > 1 for all i ∈ {1, . . . , n}, the convergence of the right
hand side of (2.5) is valid in the image of any conjugate map Φ(i) : R 7→ Q(α(i))
and therefore also in the image of Φ.
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Figure 1. The boundary ∂F of the Twin Dragon.

In remainder of this section, we deal with the polynomial P (x) = x2 + 2x + 2.
In this case, F is the famous Twin Dragon fractal (cf. Mandelbrot [32]). Its
boundary is shown in Figure 1.

Definition 2.6. (cf. [11, 18, 30]). The 5-tuple A = (Q,A, E, I, T ) is called a
finite automaton if

• Q and A are nonempty, finite sets,
• E ⊂ Q× A×Q and
• I, T ⊂ Q.

The set Q = {q1, . . . , qN} is called the set of the states, A is called the input
alphabet. E is called the set of edges. The sets I and T are called initial and
terminal states, respectively.

A finite automaton works as follows. The automaton starts at time 1 in the
state qi1 ∈ I. At each discrete time n ≥ 1, the automaton reads an input digit `n.
If (qin , `n, qin+1) ∈ E, the next state is qin+1. We will denote this with

qin
`−→ qin+1 .

A finite path of length n− 1 is a sequence

qi1
`1−→ qi2

`2−→ qi3 · · · qin−1

`n−1−−→ qin

of consecutive edges. Its label is the word `1`2 · · · `n−1. For short, we will denote

this with qi1
`−→ qin. A finite path qi1

`−→ qin is successful if it starts in an initial
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Figure 2. The automaton G characterizing ∂F .

state and ends in a terminal state. An infinite path qi1
`1−→ qi2

`2−→ qi3 · · · is

successful if there are infinitely many n such that qi1
`−→ qin is successful. The set

recognized by A is the set of labels of its successful paths.

The boundary ∂F is closely related to a finite automaton G which is described,
for example, in [21]. Originally, G was defined in a slightly different way. Namely,
its edges were directed in the opposite direction. This was due to the fact, that
G was interpreted as adding machine in that paper. Since we are not concerned
with this interpretation, we direct the edges in the same way as Müller et al. [34].
So its adjacency matrix coincides with the matrices used in Duvall et al. [17],
Gröchenig-Haas [22], Wang [43] and many other papers. In [10, 34] the following
result has been proved:

Proposition 2.7. The boundary ∂F can be recognized by the finite automaton G
which is shown in Figure 2. Let QG = {g1, . . . , g6} be the set of states of G. Let IG
and TG be the sets of initial and terminal states respectively. Then IG = TG = QG.
∂F consists of six curve segments and x ∈ Fs if and only of

x =
∞∑
i=1

B−i Φ(di)

where s = gj1 is a starting state and

gj1
d1−→ gj2

d2−→ gj3 · · ·
is an infinite successful path in G.

Let X1 = {(x1, 0) : x1 ∈ R)} and X2 = {(0, x2) : x2 ∈ R)}.
Proposition 2.8. The intersections F ∩X1 and F ∩X2 can be recognized by the
finite automaton H which is shown in Figure 3. Let QH = {h1, . . . , h5} be the set
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Figure 3. The automaton H characterizing F ∩X1 and F ∩X2.

of states of H. The sets of initial and terminal states are given by IH = {h1, h3}
and TH = {h1, . . . , h4}. We have x ∈ F ∩X1, (x ∈ F ∩X2) if and only if

x =
∞∑
i=1

B−i Φ(di)

where h = hk1 is a starting state and

hk1

d1−→ hk2

d2−→ hk3 · · ·
is an infinite successful path in H. The starting state hk1 is either h1 for F ∩X1

or h3 for F ∩X2.

Proof. Since P (x) = x2 + 2x + 2, it follows that α(i) = −1±√−1 and

B =

( −1 −1
1 −1

)
.

Since

(2.6) Φ(di) = (di, 0)T

for all di ∈ N , equation (2.4) can be considered as a product

x = C · d
of a matrix C ∈ R2×∞ with an infinitely long column vector d = (d1, d2, . . .)

T ∈
R∞. With this notation

(2.7) C =

(
−1

2
0 1

4
−1

4
1
8

0 − 1
16

1
16

· · ·
−1

2
1
2
−1

4
0 1

8
−1

8
1
16

0 · · ·

)
.

