Univ. Prof. Dr. Otmar Scherzer

< back
Otmar Scherzer

Peer Reviewed Journal Publication
  • Ramlau, Ronny; Scherzer, Otmar (2018) The first 100 years of the Radon transform. Inverse Probl., Bd. 34 (9), S. ARTN 090201.
  • Iglesias, José A.; Rumpf, Martin; Scherzer, Otmar (2018, online: 2017) Shape-Aware Matching of Implicit Surfaces Based on Thin Shell Energies. Foundations of Computational Mathematics, Bd. 18 (4), S. 891-927. (link)
  • Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas; Scherzer, Otmar (2018) Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems. SIAM J. Imaging Sci., Bd. 11 (2), S. 1268-1293.
  • Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar (2018) A note on convergence of solutions of total variation regularized linear inverse problems. Inverse Problems, Bd. 34 (5), S. 055011. (link)
  • Elbau, P.; Mindrinos, L.; Scherzer, O. (2018, online: 2017) The inverse scattering problem for orthotropic media in polarization-sensitive optical coherence tomography. GEM - International Journal on Geomathematics, Bd. 9 (1), S. 145-165.
  • Scherzer, Otmar; Shi, Cong (2018) Reconstruction formulas for photoacoustic imaging in attenuating media. Inverse Probl., Bd. 34 (1), S. ARTN 015006.
  • Elbau, P.; Mindrinos, L.; Scherzer, O. (2018) Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging. Inverse Probl., Bd. 34 (1), S. ARTN 014006.
  • Elbau, P.; Scherzer, O.; Shi, C. (2017) Singular values of the attenuated photoacoustic imaging operator. J. Differential Equations, Bd. 263 (9), S. 5330-5376.
  • Patrone, Aniello Raffaele; Scherzer, Otmar (2017) On a spatial-temporal decomposition of optical flow. Inverse Problems and Imaging, Bd. 11 (4), S. 761-781.
  • Kirisits, Clemens; Otmar, Scherzer (2017) Convergence rates for regularization functionals with polyconvex integrands. Inverse Problems, Bd. 33 (8), S. 085008.
  • Jin, Bangti; Maass, Peter; Scherzer, Otmar (2017) Sparsity regularization in inverse problems Preface. Inverse Probl., Bd. 33 (6), S. ARTN 060301.
  • Frigaard, Ian A.; Iglesias, José A.; Mercier, Gwenael; Pöschl, Christiane; Scherzer, Otmar (2017) Critical yield numbers of rigid particles settling in Bingham fluids and Cheeger sets. SIAM Journal on Applied Mathematics, Bd. 77 (2), S. 638–663.
  • Lang, L. F.; Scherzer, O. (2017) Optical Flow on Evolving Sphere-Like Surfaces. Inverse Probl. Imaging, Bd. 11 (2), S. 305-338.
  • Dong, Guozhi; Jüttler, Bert; Scherzer, Otmar; Takacs, Thomas (2017) Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Probl. Imaging, Bd. 11 (2), S. 221-246.
  • Elbau, P.; Mindrinos, L.; Scherzer, O. (2017, online: 2017) Inverse problems of combined photoacoustic and optical coherence tomography. Math. Methods Appl. Sci., Bd. 40, S. 505-522.
  • Belhachmi, Zakaria; Glatz, Thomas; Scherzer, Otmar (2017, online: 2016) Photoacoustic Tomography With Spatially Varying Compressibility and Density. J. Inverse Ill-Posed Probl., Bd. 25 (1), S. 119-133.
  • Albani, V.; Elbau, P.; de Hoop, M. V.; Scherzer, O. (2016) Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces. Numer. Funct. Anal. Optim., Bd. 37 (5), S. 521-540.
  • Beretta, Elena; Hoop, Maarten V. de; Faucher, Florian; Scherzer, Otmar (2016) Inverse boundary value problem for the Helmholtz equation: quantitativeconditional Lipschitz stability estimates. SIAM J. Appl. Math., Bd. 48, S. 3962-3983.
