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Abstract

Digital nets provide an efficient way to generate integration nodes of quasi-Monte Carlo
(QMC) rules. For certain applications, as e.g. in Uncertainty Quantification, we are
interested in obtaining a speed-up in computing products of a matrix with the vectors
corresponding to the nodes of a QMC rule. In the recent paper The fast reduced QMC
matrix-vector product (J. Comput. Appl. Math. 440, 115642, 2024), a speed up was
obtained by using so-called reduced lattices and row reduced digital nets. In this work, we
propose a multiplication algorithm where we exploit the repetitive structure of column
reduced digital nets instead of row reduced digital nets. We also provide an upper bound
for the quality parameter of column reduced digital nets, which is useful for error analysis
and has an advantage over the corresponding result for row reduced digital nets.

1 Introduction

1.1 The problem setting

In many applications, such as in statistics, finance, and uncertainty quantification, we would
like to numerically compute ∫

D
f(x>A) dµ(x), (1)

where A is a real s× τ matrix, by quasi-Monte Carlo (QMC) rules

QN (f) :=
1

N

N−1∑
k=0

f(x>k A), (2)

where xk = (x
(1)
k , . . . , x

(s)
k )> are column vectors corresponding to the points used in the QMC

rule. Problems of this kind particularly arise in some important applications in statistics and
uncertainty quantification. For instance, this approach can be used when approximating the
expected value of a function with a multivariate normal random variable with some given
covariance matrix, or when approximating the expected value of the solution of a PDE with
random coefficients, see, e.g., [4].

Computing the vector-matrix products x>k A for all k ∈ {0, . . . , N − 1} takes O(Ns τ)
operations. This problem is equivalent to computing the matrix-matrix product XA, where

X =
[
x>0 ,x

>
1 , . . . ,x

>
N−1

]>
is the N × s matrix whose k-th row is xk. Computing XA can be infeasible in situations where
s and N are both large (which happens in many applications).
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In the paper [4], it is shown that when using particular types of QMC rules, the cost
to evaluate QN (f), as in (2), can be reduced to only O(τ N logN) operations provided
that logN � s. This reduction in computational cost is achieved by a fast matrix-matrix
multiplication exploiting the fact that for specifically chosen point sets, such as (polynomial)
lattice rules, the matrix X can be re-ordered to be of circulant structure.

The recent paper [1] studies an alternative method to reduce the computation time by
imposing a certain structure of the points x0, . . . ,xN−1. The key idea of this approach is to
find situations in which the components of the points xk have a certain repetitive structure,
which then facilitates systematic fast computation of the products x>k A. This can be achieved
by suitable modifications of (polynomial) lattice point sets using ideas from [2], but how to
implement this idea for digital nets, which are more general than polynomial lattice point
sets and among the most commonly used QMC node sets, is not straightforward. In [1], the
authors made a first attempt and studied a reduction of the computation time for digital
(t,m, s)-nets by setting certain rows of the generating matrices to zero (we refer to Section 1.2
for the precise definition of digital nets and their generating matrices). The basic idea in [1] is
that for each of the s generating matrices C(m)

j , 1 ≤ j ≤ s, of the digital net, we identify a

so-called reduction index wj ∈ Z and set the last wj rows of C
(m)
j equal to zero. As shown

in [1], this introduces a certain repetitiveness in the entries of the matrix X and speeds up the
computation of the matrix-matrix product XA. We call such digital nets row reduced digital
nets. However, for assessing the quality of reduced nets when used in QMC rules, it is more
natural to study the situation where certain columns of the generating matrices are set to zero,
since this directly corresponds to the reduced (polynomial) lattice point sets, resulting in the
consideration of column reduced digital nets. The idea of column reduced digital nets is to
set the last wj columns of the generating matrix C(m)

j , 1 ≤ j ≤ s, equal to zero, instead of
setting rows equal to zero. Furthermore, in the present paper, we focus on digital nets that are
obtained from digital sequences, which implies additional structure in the generating matrices.
Again, the approach of using column reduced digital nets yields a speed-up in the computation
of XA, but as we will see below, it also makes it easier to assess the properties of the resulting
column reduced digital nets than doing the same for row reduced digital nets. Furthermore, the
error analysis for approximating (1) by (2) becomes easier. This idea was already mentioned
(but not pursued) in [1], and this is what we intend to do in the present paper.