Equation (2.6) implies, that the i-th column of C is given by the first column of
B−i. Let cij denote the entries of C. From

(2.8) B−8 =

(
1
16

0
0 1

16

)
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follows

ci,j+8 =
1

16
cij for i = 1, 2 and j ≥ 1.

For instance, if d1 = 1 then d1α
−1 gives a contribution of −1/2 in the direction

of the imaginary axis. To come back to the real axis, d2 must be 1 since the sum
of the remaining positive contributions are

1

8
+

1

16
+ · · · < 1

2
.

In a similar manner one can easily see that the only choices for (d1, d2, . . .)
T such

that x ∈ X1, (x ∈ X2) are those which correspond to the infinite successful paths
in H. Conversely an infinite successful path clearly gives a point on R.

¤
Theorem 2.9. The intersection F ∩ X1 consists of the line segment {(x1, 0) :
x1 ∈ [−4

5
, 1

5
]}. The intersection F∩X2 consists of the line segment {(0, x2) : x2 ∈

[−2
5
, 3

5
]}.

Proof. Consider an infinite successful path

hk1

d1−→ hk2

d2−→ hk3 · · ·
in H. The sequence of labels corresponds to the digit expansion .d1d2d2 . . . of

∞∑
i=1

B−iΦ(di) =
∞∑

j=1

(
8∑

k=1

B8−kΦ(d8(j−1)+k)

)
B−8j.

Therefore, each block of eight digits can be regarded as a single digit for the base
B−8and each such block corresponds to a path in H of length eight.

Looking at Figure 3, we see that a possible path of length eight must pass each
of h1 and h4 twice. There are two edges leading out of h1 and h4 and there is only
one edge leading out of h2, h3 and h5. Therefore, for each hk1 there are 24 = 16
paths of length eight starting in hk1 .

Starting with hk1 = h1, we get the words

00000000, 00000001, 00001100, 00001101,
00010000, 00010001, 00011100, 00011101,
11000000, 11000001, 11001100, 11001101,
11010000, 11010001, 11011100, 11011101.

These sixteen words correspond to the set of digit vectors

{(−12, 0)T , . . . , (3, 0)T}.
Since each number of [−4

5
, 1

5
] can be expanded in base 16 with digits from

{−12, . . . , 3}, we are done.
The same procedure works for X2. Starting with hk1 = h3, we obtain the set

of digit vectors
{(0,−6)T , . . . , (0, 9)T}.
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It is also obvious that each number from [−2
5
, 3

5
] can be expanded in base 16 with

digits from {−6, . . . , 9}. ¤

Remark 2.10. Analogously to the decimal expansion of numbers from [0, 1], the
above expansions are not unique. For example, each of the expansions 0.0[3]∞ and
0.1[−12]∞ represent the value 1/80. Nevertheless, H accepts both expansions.

Remark 2.11. After we have proved that the intersections F ∩Xi are intervals,
there still exists the possibility that the boundary ∂F is touching the Xi in
some inner point of these intervals. We shall exclude this possibility by the next
theorem.

Theorem 2.12. The intersection ∂F ∩ X1 consists of the points (−4
5
, 0) and

(1
5
, 0). The intersection ∂F ∩X2 consists of the points (0,−2

5
) and (0, 3

5
).

Proof. A point x belongs to the intersection ∂F ∩X1 if and only if it fulfills the
criteria of the Propositions 2.7 and 2.8. Therefore, we can construct a product
automaton G × H which recognizes the intersection. The states are given by
QG×H = QG ×QH. The initial and terminal states are given by IG×H = IG × IH
and TG×H = TG × TH. There is an edge (g, h)

d−→ (g′, h′) in G × H if and only

of there are edges g
d−→ g′ in G and h

d−→ h′ in H. The intersection F ∩ X1

or F ∩ X2 is recognized by G × H with initial states {(gj1 , h1) : gj1 ∈ QG} or
{(gj1 , h3) : gj1 ∈ QG}.

Now one can see that there are only two infinite successful paths starting in
a state (gj1 , h1) with gj1 ∈ QG. By starting in (g1, h1) and entering the digits
.[00001101]∞, the infinite path

(g1, h1)
0−→ (g3, h2)

0−→ (g4, h3)
0−→ (g5, h4)

0−→
(g6, h1)

1−→ (g4, h5)
1−→ (g3, h3)

0−→ (g2, h4)
1−→

(g1, h1)
0−→ . . .

is passed. Looking on (2.7) and (2.8), this corresponds to the sum
(

1

8
+

1

16

)(
1 +

1

16
+

1

162
+ . . .