  • Sadiq, Kamran; Scherzer, Otmar; Tamasan, Alexandru (2016) On the X-ray transform of planar symmetric 2-tensors. J. Math. Anal. Appl., Bd. 442 (1), S. 31-49.
  • Belhachmi, Zakaria; Glatz, Thomas; Scherzer, Otmar (2016) A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Probl., Bd. 32 (4), S. ARTN 045005.
  • Schmid, Julian; Glatz, Thomas; Zabihian, Behrooz; Liu, Mengyang; Drexler, Wolfgang et al. [..] (2016) Nonequispaced grid sampling in photoacoustics with a nonuniform fast Fourier transform. J. Biomed. Opt., Bd. 21 (1), S. ARTN 015005.
  • Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas (2015) Texture Generation for Photoacoustic Elastography. J. Math. Imaging Vis., Bd. 52 (3), S. 369-384.
  • Constantin, A.; Kalimeris, K.; Scherzer, O. (2015) A PENALIZATION METHOD FOR CALCULATING THE FLOW BENEATH TRAVELING WATER WAVES OF LARGE AMPLITUDE. SIAM J. Appl. Math., Bd. 75 (4), S. 1513-1535.
  • Elbau, P.; Scherzer, O. (2015) Modelling the Effect of Focusing Detectors in Photoacoustic Sectional Imaging. SIAM J. Imaging Sci., Bd. 8 (1), S. 1-18.
  • Constantin, A.; Kalimeris, K.; Scherzer, O. (2015) Approximations of steady periodic water waves in flows with constant vorticity. Nonlinear Anal.-Real World Appl., Bd. 25, S. 276-306.
  • Kirisits, C.; Poeschl, C.; Resmerita, E.; Scherzer, O. (2015, online: 2014) Finite-dimensional approximation of convex regularization via hexagonal pixel grids. Applicable Analysis, Bd. 94 (3), S. 612-636.
  • Widlak, Thomas; Scherzer, Otmar (2015) Stability in the linearized problem of quantitative elastography. Inverse Probl., Bd. 31 (3), S. ARTN 035005.
  • Pöschl, Christiane; Scherzer, Otmar (2015) Exact solutions of one-dimensional total generalized variation. Communications in Mathematical Sciences, Bd. 13 (1), S. 171-202.
  • Scherzer, O.; Qiu, L.; Hoop, M. de (2015, online: 2014) An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints. Numerische Mathematik, Bd. 129 (1), S. 127-148.
  • Poeschl, C.; Scherzer, O. (2015) Exact solutions of one-dimensional total generalized variation. Communications in Mathmetical Sciences, Bd. 13 (1).
  • Naetar, W.; Scherzer., O. (2014) Quantitative photoacoustic tomography with piecewise constant material parameters. SIAM Journal on Imaging Sciences, Bd. 7 (3), S. 1755-1774.
  • Beretta, E.; Grasmair, M.; Muszkieta, M.; Scherzer, O. (2014) A variational algorithm for the detection of line segments. Inverse Problems and Imaging, Bd. 8 (2), S. 389-408.
  • Kirisits, C.; Lang, L. F.; Scherzer, O. (2014) Optical Flow on Evolving Surfaces with Space and Time Regularisation. Journal of Mathematical Imaging and Vision, Bd. 52, S. 55-70.
  • Kirisits, C.; Lang, L. F.; Scherzer, O. (2014) Decomposition of optical flow on the sphere. International Journal on Geomathematics, Bd. 5 (1), S. 117-141.
  • Kalimeris, K.; Scherzer, O. (2013, online: 2013) Photoacoustic imaging in attenuating acoustic media based on strongly causal models. Mathematical Methods in The Applied Sciences, Bd. 36 (16), S. 2254–2264.
  • Grasmair, M.; Scherzer, O.; Vanhems, A. (2013, online: 2013) Nonparametric instrumental regression with non-convex constraints. Inverse Problems, Bd. 29 (3), S. 035006.
