FWF Project P 30405-N32

Runtime: 01.09.2017-31.08.2021

- Arne Winterhof (project leader)
- Oliver Roche-Newton (co-leader)
- Nurdagül Anbar (01.09.2017-31.01.2018)
- Audie Warren
- Laszlo Merai

Loosely speaking, additive combinatorics is the study of arithmetic structures within finite sets. It is an indication of the high level of activity in this research area that it has become the primary research interest for three Fields medalists (Terence Tao, Timothy Gowers, and Jean Bourgain), along with several more of the world's most respected and decorated mathematicians (such as Ben Green, Nets Katz and Endre Szemeredi).

Additive combinatorics over finite fields is particularly interesting because
of its applications to computer science, cryptography, and coding theory. It
is a very old area with celebrated results such as the Cauchy-Davenport
theorem:

Let $A,B$ subsets of a finite field of prime order $p$. Then we have
$|A+B|\ge \min\{|A|+|B|-1,p\}$.

Recent years have seen a flurry of activity in this area. One influential development was the work of Bourgain, Katz and Tao that shows that for a subset $A$ of a finite field (which is not too large) either the product set $A \cdot A=\{ab : a,b \in A\}$ or the sum set $A+A=\{a+b : a,b \in A\}$ is essentially larger than $A$. Since then this area has gained increasing interest.

Among others we will study the following topics which are problems either coming directly from additive combinatorics or dealing with applications where methods from additive combinatorics are very promising:

- sum-product and related problems
- character sums with convolutions and Balog-Wooley decomposition
- covering sets and packing sets, rewriting schemes and error-correction
- Waring's problem in finite fields and covering codes
- sums of Lehmer numbers.

We will use a collection of different methods and their combinations including

- theorems from incidence geometry
- character sum techniques
- polynomial method
- probabilistic method
- linear programming
- methods from algebraic geometry

We expect that the results and newly developed methods of this project will provide substantial contributions to both theory and applications.

Peer Reviewed Journal Publication

- I. Shparlinski, A. Winterhof (2018) Codes correcting restricted errors. Designs, Codes and Cryptography, Bd. to appear, S. 1--10.
- O. Roche-Newton, I. Shkredov, A. Winterhof (2018) Packing sets over finite abelian groups. Integers, Bd. 18 (Paper No. A38), S. 9 pp.
- N. Anbar, A. Oduzak, V. Patel, L. Quoos, A. Somoza, A. Topuzoglu (2018, online: 2017) On the difference between permutation polynomials over finite fields. Finite Fields and Their Applications, Bd. 49, S. 132-142.
- O. Roche-Newton, I.E. Shparlinski, A. Winterhof (2017) Analogues of the Balog--Wooley decomposition for subsets of finite fields and character sums with convolutions. Annals of Combinatorics, Bd. to appear, S. 25.

Book/Monograph

- K.-U. Schmidt, A. Winterhof (eds.) (2018) Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. In Reihe: Radon Series on Computational and Applied Mathematics, to appear. Aufl.; Berlin: de Gruyter.

Contribution in Collection

- N. Anbar, A. Ozdak, V. Patel, L. Quoos, A. Somoza, A. Topuzoğlu (2017) On the Carlitz rank of permutation polynomials: Recent developments. In: Bouw, I., Özman, E., Johnson-Leung, J., Newton, R. (Hrsg.), Proceedings of Women in Numbers Europe 2: Springer, S. to appear.

Workingpaper

- A. Warren, A. Winterhof (2018) Conical Kakeya and Nikodym sets in finite fields.
- Z. Sun, A. Winterhof (2018) On the maximum order complexity of subsequences of the Thue-Morse sequence and Rudin-Shapiro sequence along squares.
- H. Aly, A. Winterhof (2018) A note on Hall's sextic residue sequence: correlation measure of order k and related measures of pseudorandomness.