Former Member

Dr. Wilfried Meidl

< back
Wilfried Meidl

Peer Reviewed Journal Publication
  • A. Cesmelioglu, W. Meidl, A. Pott (2018) Vectorial bent functions and their duals. Linear Algebra Appl., Bd. 548, S. 305-320.
  • N. Anbar, W. Meidl (2018) Modified planar functions and their components. Cryptogr. Commun., Bd. 10 (2), S. 235-249.
  • Meidl, W. (2018) A secondary construction of bent functions, octal gbent functions and their duals. Mathematics and Computers in Simulation, Bd. 143, S. 57--64.
  • T. Martinsen, W. Meidl, S. Mesnager, P. Stanica (2017) Decomposing generalized bent and hyperbent functions. IEEE Trans. Inform. Theory, Bd. 63 (12), S. 7804--7812.
  • W. Meidl, I. Pirsic (2017) On the normality of p-ary bent functions. Cryptogr. Commun., Bd. to appear, S. 10.
  • T. Martinsen, W. Meidl, P. Stanica (2017) Partial spread and vectorial generalized bent functions. Designs, Codes, Cryptography, Bd. 85 (1), S. 1-13.
  • N. Anbar, W. Meidl (2017) Bent and bent_4 spectra of Boolean functions over finite fields. Finite Fields their Appl., Bd. 46, S. 163-178.
  • T. Martinsen, W. Meidl, P. Stanica (2017, online: 2016) Generalized bent functions and their Gray images. Lecture Notes Computer Science, Bd. 10065, S. 160--173.
  • N. Anbar, W. Meidl, A. Topuzoglu (2017) Idempotent and p-potent quadratic functions: distribution of nonlinearity and co-dimension. Designs Codes Cryptogr., Bd. 82 (1-2), S. 265-291.
  • Meidl, Wilfried; Niederreiter, Harald (2016) Multisequences with high joint nonlinear complexity. Designs Codes Cryptogr., Bd. 81 (2), S. 337-346.
  • A. Cesmeliou glu, W. Meidl, A. Pott, (2016, online: 2016) There are infinitely many bent functions for which the dual is not bent. IEEE Trans. Inform. Theory, Bd. 62, S. 5204-5208.
  • Meidl, W. (2016, online: 2016) Generalized Rothaus construction and non-weakly regular bent functions. J. Combinat. Theory Ser. A, Bd. 141, S. 78-89.
  • C. Kasikci, W. Meidl, A. Topuzoglu (2016, online: 2016) Spectra of a class of quadratic functions: average behaviour and counting functions. Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences, Bd. 8 (2), S. 191-214.
  • N. Anbar, W. Meidl, A. Topuzoglu (2016, online: 2016) Idempotent and $p$-potent quadratic functions: Distribution of nonlinearity and co-dimension. Designs, Codes and Cryptography, Bd. to appear, S. 27.
  • N. Anbar, W. Meidl (2015, online: 2015) More on quadratic functions and maximal Artin–Schreier curves. AAECC, Bd. 26, S. 409-426.
  • A. Cesmelioglu, W. Meidl, A. Pott (2015, online: 2015) Bent functions, spreads, and o-polynomials. SIAM J. Discrete Math., Bd. 29 (2), S. 854-867.
  • W. Meidl, A. Winterhof (2006) Some notes on the linear complexity of Sidelnikov-Lempel-Cohn-Eastman sequences. Designs, Codes and Cryptography, Bd. 38, S. 159-178.
  • Meidl, W. (2005) On the stability of 2^n-periodic binary sequences. IEEE Trans. Inform. Theory, Bd. 51, S. 1151-1155.
  • Meidl, W.; Winterhof, A. (2005) On the joint linear complexity profile of explicit inversive multisequences. Journal of complexity, Bd. 21, S. 324-336.

Conference Contribution: Publication in Proceedings
  • N. Brandstätter, W. Meidl (2006) On the linear complexity of Sidel'nikov Sequences over Fd., Sequences and Their Applications - SETA 2006 In Reihe: Lecture Notes Computer Science, Bd. 4086: Spinger, S. 47-60.
  • Meidl, W. (2005) Discrete Fourier Transform, Joint Linear Complexity and Generalized Joint Linear Complexity of Multisequences. In: Helleseth, T.; Yang, K. (Hrsg.), Sequences and Their Applications, Lecture Notes in Computer Science, Bd. 3486: Springer, Berlin Heidelberg, S. 101-112.

Contribution in Collection
  • A. Çeşmelioğlu, W. Meidl (2015, online: 2015) Non weakly regular bent polynomials from vectorial quadratic functions., Topics in finite fields; Providence, RI: Amer. Math. Soc., S. 83-93.