1.2 Digital nets and sequences

In this section, we give the definitions of (t,m, s)-nets and (t, s)-sequences, the digital con-
struction method for these, and shortly outline how to assess their quality.

Let Fb be a finite field with b elements, where b is prime. We identify the elements of Fb
with the set {0, 1, . . . , b− 1}. An elementary interval in base b and dimension s is a half-open
interval of the form

∏s
j=1[ajb

−dj , (aj + 1)b−dj ) where the aj , dj are nonnegative integers with
0 ≤ aj < bdj for 1 ≤ j ≤ s.

In the following, we recall the definition of (t,m, s)-nets and (t, s)-sequences, which have
the property that the number of points in certain elementary intervals is proportional to their
sizes. This guarantees a degree of uniform distribution of the point set in [0, 1)s, which is
desirable when using such a point set in a QMC rule. For detailed discussions on (t,m, s)-nets
and (t, s)-sequences, we refer to [6, 9].

Definition 1. For a given dimension s ≥ 1 and nonnegative integers t,m with 0 ≤ t ≤ m, a
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(t,m, s)-net in base b is a point set P ⊂ [0, 1)s consisting of bm points such that any elementary
interval in base b with volume bt−m contains exactly bt points of P.

A sequence (x0,x1, . . . ) of points in [0, 1)s is called a (t, s)-sequence in base b if for all
integers m ≥ t and k ≥ 0, the point set consisting of the points xkbm , . . . ,xkbm+bm−1 forms a
(t,m, s)-net in base b.

Note that the lower the value of t of a (t,m, s)-net or a (t, s)-sequence, the more uniformly
the points are distributed in [0, 1)s, which is a desirable property when the point set is used as
an integration node set in a QMC rule. This is the reason why t is referred to as the quality
parameter of a net or sequence.

A (t,m, s)-net is called strict, if it does not fulfill the requirements of a (t− 1,m, s)-net (for
t ≥ 1), and analogously for (t, s)-sequences. In general, any (t,m, s)-net is also a (t+1,m, s)-net
for t < m.

We point out that it is, in general, a non-trivial combinatorial question of which values of t
can be reached for which configurations of the other parameters. We again refer to [6,9] for
details.

A common way to generate (t,m, s)-nets and (t, s)-sequences is using the digital method,
which was first introduced by Niederreiter in [8].

Definition 2. A digital (t,m, s)-net over Fb is a (t,m, s)-net P = {x0, . . . ,xbm−1} where
the points are constructed as follows. Let C(m)

1 , . . . , C
(m)
s in Fm×mb be matrices over Fb. To

generate the k-th point in P , 0 ≤ k ≤ bm− 1, we use the b-adic expansion k =
∑m−1

i=0 kib
i with

digits ki ∈ {0, . . . , b− 1} which we denote by
−→
k = (k0, . . . , km−1)

>. The j-th coordinate xk,j
of xk = (xk,1, . . . , xk,s) is obtained by computing

−→x k,j := C
(m)
j

−→
k ,

and then setting
xk,j := −→x k,j · (b−1, b−2, . . . , b−m).

Similarly, a digital (t, s)-sequence S over Fb is generated by infinite matrices C1, . . . , Cs, where

Cj = (c
(j)
i,r )i,r∈N ∈ FN×N

b . (3)

To generate the k-th point in S, k ≥ 0, we use the b-adic expansion k =
∑∞

i=0 kib
i with

digits ki ∈ {0, . . . , b− 1} which we denote by
−→
k = (k0, k1, . . . )

>. The j-th coordinate xk,j of
xk = (xk,1, . . . , xk,s) is obtained by computing

−→x k,j := C
(m)
j

−→
k ,

and then setting
xk,j := −→x k,j · (b−1, b−2, . . .).