  • Grasmair, M.; Muszkieta, M.; Scherzer, O. (2013, online: 2013) An approach to the minimization of the Mumford-Shah functional using Γ-convergence and topological asymptotic expansion. Interfaces and Free Boundaries, Bd. 15 (2), S. 141-166.
  • Bal, G.; Naetar, W.; Scherzer, O.; Schotland, J. (2013) The Levenberg–Marquardt iteration for numerical inversion of the power density operator. Journal of Inverse and Ill-Posed Problems, Bd. 21 (2), S. 265-280.
  • Grasmair, M.; Scherzer, O.; Vanhems, A. (2013) Nonparametric instrumental regression with non-convex constraints., Bd. 29 (3), S. 035006-035021.
  • Abhau, J.; Aichholzer, O.; Colutto, S.; Kornberger, B.; Scherzer, O. (2013) Shape Spaces via Medial Axis Transforms for Segmentation of 3D Voxel Data. Inverse Problems and Imaging, Bd. 7 (1), S. 1-25.
  • Scherzer, O.; Widlak, T. (2012) Hybrid Tomography for Conductivity Imaging. Inverse Problems, Bd. 28, S. 084008.
  • Fidler, T.; Grasmair, M.; Scherzer, O. (2012) Shape Reconstruction with A Priori Knowledge Based on Integral Invariants. SIAM Journal on Imaging Sciences, Bd. 5 (2), S. 726–745.
  • Kirsch, A.; Scherzer, O. (2012) Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements. SIAM Journal Applied Mathematics, Bd. 72 (5), S. 1508-1523.
  • Cezaro, A. De; Scherzer, O.; Zubelli, J.P. (2012) Convex regularization of local volatility models from option prices:Convergence analysis and rates. Nonlinear Analysis: Theory, Methods & Applications, Bd. 75, S. 2398-2415.
  • Elbau, P.; Scherzer, O.; Schulze, R. (2012) Reconstruction Formulas for Photoacoustic Sectional Imaging. Inverse Problems (28), S. 045004.
  • Scherzer, O.; Qiu, L.; Hoop, M. de (2012) Local analysis of inverse problems: Hölder stability and iterative reconstruction. Inverse Problems, Bd. 28, S. 045001.
  • Thorstensen, N.; Scherzer, O. (2011) Convergence of variational regularization methods for imaging on Riemannian manifolds. Inverse Problems, Bd. 28 (1), S. 015007.
  • Grasmair, Markus; Haltmeier, Markus; Scherzer, Otmar (2011, online: 2011) The residual method for regularizing ill-posed problems. Applied Mathematics and Computation, Bd. 218 (6), S. 2693–2710.
  • Schulze, Rainer J.; Scherzer, Otmar; Zangerl, Gerhard; Holotta, Markus; Meyer, Dirk et al. [..] (2011, online: 2011) On the use of frequency-domain reconstruction algorithms for photoacoustic imaging. Journal of Biomedical Optics, Bd. 16 (8), S. 086002.
  • Lenzen, Frank; Scherzer, Otmar (2011) Partial Differential Equations for Zooming, Deinterlacing and Dejittering. International Journal of Computer Vision, Bd. 92 (2), S. 162-176.
  • Grasmair, Markus; Scherzer, Otmar; Haltmeier, Markus (2011, online: 2010) Necessary and Sufficient Conditions for Linear Convergence of l1-Regularization. Communications on Pure and Applied Mathematics, Bd. 64 (2), S. 161-182.
  • Kowar, Richard; Scherzer, Otmar; Bonnefond, Xavier (2011, online: 2010) Causality analysis of frequency-dependent wave attenuation. Mathematical Methods in the Applied Sciences, Bd. 34 (1), S. 108-124.
  • Zangerl, G.; Scherzer, Otmar (2010) Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry. Mathematical Methods in the Applied Sciences, Bd. 33 (15), S. 1771-1782 .
