Former Member

Dr. Jan Haskovec

< back

Peer Reviewed Journal Publication
  • Fornasier, M.; Haskovec, J.; Steidl, G. (2013, online: 2012) Consistency of Variational Continuous-Domain Quantization via Kinetic Theory. Applicable Analysis, Bd. 92 (6), S. 1283-1298.
  • Haskovec, J.; Erban, R. (2012) From individual to collective behaviour of coupled velocity jump processes: a locust example. Kinetic and Related Models, Bd. Vol 5 (No 4), S. 22. (link)
  • Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese (2011) Individual based and mean-field modelling of direct aggregation. Physica D: Nonlinear Phenomena, Bd. Special edition "Emergent behaviour in multi-particle systems with non-local interactions", S. 28.
  • Haskovec, Jan; Masmoudi, Nader; Schmeiser, Christian; Tayeb, Mohammed Lazhar (2011) The Spherical Harmonics Expansion Model Coupled to the Poisson Equation. Kinetic and Related Models, Bd. 4, S. 21. (link)
  • Fornasier, Massimo; Haskovec, Jan; Vybiral, Jan (2011) Particle systems and kinetic equations modeling interacting agents in high dimension.
  • Massimo Fornasier, Jan Haskovec , and Giuseppe Toscani (2011) Fluid dynamic description of flocking via Povzner-Boltzmann equation. (link)
  • Haskovec, Jan; Schmeiser, Christian Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system. Communications in Partial Differential Equations. (link)
  • Fornasier, Massimo; Haskovec, Jan; Vybiral, Jan Particle systems and kinetic equations modeling interacting agents in high dimension. SIAM Multiscale Modeling and Simulation, S. 36. (link)

Conference Contribution: Publication in Proceedings
  • Wolfgang Baatz, Massimo Fornasier, Jan Haskovec (2010) Mathematical methods for spectral image reconstruction., Proceedings of the workshop Scientific Computing for Cultural Heritage (Scientific Computing for Cultural Heritage). (link)

Contribution in Collection
  • Haskovec, J.; Schmeiser, C. (2011) Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system., Comm. PDE 36, S. 940-960.