Note that from any digital (t, s)-sequence over Fb with generating matrices C1, . . . , Cs,
we can, for m ≥ t, derive a digital (t,m, s)-net over Fb, simply by considering the point set
generated by the left upper m×m submatrices C(m)

1 , . . . , C
(m)
s of C1, . . . , Cs. This is equivalent

to considering the first bm points of the (t, s)-sequence.
As pointed out above, the quality of a (t,m, s)-net or (t, s)-sequence is determined by its

t-value. For digital (t,m, s)-nets and (t, s)-sequences, we can determine the t-value from rank
conditions on the generating matrices, using a quantity that we shall refer to as the linear
independence parameter.
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Definition 3. For any integers 1 ≤ j ≤ s and m ≥ 1, let C(m)
1 , C

(m)
2 , . . . , C

(m)
s be m ×m

matrices over Fb. Then the linear independence parameter ρm(C
(m)
1 , C

(m)
2 , . . . , C

(m)
s ) is defined

as the largest integer such that for any choice of d1, . . . , ds ∈ N0, with d1 + · · ·+ ds = ρm, we
have that

the first d1 rows of C(m)
1 together with

the first d2 rows of C(m)
2 together with

...

the first ds rows of C(m)
s

are linearly independent over Fb.

It is known (see, e.g., [6, 9]) that the generating matrices C(m)
1 , C

(m)
2 , . . . , C

(m)
s of a digital

(t,m, s)-net over Fb satisfy

ρm(C
(m)
1 , C

(m)
2 , . . . , C(m)

s ) ≥ m− t, (4)

where we have equality if the net is a strict (t,m, s)-net. Similarly, for the generating matrices
C1, . . . , Cs of a digital (t, s)-sequence over Fb we must have ρm(C

(m)
1 , . . . , C

(m)
s ) ≥ m − t

for all m ≥ max{t, 1}, where C(m)
j denotes the left upper m × m submatrix of Cj for j ∈

{1, . . . , s}. Hence, for digital nets and sequences, their quality can be assessed by checking
linear independence conditions on the rows of the generating matrices.

2 The t-values of column reduced digital nets

Now we turn towards the primary object of our study, which is the column reduced digital nets.
We note that if we take a general digital (t,m, s)-net and set some columns of its generating
matrices to zero, we cannot control the quality parameter of the reduced net. However, since
digital (t, s)-sequences require stronger conditions on their generating matrices, we can estimate
the quality parameter of reduced digital (t,m, s)-nets derived from digital sequences by taking
the nets generated by the left upper m ×m submatrices of the generating matrices of the
sequences.

For m ≥ t, we consider the digital (t,m, s)-net generated by the matrices C(m)
1 , . . . , C

(m)
s ,

derived via the above principle from a digital (t, s)-sequence with generating matrices C1, . . . , Cs,
Cj = (c

(j)
i,r ), i, r ∈ N.

Let 0 = w1 ≤ · · · ≤ ws ∈ N0, we call these numbers the reduction indices, for the
generating matrices C(m)

j . We derive the corresponding reduced matrices C̃(m)
1 , . . . , C̃

(m)
s , with

C̃
(m)
j = (c̃

(j)
i,r ), i, r ∈ {1, 2, . . . ,m}, for 1 ≤ j ≤ s, where

c̃
(j)
i,r =

{
c
(j)
i,r if r ∈ {1, . . . ,m−min (m,wj)},

0 if r ∈ {m−min (m,wj) + 1, . . . ,m}.
(5)

That is, the first m − min (m,wj) columns of C̃(m)
j are the same as the columns of the
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matrix C(m)
j , and we set the last min (m,wj) columns to zero, i.e, if wj < m,

C̃
(m)
j =



c
(j)
1,1 . . . c

(j)
1,(m−wj)

0 . . . 0
...

. . .
...

...
c
(j)
(m−wj),1

. . . c
(j)
(m−wj),(m−wj)

0 . . . 0
...