  • Pöschl, C.; Modersitzki, J.; Scherzer, Otmar (2010) A Variational Setting for Volume Constrained Image Registration. Inverse Problems and Imaging, Bd. 4 (3), S. 505-522 .
  • Pöschl, C.; Resmerita, E.; Scherzer, Otmar (2010) Discretization of variational regularization in {B}anach spaces. Inverse Problems, Bd. 26 (10), S. 105017 .
  • Colutto, S.; Frühauf, F.; Fuchs, M.; Scherzer, Otmar (2010) The {CMA-ES} on Riemannian Manifolds to Reconstruct Shapes in {3-D} Voxel Images. IEEE Transactions on Evolutionary Computation, Bd. 14 (2), S. 227-245 .
  • Lenzen, F.; Scherzer, Otmar (2010) Partial Differential Equations for Zooming, Deinterlacing and Dejittering. International Journal of Computer Vision, Bd. 0920-5691, S. 1-15 .
  • Frick, K.; Scherzer, Otmar (2010) Regularization of ill-posed linear equations by the non-stationary augmented {L}agrangian method. Journal of Integral Equations and Applications, Bd. 22 (2), S. 217-257 .
  • Abhau, J.; Scherzer, Otmar (2010) A Combinatorial Method for Topology Adaptations in {3D} Deformable Models. International Journal of Computer Vision, Bd. 87 (3), S. 304-315 .
  • Elbau, Peter; Grasmair, Markus; Lenzen, Frank; Scherzer, Otmar (2010) Evolution by Non-Convex Functionals. Numerical Functional Analysis and Optimization, Bd. 31 (4), S. 489 - 517 .
  • Haltmeier, Markus; Scherzer, Otmar; Zangerl, Gerhard (2009) A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT. IEEE Transactions on Medical Imaging, Bd. 28 (11), S. 1727-1735.
  • Zangerl, Gerhard; Scherzer, Otmar; Haltmeier, Markus (2009) Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Communications in Mathematical Sciences, Bd. 7 (3), S. 665-678.
  • Abhau, Jochen; Scherzer, Otmar (2009) A Combinatorial Method for Topology Adaptations in 3D Deformable Models. International Journal of Computer Vision.
  • Scherzer, Otmar; Fellin, Wolfgang; Frühauf, Florian; Heilig, Achim; Schneebeli, Martin (2009) Experiments and algorithms to detect snow avalanche victims using airborne ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, Bd. 47 (7), S. 2240 - 2251.
  • DeCesaro, A.; Leitao, A.; Haltmeier, M.; Scherzer, O. (2009) On Steepest-Descent-Kaczmarz Methods for Regularizing Systems of Nonlinear Ill-posed Equations. Applied Mathematics and Computation, Bd. 202 (2), S. 596-607.
  • Scherzer, Otmar; Jüttler, Bert; Fuchs, Matthias; Yang, Huaiping (2009) Shape Metrics Based on Elastic Deformations. Journal of Mathematical Imaging and Vision, Bd. 35 (1), S. 86-102.
  • Scherzer, O.; Zangerl, G.; Haltmeier, M. (2009) Circular integrating detectors in photo- and thermoacoustic tomography. Inverse Problems in Science and Engineering, Bd. 17 (1), S. 133-142.
  • Fuchs, M.; Jüttler, B.; Yang, H.; Scherzer, O. (2008) Combined evolution of level sets and B-spline curves for imaging. Computing and Visualization in Science, Bd. 43.
  • F. Frühauf, B. Gebauer, O. Scherzer (2007) Detecting interfaces in a parabolic-elliptic problem from surface measurements. SIAM J. Numer. Anal., Bd. 45 (2), S. 810-836. (link)
  • E. Resmerita, O. Scherzer (2006) Error estimates for non-quadratic regularization and the relation to enhancing. Inverse Problems, Bd. 22, S. 801-814.
  • Scherzer, O.; Filder, T.; Grasmair, M. Identifiability and Reconstruction of Shapes from Integral Invariants. Inverse Problems and Imaging, Bd. 2 (3), S. 341-354.