)
=

1

5
.

By starting in (g6, h1) and entering .[11010000]∞, the minimal value
(
−1

2
− 1

4

)(
1 +

1

16
+

1

162
+ . . .

)
= −4

5

is obtained.
The same idea can be applied for X2. By starting in (g4, h3) and entering

.[00110100]∞, the minimum of −2
5

is obtained. By starting in (g3, h3) and entering
.[01000011]∞, the maximum of 3

5
is obtained. ¤
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Remark 2.13. Since the origin is an inner point (cf. [10]), by considering the
maximal interval neighborhood of 0 in F ∩Xi, it is easy to show that F ∩Xi are
intervals only by using the result without Theorem 2.9.

Remark 2.14. The fact that X1 ∩F = [−4
5
, 1

5
] can also be proved from the fact

that the intersection can be written as a graph-directed self affine subset of R
naturally constructed by the automaton given by the Figure 3. However, this
technique does not provide information on the boundary points.

Remark 2.15. The automaton H can only decide if x ∈ Xi, i = 1, 2. H can be
extended to an automaton H which is able to determine the halfplane, if it turns
out that x 6∈ Xi. H is shown in Figure 4.

Let x = (x1, x2)
T . The initial states of H are indicated by the corresponding

flags.
Therefore, the terminal states of H are all states which are signed with a zero.

Again, the points of Xi correspond to the infinite successful paths in H. All other
paths (i.e. all paths which are running into a sink) correspond to points in the
half planes. The sign of the half plane is given by the sign of the sink.

Theorem 2.16. Let γ be a rational number with an odd denominator. Then γ
has a purely periodic expansion in base −1 +

√−1 in the sense of Theorem 2.2 if
and only if γ ∈ [−4/5, 1/5].

Proof. If γ has a purely periodic expansion, then Φ(γ) ∈ F . It follows by Theorem
2.2, that if γ has a purely periodic expansion then γ ∈ [−4/5, 1/5].

Further if γ ∈ (−4/5, 1/5) then Φ(γ) is an inner point of F since we have
already shown in the proof of the Theorem 2.9 that γ can not be on the boundary.
Thus γ has a purely periodic expansion by Theorem 2.2. The only remaining
thing to note is that 1/5 and −4/5 have purely periodic expansions:

1

5
=

α3 + α2 + 1

α8 − 1
= .[00001101]∞

and

−4

5
=

α7 + α6 + α4

α8 − 1
= .[11010000]∞.

¤
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Figure 4. The extended automaton H for the half planes.
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3.1. Definition and Construction. In the previous section, we have described
the intersection of the Twin Dragon and the coordinate axes. It is natural to ask
for some generalizations to arbitrary matrices B. Unfortunately, as the reader
will soon notice, this is not an easy task. We mainly used the fact that there exists
an integer n such that Bn is a scalar multiple of the identity matrix (n = 8). If
there is no such n, then it is perhaps impossible to find such a finite automaton.
Even so, we wish to know the intersection as it may have many applications.

Nevertheless, there are some ways to approximate the intersection with the
help of a computer. In this section we describe how an actual algorithm looks
like by an example using another type of fractal set which corresponds to the
minimal Pisot number θ.

Let θ > 1 be the positive root of x3 − x − 1. The other roots θ′ and θ′ are
complex numbers of modulus 1/

√
θ. For a later application, let us consider the

intersection of the negative real line with the set in the complex plane C defined



13

by

(3.1) T =

{ ∞∑
i=4

ai(θ
′)i

∣∣∣∣∣ ai ∈ {0, 1} and
4∑

k=0

ai+k ≤ 1 for each i ≥ 4

}
.

It is easy to confirm that T satisfies the set equation

T = θ′T ∪ (
(θ′)5T + θ′5

)
,

and this set equation conversely characterizes the set T . The boundary ∂T of T
is shown in Figure 5.

In Akiyama-Sadahiro [8] it is proved that the origin 0 is an inner point of T
and its boundary is completely described as the union of 5 self similar sets.2 Let
γ be the supremum such that [−γ, 0] is contained in T . The next theorem is
merely a computational result.