. . .
...

...
...

c
(j)
m,1 . . . c

(j)
m,(m−wj)

0 . . . 0


.

We are interested in estimating the quality parameter of the digital net generated by the
C̃

(m)
j .
Apart from the main motivation outlined in Section 1, there is another computational

advantage of using column reduced digital nets. Indeed, by the general construction principle
of digital point sets, the generating matrices of a digital net or sequence are multiplied over Fb
by vectors representing the digits of the indices of the elements of the point set. By replacing
the matrices C(m)

j by C̃(m)
j , we increase the sparsity of the generating matrices, which saves

computation time in the generation of the point set.

Theorem 1. Let P be a digital (t,m, s)-net over Fb with generating matrices C(m)
1 , . . . , C

(m)
s

derived from a digital (t, s)-sequence over Fb, where we assume that m ≥ t. Let C̃(m)
1 , . . . , C̃

(m)
s

be as defined in (5) with respect to reduction indices 0 = w1 ≤ · · · ≤ ws and let t̃ be the minimal
quality parameter of the net generated by the C̃(m)

j . Then,

max{0,m− ws − t} ≤ ρm
(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ max{0,m− ws}, (6)

and t̃ ≤ min{m,ws + t}.

Furthermore, if P is a strict digital (t,m, s)-net, it is true that

ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ max{0,m−max{t, ws}}. (7)

Proof. We note that we have m ≥ t by assumption. If ws ≥ m, then we trivially have
ρm

(
C̃

(m)
1 , . . . , C̃

(m)
s

)
= 0, as C̃(m)

s only contains zeros, and (6) holds.
Therefore, we will assume for the rest of the proof that ws < m.
We prove the second inequality in (6) first. We have

C̃(m)
s =



c
(s)
1,1 . . . c

(s)
1,(m−ws)

0 . . . 0
...

. . .
...

...
c
(s)
(m−ws),1

. . . c
(s)
(m−ws),(m−ws)

0 . . . 0
...

. . .
...

...
...

c
(s)
m,1 . . . c

(s)
m,(m−ws)

0 . . . 0


.

LetD be the matrix containing the first d1 rows of C̃
(m)
1 , the first d2 rows of C̃

(m)
2 , etc., up to the

first ds rows of C̃
(m)
s , where d1, . . . , ds are nonnegative integers satisfying d1+ · · ·+ds = m−ws.
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For the special choice (d1, . . . , ds) = (0, . . . , 0,m−ws), we have rank(D) = rank(C̃
(m)
s ) ≤ m−ws.

Therefore,
ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ m− ws.

Now we prove the first inequality in (6). If m− ws − t < 0, the inequality is trivial.
Otherwise, i.e., if m− ws ≥ t, we know that

ρk

(
C

(k)
1 , . . . , C(k)

s

)
≥ k − t, (8)

for any k ≥ t, since our net is derived from a digital (t, s)-sequence. Here, C(k)
j , 1 ≤ j ≤ s,

denotes the left upper k × k submatrix of Cj . In particular, we observe that for the left upper
(m− ws)× (m− ws) submatrices of C1, . . . , Cs,

ρ(m−ws)(C
(m−ws)
1 , . . . , C(m−ws)

s ) ≥ m− ws − t.

We now consider arbitrary integers d1, . . . , ds ≥ 0 with d1 + · · · + ds = m − ws − t. Let
k
(j)
i denote the i-th row vector of C(m−ws)

j ∈ F(m−ws)×(m−ws)
b . We know that

k
(1)
1 , . . . ,k

(1)
d1
,k

(2)
1 , . . . ,k

(2)
d2
, . . . , . . . ,k

(s)
1 , . . . ,k

(s)
ds

(9)

are linearly independent over Fb. Let c(j)i denote the i-th row vector of C̃(m)
i ∈ Fm×mb . We

observe that for 1 ≤ i ≤ m− ws,

c
(j)
i = (k

(j)
i ,u

(j)
i ) ∈ F1×m

b ,

where the k(j)i are as above and u(j)
i ∈ F1×ws

b .
The row vectors

c
(1)
1 , . . . , c

(1)
d1
, c

(2)
1 , . . . , c

(2)
d2
, . . . , . . . , c

(s)
1 , . . . , c

(s)
ds

(10)

are linearly independent, since otherwise the row vectors in (9), which are projections of c(j)i
onto the first m− ws entries, would be linearly dependent. Therefore,

ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≥ m− ws − t.