  • Scherzer, O.; Feichtinger, R.; Fuchs, M.; Jüttler, B.; Yang, H. Dual Evolution of planar parametric spline curves and T-spline level sets. Computer-Aided Design, Bd. 40 (1), S. 13-24.
  • Scherzer, O.; Fuchs, M. Regularized reconstruction of shapes with statistical a-priori knowledge. International Journal of Computer Vision, Bd. 79 (2), S. 119-135.
  • with M. Grasmair, A. Vanhems Imaging nonparametric instrumental regression with non-convex constraints. Inverse Problems, Bd. 29, S. 16.
  • with J. Abhau, O. Aichholzer, S. Colutto, B. Kornberger Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data. Inverse Problems and Imaging, Bd. 7 (1), S. 1-25 . (link)
  • with G. Bal, W. Naetar, J. Schotland The Levenberg-Marquardt iteration for numerical inversion of the power density operator. Journal of Inverse and Ill-Posed Problems, Bd. 21, S. 265-280.
  • Beigl, Alexander; Elbau, Peter; Sadiq, Kamran; Scherzer, Otmar (online: 2018) Quantitative Photoacoustic Imaging in the Acoustic Regime using SPIM. Inverse Problems, Bd. 34 (5), S. 1-15.

Book/Monograph
  • Scherzer, O.; Grasmair, M.; Grossauer, H.; Haltmeier, M.; Lenzen, F. (2009) Variational Methods in Imaging.: Springer.
  • Scherzer, O.; Kaltenbacher, B.; Neubauer, A. (2008) Iterative Regularization Methods for Nonlinear Ill-Posed Problems.; Berlin: DeGruyter.

Conference Contribution: Publication in Proceedings
  • Ansorge, U.; Buchinger, S.; Valuch, C.; Patrone, A. R.; Scherzer, O. (2014) Visual Attention in Edited Dynamical Images. (11th International Conference on Signal Processing and Multimedia Applications (SIGMAP-2014)) In Reihe: Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications, S. 198-205.
  • Valuch, C.; Ansorge, U.; Buchinger, S.; Patrone, A. R.; Scherzer., O. (2014) The effect of cinematic cuts on human attention. (ACM International Conference on Interactive Experiences for TV and Online Video, TVX '14); Newcastle, S. 119-122.
  • Scherzer, O. (2013) Regularization of Ill-posed Linear Equations by the Non-stationary Augmented Lagrangian Method. In: Keller, A.; Kuo, F.; Neuenkirch, A.; Traub, J. F. (Hrsg.) (Dagstuhl Seminar 12391); Dagstuhl, Germany: Schloss Dagstuhl: Leibniz-Zentrum fuer Informatik, S. 219.
  • Kirisits, C.; Lang, L.F.; Scherzer, O. (2013) Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy Data. In: Kuijper, A. (Hrsg.), Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'13) In Reihe: Lecture Notes in Computer Science 7893, Bd. 5; Berlin, Heidelberg: Springer-Verlag, S. 246-257.
  • Dong, G.; Kang, S.H.; Grasmair, M.; Scherzer, O. (2013) Scale and Edge Detection with Topological Derivatives of the Mumford-Shah Functional. In: Kuijper, A. (Hrsg.), Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'13) In Reihe: Lecture Notes in Computer Science 7893, Bd. 5; Berlin, Heidelberg: Springer-Verlag, S. 404-415.
  • Iglesias, J. A.; Berkels, B.; Rumpf, M.; Scherzer, O. (2013) A Thin Shell Approach to the Registration of Implicit Surfaces. In: Bronstein, M.; Favre, J.; Hormann, K. (Hrsg.), Vision, Modeling & Visualization (VMV 2013); Lugano, S. 89-96.
  • Elbau, P.; Kirsch, A.; Scherzer, O.; Schulze, R. (2012) Photoacoustic and Coupled Physics Imaging., Inverse Problems for Partial Differential Equations (Inverse Problems for Partial Differential Equations) In Reihe: Oberwolfach Reports.