Theorem 3.1. γ = 0.66666666608644067488 . . .

Remark 3.2. The readers will ask why γ is so close to 2/3. We do not have a
sufficient answer but just note that −2/3 is on the boundary of T . Taking a closer
look to the intersection of T and the negative real line, a similar phenomenon is
seen around 3/4.

Proof. Unfortunately the procedure is beyond hand calculation. To read this
proof, Figure 6 will be helpful. Since the origin 0 is an inner point of T , we see
γ > 0. The boundary of T is given as the union of 5 self similar sets and we need
to calculate the smallest positive γ that −γ ∈ ∂T . We shall give the idea how
we can make an algorithm to calculate the intersection.

In order to approximate γ, let us introduce an approximation of ∂T by broken
lines. By [8], the 5 points {−(θ′)j | j = 0, 1, 2, 3, 4} are in ∂T . Consider ∂T to
be partitioned into five curve segments:

• E1 be the segment connecting −(θ′)2 and −(θ′)4,
• E2 be the segment connecting −(θ′)4 and −θ′,
• E3 be the segment connecting −θ′ and −(θ′)3,
• E4 be the segment connecting −(θ′)3 and −1,
• E5 be the segment connecting −1 and −(θ′)2.

Then by [8, Theorem 4.], the Ei satisfy the set equations:

• E1 = ((θ′)5E1 + (θ′)6) ∪ ((θ′)4E1 + (θ′)3),
• E2 = ((θ′)5E2 + (θ′)5) ∪ ((θ′)4E2 + 1),
• E3 = ((θ′)5E3 + (θ′)5) ∪ ((θ′)4E3 + (θ′)2),
• E4 = ((θ′)5E4 + (θ′)4) ∪ ((θ′)4E4 + (θ′)−1),
• E5 = ((θ′)5E5 + (θ′)4) ∪ ((θ′)4E5 + θ′).

2More precisely, they gave the description of the boundary of θ′−4T in [8]. In their notation,
T = K0000.
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Figure 7. The encircling algorithm for E1.

Note that the Ei are similar to each other whereas each Ei is a self affine set.
Therefore T is a graph directed self affine set with

T =
5⋃

i=1

Ei.

Let E (0)
1 be the line connecting −(θ′)4 and −θ′. Define inductively

E (n+1)
1 = ((θ′)5E (n)

1 + (θ′)6) ∪ ((θ′)4E (n)
1 + (θ′)3)

for n ≥ 1 and define analogously E (n)
i for i = 2, . . . , 5.

Denote by V (E (n)
i ) the set of vertices of E (n)

i . Then we see V (E (n+1)
i ) ⊃ V (Ei(n)).

Thus E (n)
i is a broken line. Therefore, each segment of E (n)

i grows into a shrinked
copy of E1 as n →∞.
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Following [8], we introduce the idea of so called encircling disks. One can find
a positive number r such that each Ei is entirely contained in the disk centered
at the middle point of two end points and of radius

r/2× ( length of E (0)
i ).

As the Ei are similar to each other, this r can be taken independent on the choice
of i. A small r is of course preferred. First take a sufficiently large r, e.g.,

r =
2|β′|4

(1− |β′|)(| − (β′)4 + (β′)2|) = 10.00076,

since E1 is contained in T . For example, write the encircling disk for each segment
of E1(3) by this r. Then we see that r can be replaced by r = 2.5. Repeating
this process, one can take r = 1.03 by using E1(7). The first four such steps are
shown in Figure 7.

Observe that the encircling disk with r = 1.03, E1, E2, E3 can not have any
intersection with the negative real axis. Thus we need to consider E4 and E5. Let
us do the same for E4(n) and E5(n) for n = 1, 2, . . . . There are line segments of
Ei(n) (i = 4, 5) which do not have any ‘potential possibility’ to hit the negative
real line. Thus we abandon them. Repeating this procedure by computer, for
each n there remains a set of small segments. Each of such segments, we write
the corresponding encircling disks. Then we get an estimation of −γ. ¤
Remark 3.3. In this example, we have precise information on the boundary of
T . Usually, it is not a difficult task to obtain such information by using automata
(cf. [17, 22, 42, 43]).