This concludes the proof of (6). Using (4) and the lower bound in (6), we obtain the upper
bound for t̃.

It remains to show (7).
Let D be the matrix containing the first d1 rows of C̃(m)

1 , the first d2 rows of C̃(m)
2 , etc.,

up to the first ds rows of C̃
(m)
s , where d1, . . . , ds are nonnegative integers. As above, for the

special choice (d1, . . . , ds) = (0, . . . , 0,m − ws), we have rank(D) = rank(C̃
(m)
s ) ≤ (m − ws).

So,
ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ m− ws.

However, since we assume that P is a strict digital (t,m, s)-net in this part of the proof, there
must exist a choice of (d1, . . . , ds) with d1 + · · ·+ ds = m− t+ 1 such that the corresponding
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rows of C(m)
1 , . . . , C

(m)
s are linearly dependent, and therefore also the corresponding rows of

C̃
(m)
1 , . . . , C̃

(m)
s are linearly dependent. This yields

ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ m− t,

so we must have
ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
≤ m−max{t, ws}.

Remark 1. For t = 0 and ws < m in Theorem 1, we obtain equality in (6) and therefore

ρm

(
C̃

(m)
1 , . . . , C̃(m)

s

)
= m− ws,

and t̃ = ws.

Remark 2. We now give an example that illustrates that the lower bound in Theorem 1 is
sharp.

Assume that Q is a digital (0, 2)-sequence with generating matrices D1 and D2 (examples
of Q exist, e.g., by choosing as Q a Niederreiter sequence, see [8]).

From Q, we construct a digital (t, 2)-sequence P , by prepending exactly t zero columns to
both D1 and D2. That is, we construct new generating matrices Cj , j ∈ {1, 2}, such that

Cj :=


0 . . . 0
...

...
... Dj

0 . . . 0
...

...
...

 .

It is easily checked that C1, C2 generate a digital (t, 2)-sequence; indeed, let m ≥ t be arbitrarily
chosen but fixed. Then the matrices C(m)

1 , C
(m)
2 contain the matrices D(m−t)

1 , D
(m−t)
2 as

submatrices. As D1, D2 generate a (0, 2)-sequence, for any d1, d2 ∈ N0 with d1 +d2 = m− t the
first d1 rows of D(m−t)

1 together with the first d2 rows of D(m−t)
2 must be linearly independent,

so also the corresponding rows of C(m)
1 and C

(m)
2 (with zeros prepended) must be linearly

independent. This establishes that C1 and C2 generate a (t, 2)-sequence.
Let now m ≥ t, and let w1 = 0, and w2 ≥ w1 be reduction indices such that m−w2− t ≥ 0.

Then C̃(m)
1 = C

(m)
1 , and

C̃
(m)
2 =

0 . . . 0 0 . . . 0
...

...
... D

(m×(m−t−w2))
2

...
...

...
0 . . . 0 0 . . . 0

 ,

where D(m×(m−t−w2))
2 denotes the left upper m× (m− t− w2) submatrix of D2. By Theorem

1, we know that ρm
(
C̃

(m)
1 , C̃

(m)
2

)
≥ m − t − w2. However, ρm

(
C̃

(m)
1 , C̃

(m)
2

)
> m − t − w2

cannot hold since the first m− t− w2 + 1 rows of C̃(m)
2 must be linearly dependent.

This implies that the lower bound in Theorem 1 is sharp.
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Remark 3. Next, we provide an example showing that the upper bound (7) for strict digital
nets in Theorem 1 is sharp.