  • Kirisits, C.; Scherzer, O. (2012) Convex Variational Regularization Methods for Inverse Problems., Frontiers in Nonparametric Statistics (Frontiers in Nonparametric Statistics) In Reihe: Oberwolfach Reports.
  • Fuchs, Matthias; Scherzer, Otmar (2011, online: 2011) Regularized reconstruction of M-Rep shapes with statistical a priori knowledge., Trends in Mathematical Imaging and Surface Processing (Trends in Mathematical Imaging and Surface Processing) In Reihe: Oberwolfach Reports.
  • Boulanger, Jérôme; Elbau, Peter; Pontow, Carsten; Scherzer, Otmar (2011) Non-Local Functionals for Imaging. In: Bauschke, Heinz; Burachik, Regina; Combettes, Patrick; Elser, Veit; Luke, Russell et al. [..] (Hrsg.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering: Springer.
  • Frühauf, Florian; Pontow, Carsten; Scherzer, Otmar (2011, online: 2011) Texture Enhancing Based on Variational Image Decomposition. In: Bergounioux, Maïtine (Hrsg.), Mathematical Image Processing (Mathematics and Image Processing) In Reihe: Springer Proceedings in Mathematics; Berlin Heidelberg: Springer, S. 127-140.
  • Kowar, R.; Scherzer, Otmar (2010) Photoacoustic Imaging taking into account Attenuation., Mathematics and Algorithms in Tomography, S. 54-56 .
  • Scherzer, Otmar; Pöschl, Christiane (2008) Characterization of minimizers of convex regularization functionals., Frames and Operator Theory in Analysis and Signal Processing (AMS-SIAM Special Session on Frames and Operator Theory) In Reihe: Contemporary Mathematics, Bd. 451, S. 219-248.
  • Dong, Guozhi; Scherzer, Otmar (online: 2017) Nonlinear Flows for Displacement Correction and Applications in Tomography. (International Conference on Scale Space and Variational Methods in Computer Vision) In Reihe: Lecture Notes in Computer Science, Bd. 33: Springer, S. 283-294.
  • Elbau, P.; Mindrinos, L.; Scherzer, O. (online: 2017) Modeling polarization-sensitive OCT using inverse scattering techniques. (OSA Imaging and Applied Optics Congress, San Francisco, California, United States) In Reihe: Imaging and Applied Optics, Bd. 33, S. MW3C.3.

Contribution in Collection
  • Pontow, C.; Scherzer, O. (2012) Analytical Evaluations of Double Integral Expressions Related to Total Variation. In: Langer, U.; Paule, P. (Hrsg.), Numerical and Symbolic Scientific Computing: Progress and Prospects; New York: Springer.
  • Kowar, R.; Scherzer, O. (2012) Photoacoustic Imaging Taking into Account Attenuation. In: Ammari, Habib (Hrsg.), Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies; New York: Springer.
  • Pöschl, Christiane; Scherzer, Otmar (2011, online: 2011) Distance Measures and Applications to Multi-Modal Variational Imaging. In: Scherzer, Otmar (Hrsg.), Handbook of Mathematical Methods in Imaging, 1. Aufl.; New York: Springer.
  • Grasmair, M.; Haltmeier, M.; Scherzer, Otmar (2010) Sparsity in Inverse Geophysical Problem. In: Freeden, W.; Nashed, M. Z.; Sonar, T. (Hrsg.), Handbook of Geomathematics: Springer Berlin Heidelberg, S. 763-784 .
  • Kuchment, P.; Scherzer, O. Mathematical Methods in Photo- and Thermoacoustic Imaging.

Editorship
  • Scherzer, Otmar (Hrsg.) (2011, online: 2011) Handbook of Mathematical Methods in Imaging., 1. Aufl.; New York: Springer.

Research Report
  • Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar (2018) Critical yield numbers and limiting yield surfaces of particle arrays settling in a Bingham fluid. Bericht-Nr. RICAM-Report No. 2018-05;. (link)