Thus for a pretty large class of tiles, we can do the same type of approximation.
It is quite likely that the intersection of such a tile with the negative real line has
infinitely many components but we could not prove it at present.

Remark 3.4. Recently J. Luo [31] showed that the boundary ∂T is a Jordan
closed curve.

3.2. Purely periodic orbits of β-expansions. Let β > 1 be a fixed real num-
ber and define the map Tβ : [0, 1) → [0, 1) by x → βx− bβxc. For each ξ ∈ [0, 1)
we write:

ξ
a1−→ Tβ(ξ)

a2−→ T 2
β (ξ)

a3−→ T 3
β (ξ)

a4−→ . . .

where ai = bT i−1
β (ξ)c. This algorithm yields an expansion of ξ of the form

ξ =
a1

β
+

a2

β2
+

a3

β3
+ · · · ,

which gives a generalization of the usual decimal or binary system to the real base
β with digits [0, β) ∩ Z. Again, we will use the notation introduced in Remark
2.4. As for any positive ξ there is an integer N , such that β−Nξ ∈ [0, 1), we have
in a similar manner

ξ = a−Na−N+1 . . . a−1a0.a1a2a3 . . .
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This is called the β-expansion of ξ and its ergodic properties have been well
studied, for example, in [24, 35, 36]. Formally we consider

1
c1−→ Tβ(1)

c2−→ T 2
β (1)

c3−→ T 3
β (1)

c4−→ . . .

and
1 =

c1

β
+

c2

β2
+

c3

β3
+ · · · .

It is shown in [35], that a formal finite expansion by letters [0, β) ∩ Z is realized
by the β-expansion algorithm, if and only if it is less than the bi-infinite word
c1c2c3 . . . at any starting point by its natural lexicographical order. This c1c2c3 . . .
is called the expansion of 1. We say that the β-expansion is finite when ai = 0
for all sufficiently large i.

The closure of the set of infinite sequences occurring as β-expansions is called
β-shift. The β-shift is called of finite type if and only if the set of all finite factors
is defined by the interdiction of a finite set of words. It is called sofic if and only
if the set of finite factors is recognized by a finite automaton. In [13], it is proved,
that the β-shift is of finite type if and only if the β-expansion of 1 is finite, i.e.
if and only if T k

β (1) = 0 for some k ≥ 0. The β-shift is sofic if and only if the

β-expansion of 1 is eventually periodic i.e. if and only if the orbit {T k
β (1)}∞k=0 is

finite.
Denote by Fin(β) the set of x ≥ 0 having finite β-expansions. It is a subset

of Per(β), the set of numbers having eventually periodic β-expansions. When β
has the finiteness property

(F ) Fin(β) = Z
[
β−1

] ∩ R+,

then this number system has striking analogies to the usual number systems with
positive integer base ≥ 2 (cf. [1, 19]).

It is proved in [12, 40], that if β is a Pisot number, then Per(β) = Q(β) ∩R+.
Conversely, in [40], it is proved, that if Q∩ [0, 1] ⊂ Per(β), then β is a Pisot or a
Salem number. A sufficient (but not necessary) condition for (F) has been proved
in [19]: Let β be the positive root of the polynomial xm− b1x

m−1− . . .− bm with
bi ∈ Z, b1 ≥ b2 ≥ . . . ≥ bm > 0. Then β is a Pisot number (which follows from a
theorem of Brauer [14]), the β–shift is a system of finite type and β fulfills (F).

The minimal Pisot number θ, treated in subsection 3.1, satisfies property (F).
The expansion of one is given by 1 = .10001. This means, that the words 11,
101, 1001 and 10001 are forbidden in expansions with base θ. Therefore, the
corresponding shift space is of finite type.

Furthermore, since θ is a unit, we have Z[θ−1] = Z[θ]. It was shown in [1]
that all sufficiently small rational numbers have purely periodic orbits by Tθ.
This result yields an analogy to Theorem 2.2. It is interesting to calculate the
supremum κ > 0 such that each rational number less than κ has a purely periodic
expansion. Claim 1 in [1] says 0.4342 < κ < 0.6924. Here we show that

Theorem 3.5. γ ≤ κ and we have κ = 0.66666666608644067488 . . . .
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Remark 3.6. It is quite likely that κ = γ. However at present, we can not
prove this equality. We can not remove the possibility that the intersection of
the real line with ∂T is a ‘small’ set, for example a single irrational point, in the
neighborhood of γ.