We use the same notation as in Remark 2. We again start with the digital (0, 2)-sequence Q.
Again, we transform Q into a (t, s)-sequence, now called R, with generating matrices E1 and
E2. For E1, we take the first generating matrix of P from above, i.e., E1 = C1. Furthermore,
we choose E2 as

E2 :=



0 . . . 0 . . .

D
(t)
2

...
...

...
...

0 . . . 0 . . .

0 . . . 0
...

...
... D2

0 . . . 0
...

...
...


,

where D(t)
2 is the left upper t× t submatrix of D2. First, note that R really is a strict (t, 2)-

sequence. Indeed, if we consider the matrix E(m)
1 for m < t, this matrix only contains zeros, so

the quality parameter of R must be at least t. On the other hand, let m ≥ t and consider the
matrices E(m)

1 and E(m)
2 . Choose d1, d2 ≥ 0 such that d1 + d2 = m− t, and consider the first

d1 rows of E(m)
1 together with the first d2 rows of E(m)

2 . We distinguish two cases.

• If d2 ≤ t, then it is obvious that the first d1 rows of E(m)
1 together with the first d2 rows

of E(m)
2 are linearly independent, as D1 and D2 generate a (0, 2)-sequence.

• If d2 > t, we proceed as follows. Assume to the contrary that the first d1 rows of E(m)
1

together with the first d2 rows of E(m)
2 were not linearly independent. By the structure of

E1 and E2, this would immediately imply that the first d1 rows of D(m−t)
1 together with

the first d2 − t rows of D(m−t)
2 are not linearly independent, where d1 + d2 − t = m− 2t,

which would be a contradiction to the property that D1 and D2 generate a digital
(0, 2)-sequence.

Let now again m ≥ t, and let w1 = 0, and w2 ≥ w1 be reduction indices such that
m− w2 − t ≥ 0. Then Ẽ(m)

1 := E
(m)
1 , and

Ẽ
(m)
2 :=



0 . . . 0 0 . . . 0

D
(t)
2

...
...

...
...

...
...

0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
...

...
... D

((m−t)×(m−t−w2))
2

...
...

...
0 . . . 0 0 . . . 0


.

We again distinguish two cases.

Case 1: max{t, w2} = w2. We claim that ρm
(
Ẽ

(m)
1 , Ẽ

(m)
2

)
= m − w2. To this end, let

d1, d2 ≥ 0 such that d1 + d2 = m− w2, which implies that d1 and d2 are both not larger than
m− t. Then, we consider two sub-cases.
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• If d2 ≤ t, it is clear because of the structure of the matrices that the first d1 rows of Ẽ(m)
1

together with the first d2 rows of Ẽ(m)
2 are linearly independent, as D1 and D2 generate

a (0, 2)-sequence. This is guaranteed since we know that d1 and d2 are both not larger
than m− t.

• If d2 > t, we proceed as follows. Assume to the contrary that the first d1 rows of Ẽ(m)
1

together with the first d2 rows of Ẽ(m)
2 were not linearly independent.

By the structure of Ẽ(m)
1 and Ẽ

(m)
2 , this would immediately imply that the first d1

rows of D(m−t)
1 together with the first d2 − t rows of D((m−t)×(m−t−w2))

2 are not linearly
independent, where d1 + d2 − t = m − t − w2. Note, however, that D(m−t)

1 contains
D

(m−t−w2)
1 as its left upper submatrix, and also D((m−t)×(m−t−w2))

2 contains D(m−t−w2)
2

as its left upper submatrix. By the property that D1 and D2 generate a (0, 2)-sequence,
and by the assumption that m−w2 ≥ t, the first d1 rows of D(m−t−w2)

1 together with the
first d2 − t rows of D(m−t−w2)

2 must be linearly independent. The same must, however,
then also hold for the corresponding rows of D(m−t)

1 and D((m−t)×(m−t−w2))
2 , which yields

a contradiction.

Hence we have shown that ρm
(
Ẽ

(m)
1 , Ẽ

(m)
2

)
≥ m− w2, and by Theorem 1 we must actually

have ρm
(
Ẽ

(m)
1 , Ẽ

(m)
2

)
= m− w2.

