Dr. Oliver Roche-Newton

< back

Peer Reviewed Journal Publication
  • O. Roche-Newton, I. Shkredov, A. Winterhof (2017) Packing sets over finite abelian groups. Integers, Bd. to appear, S. 10.
  • O. Roche-Newton, I.E. Shparlinski, A. Winterhof (2017) Analogues of the Balog--Wooley decomposition for subsets of finite fields and character sums with convolutions. Annals of Combinatorics, Bd. to appear, S. 25.
  • B. Hanson, B. Lund, O. Roche-Newton (2015, online: 2015) On distinct perpendicular bisectors and pinned distances in finite fields. Finite fields and their applications, Bd. 37, S. 240-264 (to appear 2016).
  • B. Murphy, O. Roche-Newton, I. Shkredov (2015, online: 2015) Variations on the sum-product problem. SIAM Journal on Discrete Mathematics, Bd. 29 (1), S. 514-540.
  • J. Cilleruelo, A. Iosevich, B. Lund, O. Roche-Newton, M. Rudnev (2015, online: 2015) Elementary methods for incidence problems in finite fields. Mathematische Zeitschrift, Bd. submitted, S. 10.
  • M. Rudnev, I. Shkredov, O. Roche-Newton (2015, online: 2015) New sum-product type estimates over finite fields. Advances in Mathematics, Bd. submitted, S. 10.
  • O. Raz, O. Roche-Newton, M. Sharir (2015, online: 2015) Sets with few distinct distances do not have heavy lines. Discrete Math., Bd. 338 (8), S. 1484-1492.
  • A. Balog, O. Roche-Newton (2015, online: 2015) New sum-product estimates for real and complex number. Discrete and Computational Geometry, Bd. 53 (4), S. 825-846.
  • O. Roche-Newton, I. Shparlinski (2015, online: 2015) Polynomial values in subfields and affine subspaces of finite fields. Quarterly Journal of Mathematics, Bd. 66, S. 693-706.
  • O. Roche-Newton, D. Zhelezov (2014, online: 2014) A bound on the multiplicative energy of a sum set and extremal sum-product problems. SMoscow Journal of Combinatorics and Number Theory, Bd. to appear, S. 10.

Conference Contribution: Publication in Proceedings
  • Roche-Newton, O. (2015, online: 2015) A short proof of a near-optimal cardinality estimate for the size of a product of a sum set., Proceedings of Symposium on Computational Geometry 2015, S. to appear.