Before giving a proof, it may be convenient for the reader to recall a tiling of C,
which was originally defined by W. P. Thurston [41] in the notion of [2]. Roughly
speaking, the tiling is defined by classifying the fractional parts .a1a2 . . . aM of
the elements Fin(θ) and mapping these parts to C by using the conjugates of θ.
More precisely, define

K.a1...aM
=

{
M∑
i=1

ai(θ′)−i +
0∑

i=−N

ci(θ′)−i

∣∣∣∣∣ c−Nc−N+1 . . . c0.a1 . . . aM ∈ Fin(θ)

}
,

which gives a tile, corresponding to the fractional part .a1a2 . . . aM . Note that all
these sums are well defined since |θ′| < 1.

The symbol K. corresponds to the elements of Fin(θ) without fractional parts.
It was shown in [8, Lemma 2.] that

(3.2) C =
⋃

.a1...aM

K.a1...aM
,

and this gives a tiling of C, in the sense that there are 5 different tiles up to
translation. The intersection of two different tiles has measure zero. We define
Ka−N ...a0.a1...aM

in a similar manner which has corresponding restriction on ‘integer
parts’. Now we see that K0000. = T , since in (3.1), the summation starts with
i = 4. In [2, Theorem 2.], it is proved, that each element of Fin(θ) corresponds
to an inner point of the tile.

Proof. First we show γ ≤ κ. It suffices to show that a rational number ξ in
[0, γ) has purely periodic expansion. Take coprime positive integers p, q such
that ξ = p/q. As θ (mod qZ[θ]) is a unit in the finite ring Z[θ]/qZ[θ], there
is a positive integer m such that (θm − 1)ξ = ((θm − 1)/q) qξ ∈ Z[θ]. Note
that we can replace m by its multiples. By property (F), we have (θm − 1)ξ =
a−Na−N+1 . . . a−1a0.a1a2 . . . aM for some integers N and M . By Theorem 2 of [2],
(θ′m − 1)ξ′ is an inner point of Ka−3a−2a−1a0.a1...aM

. Note that ξ = ξ′ as ξ ∈ Q.
Thus taking m large enough, then (θ′m − 1)ξ′ can be taken arbitrary close to −ξ
which lies in the interior of T = K0000.. Considering the subdivided tiling, we see
that a−3a−2a−1a0.a1 . . . aM = 0000. must hold, since the interior of two different
tiles can not have any intersection. On the other hand, as ξ < 1, we have N < m.
Thus we have

(θm − 1)ξ = a−Na−N+1 . . . a−5a−40000.

This shows
ξ = .[a−Na−N+1 . . . a−40000]∞

which indeed gives a greedy expansion.
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Secondary we describe how to reach the estimate of κ. This is done by a similar
procedure as we did to get the one of γ. Assume that an interval (−c,−c + ε) ⊂
(−1/θ, 0] with ε > 0, which does not intersect with T . Then (−c,−c + ε) is
contained in K10., which can be shown by the encircling method (see figure 6 of [8]
again). On the other hand we have c > γ by Theorem 3.1. Take ξ ∈ (c−ε, c)∩Q.
Then ξ has the β-expansion ξ = 0.k1k2 . . . with k1 = 0 and k2 = 1. We wish to
show that κ ≤ c. It is enough to show that ξ is not purely periodic. Assuming
the contrary, we have a β-expansion:

ξ = .[k1k2 . . . k`]
∞ =

∑`
i=1 kiθ

−i

1− θ−`
.

We may assume that ` is sufficiently large since it can be replaced by its multiples.
Therefore

ξ =

∑`
i=1 kiθ

′`−i

θ′` − 1
.

and we may assume that −ξ is contained in the interior of K10. This shows that
k`−1 = 1 and k` = 0. This gives a contradiction since .k1k2 . . . k`−1k`k1k2 . . . is
not admissible. Summing up, we have seen that κ ≤ c. Thus we can estimate κ
by finding such intervals (−c,−c + ε) outside T . ¤

3.3. Connected components of T ∩ R. Let θ, θ′ and θ′ be defined as in sub-
section 3.1. The identity (3.2) can be written as

C =
⋃

ω∈Z[θ]∩[0,1)

Kω,

since each number of [0, 1) can be expanded with digits only on the right side of
the decimal point. Therefore, also the numbers of Z[θ] ∩ [0, 1) must have such
expansions.

