Former Member

Prof. Dr. Christian Schmeiser

< back
Christian Schmeiser

Peer Reviewed Journal Publication
  • Hittmeir, Sabine; Ranetbauer, Helene; Schmeiser, Christian; Wolfram, Marie-Therese (2017) Derivation and analysis of continuum models for crossing pedestrian traffic. Math. Models Meth. Appl. Sci., Bd. 27 (7), S. 1301-1325.
  • Schmeiser, Christian; Winkler, Christoph (2015) The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation. J. Theor. Biol., Bd. 380, S. 144-155.
  • V. Calvez, G. Raoul, C. Schmeiser (2015) Confinement by biased velocity jumps: aggregation of Escheria coli. Kinetic and Related Models, Bd. 8, S. 651-666.
  • A. Manhart, D. Oelz, C. Schmeiser, N. Sfakianakis (2015) An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals. J. Theor. Biol., Bd. 382, S. 244-258.
  • S. Hirsch, D. Oelz, C. Schmeiser (2015, online: 2015) Existence and uniqueness of solutions for a model of non-sarcomeric actomyosin bundles. Discrete and Continuous Dynamical Systems-Series A, Bd. to appear, S. to appear.
  • J. Dolbeault, C. Mouhot, C. Schmeiser (2015, online: 2015) Hypocoercivity for linear kinetic equations conserving mass. Trans. AMS, Bd. 367, S. 3807-3828.
  • J. Müller, J. Pfanzelter, C. Winkler, A. Narita, C. Le Clainche, M. Nemethova, M. Carlier, Y. Maeda, M. D. Welch, T. Ohkawa, C. Schmeiser, G. P. Resch and J. V. Small (2014) Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion. PLOS Biology, Bd. 12 (1), S. 1 - 14.
  • Koestler, S.A., Steffen, A., Nemethova, M., Winterhoff, M., Luo, N., Holleboom, J.M., Krupp, J., Jacob, S., Vinzenz, M., Schur, F., Schlueter, K., Gunning, P.W., Winkler, C., Schmeiser, C., Faix, J., Stradal, T.E.B., Small, J.V., Rottner, K. (2013) Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin. Molecular Biology of the Cell, Bd. 24 (18), S. 2861-2875.
  • Ölz, D.; Schmeiser, C. (2012) Simulation of lamellipodial fragments., Bd. 64, S. 513.
  • Haskovec, Jan; Masmoudi, Nader; Schmeiser, Christian; Tayeb, Mohammed Lazhar (2011) The Spherical Harmonics Expansion Model Coupled to the Poisson Equation. Kinetic and Related Models, Bd. 4, S. 21. (link)
  • Ölz, D.; Schmeiser, C. (2010) Derivation of a model for symmetric lamellipodia with instantaneous cross-link turnover., Bd. 198, S. 963ff.
  • Dolbeault, J.; Mouhot, C.; Schmeiser, C. (2009) Hypocoercivity for kinetic equations with linear relaxation terms. Série Mathematique des Comptes Rendus de l'Académie des sciences (347), S. 511-516.
  • Ölz, D.; Schmeiser, C.; Small, V. (2009) Stability of solitary waves in a semiconductor drift-diffusion model. SIAM Journal on Applied Mathematics (SIAP) (68), S. 1423-1438.
  • Burger, M.; Dolak-Struss, Y.; Schmeiser, C. (2009) Asymptotic analyis of an advection-dominated chemotaxis model in multiple spatial dimensions. Communications in Mathematical Sciences (6), S. 1-28.
  • Anguige, K.; Schmeiser, C. (2009) A one-dimensional model for cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. Journal of Mathematical Biology (58), S. 395-427.
  • Haskovec, J.; Schmeiser, C. (2009) Diffusive limit of a kinetic model for cometary flows. Journal of Statistical Physics (136), S. 179-194.
  • Ölz, D.; Schmeiser, C.; Small, V. (2009) Modelling of the Actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adhesion & Migration (2), S. 117-126.
  • Haskovec, J.; Schmeiser, C. (2009) A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems. Monatshefte für Mathematik (158), S. 71-79.
  • Haskovec, J.; Schmeiser, C. (2009) Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system. Journal of Statistical Physics (135), S. 133-151.
  • Cuesta, C.; Schmeiser, C. (2009) Long time behaviour of a one-dimensional BGK model: convergence to macroscopic rarefaction waves. Monatsh. Math., online first., S. r85.
  • Dolbeault, J.; Schmeiser, C. (2009) The two-dimensional Keller-Segel model after blow-up 25. DCDS-A (25), S. 109-121.
  • Anguige, Keith; Schmeiser, Christian (2008) A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion. Journal of Mathematical Biology .
  • Dolak, Y.; Schmeiser, C. (2005) The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. (link)
  • Dolak, Y.; Schmeiser, C. (2005) Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. (link)
  • Chalub, F.; Dolak-Struß, Y.; Markowich, P.; Ölz, D.; Schmeiser, C. (2005) Model hierachies for cell aggregation by chemotaxis. Math. Mod. Meth. Appl. Sci. (link)
  • Winkler, C.; Small, V.; Schmeiser, C. (online: 2012 Actin filament tracking in electron tomograms of negatively stained lamellipodia using the localized radon transform. Journal of Structural Biology, Bd. 178 (1047-8477), S. 19 - 28.
  • Haskovec, Jan; Schmeiser, Christian Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system. Communications in Partial Differential Equations. (link)
  • Vinzenz, Nemethova, Schur, Mueller et al Actin branching in the initiation and maintenance of lamellipodia. Journal of Cell Science, Bd. 19.
  • Small, J., Winkler, C., Vinzenz, M., Schmeiser, C. (online: 2011 Reply: Visualizing branched actin filaments in lamellipodia by electron tomography. Nature Cell Biology, Bd. 13, S. 1013-1014.

Conference Contribution: Publication in Proceedings
  • Achleitner, Franz; Hittmeir, Sabine; Schmeiser, Christian (2014) On nonlinear conservation laws regularized by a Riesz-Feller operator. In: Ancona, Fabio; Bressan, Alberto; Marcati, Pierangelo; Marson, Andrea (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications, S. 241-248.

Contribution in Collection
  • Cerret, F.; Perthame, B.; Schmeise, C.; Tang, M.; Vauchelet, N. (2011) Waves for an hyperbolic Keller-Segel model and branching instabilities., Math. Models and Meth. in Appl. Sci. 21, S. 825-842.
  • Haskovec, J.; Schmeiser, C. (2011) Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system., Comm. PDE 36, S. 940-960.
  • Achleitner, F.; Hittmeir, S.; Schmeiser, C. (2011) On nonlinear conservation laws with a nonlocal diffusion term., J. Diff. Equ. 250, S. 2177-2196.
  • Cuesta, C.; Hittmeir, S.; Schmeiser, C. (2009) Kinetic shock profiles for nonlinear hyperbolic conservation laws., S. r86.
  • D. Ölz, C. Schmeiser (2009) How do cells move? Mathematical modelling ofcytoskeleton dynamics and cell migration, in Cell mechanics: from singlescale-based models to multiscale modelling. In: A. Chauviere, ; L. Preziosi, ; C. Verdier, ; Press, Chapman and Hall / CRC (Hrsg.), S. B2.

Research Report
  • Hittmeir, Sabine; Ranetbauer, Helene; Schmeiser, Christian; Wolfram, Marie-Therese (2016, online: 2016) On a nonlinear PDE model for intersecting pedestrian flows. Bericht-Nr. 2016-41;. (link)