Now take ω̃ ∈ Z[θ] ∩ [0, θ4). Then

ω̃ = a−3 . . . a0.a1 . . . aM

with a−3 + . . . + a0 ≤ 1. Since

ω̃′ ∈ Ka−3...a0.a1...aM
⊂ K.a1...aM

,

the above tiling can be subdivided to

C =
⋃

ω̃∈Z[θ]∩[0,θ4)

Kω̃.

Define

f(x) = (θ′)5(x + 1)− 1.

Then −1 = f(−1) is a fixed point of f(·). Therefore, f(·) is locally a rotation
around −1, together with a contraction.
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Lemma 3.7. −1 is a multiple point of the subdivided tiles, that is,

−1 ∈ K0000. ∩ K00000.0001 ∩ K0000010. ∩ K000000.1 ∩ K00000100.0001.

Moreover above five subdivided tiles are invariant under f .

Proof. In the following, we will use the notation 1̄ := −1.
Since 1 = .011 and 1 = .10001, we have two possibilities to deal with carries.

We get two different expansions of zero: 0 = 1̄011 and 0 = 1̄10001. As one can
see from the addition in (3.3), 1̄ can be expanded to a one sided infinite sequence:

(3.3)

1̄.
1̄10001.

1̄10001
1̄10001

· · · · · · 1
· · · · · · 0100001000010000.

This sequence converges since |θ′| < 1. Therefore

1̄. ∈ K0000..

Take z ∈ K0000. with the expansion

z =
∞∑
i=0

a−i(θ
′)i with a0 = a−1 = a−2 = a−3 = 0.

Write formally z = . . . 0000. Applying f , the similar computation yields

f(z) = (θ′)5(z + 1)− 1 = . . . 000100001̄. = . . . 000010000.

As we find four consecutive 0’s in front of 1, this new expansion is also admissible.
This implies f(K0000.) ⊂ K0000.. Other statements are shown in the similar
manner. ¤
Lemma 3.8. Let θ′ = |θ′| exp(

√−1ϕ). Then ϕ
π
∈ R \Q.

Proof. Assume that ϕ
π
∈ Q. Then there exists a m > 1 such that θ′m = θ′

m ∈ R.
This shows that [Q(θ) : Q(θm)] = 1, which implies θm = γ ∈ Q. Thus the
conjugates of θ must be a root of the polynomial Xm − γ. This shows that all
conjugates of θ must have the same absolute value. This is a contradiction. ¤

We know that K0000. contains a closed disk D with center 0 and radius r < 1.
Let η be the angle between the real axis and the tangent from −1 to D (cf. Fig.
8.). Since ϕ

π
6∈ Q, the sequence {5nϕ

2π
}∞n=1 is dense in [0, 1). Therefore, there is an

increasing sequence {nj} of positive integers, such that∥∥∥∥
5njϕ

2π

∥∥∥∥ <
η

2π

for all j. Thus, the angle of the rotation performed by fnj(·) is less than η. Then
fnj(D) must intersect the real line, which gives a closed interval Ij. This gives
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infinitely many intervals Ij converging to −1 in [−1, 0] ∩K0000.. Switching to a
subsequence of {nj}, we may assume that all Ij are disjoint.

The same argument for K000000.1 gives infinitely many disjoint intervals Jj in
[−1, 0] converging to −1 located outside of K0000.. Here we used the fact that the
intersection of two tiles has zero measure. Thus we have shown:

Theorem 3.9. There exists a real strictly decreasing sequence {ai}i=0,1,... con-
verging to −1 so that [a4i, a4i+1] ⊂ T and [a4i+2, a4i+3] ⊂ C \ T for i = 0, 1, . . . .
In particular, T ∩ R has infinitely many connected components.

Following the proof of Theorem 3.5, we have

Theorem 3.10. There exists a real strictly increasing sequence {ai}i=0,1,... con-
verging to 1 so that for a point x ∈ Q ∩ [0, 1) if x ∈ [a4i, a4i+1] then x has purely
periodic beta expansion and if x ∈ [a4i+2, a4i+3] then x does not have a purely
periodic expansion.

References

[1] S. Akiyama, Pisot numbers and greedy algorithm, Number Theory, Diophantine, Compu-
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