Case 2: max{t, w2} = t. We claim that ρm
(
Ẽ

(m)
1 , Ẽ

(m)
2

)
= m − t. To this end, let

d1, d2 ≥ 0 such that d1 + d2 = m− t. Also here, we distinguish two sub-cases.

• If d2 ≤ t, it is obvious that the first d1 rows of Ẽ(m)
1 together with the first d2 rows

of Ẽ(m)
2 are linearly independent, as D1 and D2 generate a (0, 2)-sequence. This is

guaranteed since we know that d1 and d2 are both not larger than m− t.

• If d2 > t, we proceed as follows. Assume to the contrary that the first d1 rows of Ẽ(m)
1

together with the first d2 rows of Ẽ(m)
2 were not linearly independent.

By the structure of Ẽ(m)
1 and Ẽ

(m)
2 , this would immediately imply that the first d1

rows of D(m−t)
1 together with the first d2 − t rows of D((m−t)×(m−t−w2))

2 are not linearly
independent, where d1 + d2 − t = m − 2t ≤ m − t − w2. Note, however, that D(m−t)

1

contains D(m−t−w2)
1 as its left upper submatrix, and also D((m−t)×(m−t−w2))

2 contains
D

(m−t−w2)
2 as its left upper submatrix. By the property that D1 and D2 generate a (0, 2)-

sequence, by the fact that d1 + d2 ≤ m− t−w2, and by the assumption that m−w2 ≥ t,
the first d1 rows of D(m−t−w2)

1 together with the first d2 rows of D(m−t−w2)
2 must be

linearly independent. The same must, however, then also hold for the corresponding
rows of D(m−t)

1 and D((m−t)×(m−t−w2))
2 , which yields a contradiction.

In summary, we have shown that (7) is sharp for strict digital nets.
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3 Projections of column reduced digital nets

Due to the important role of the t-value, one sometimes also considers a slightly refined notion
of a (t,m, s)-net, which is then referred to as a ((tu)u⊆[s],m, s)-net, where [s] := {1, . . . , s}.
The latter notion means that for any u 6= ∅, u ⊆ [s], the projection of the net onto those
components with indices in u is a (tu,m, |u|)-net. The notion of a ((tu)u⊆[s], s)-sequence is
defined analogously. Moreover, for u 6= ∅, we write u := max(u).

If we assume (which we always do in this paper) that the reduction indices satisfy 0 =
w1 ≤ w2 ≤ · · · ≤ ws, then, for any non-empty u ⊆ [s], the reduction index wu is the largest
among all reduction indices corresponding to u. This yields the following adaption of Theorem
1, which obviously can be shown in the same manner.

Corollary 1. Let P be a digital ((tu)u⊆[s],m, s)-net over Fb with generating matrices C(m)
1 , . . . , C

(m)
s ,

which has been derived from a digital ((tu)u⊆[s], s)-sequence, where we assume that m ≥ t. Let
C̃

(m)
1 , . . . , C̃

(m)
s be the reduced generating matrices with respect to reduction indices 0 = w1 ≤

· · · ≤ ws and let (t̃u)u⊆[s] be the minimal quality parameters of the projections of the net
generated by the C̃(m)

j . Then, for every non-empty u ⊆ [s],

max{0,m− wu − tu} ≤ ρm((C̃
(m)
j )j∈u) ≤ max{0,m− wu},

and t̃u ≤ min{m,wu + tu}.

Furthermore, if, for a non-empty u ⊆ [s], the projection of P onto the components in u is a
strict digital (tu,m, |u|)-net, it is true that

ρm((C̃
(m)
j )j∈u) ≤ max{0,m−max{tu, wu}}.

4 Applications of column reduced digital nets

4.1 A reduced matrix product algorithm

In this section, we return to the problem outlined in Section 1. Let P be a digital (t,m, s)-net
over Fb, with generating matrices C(m)

1 , . . . , C
(m)
s . Let w = (wj)

s
j=1 ∈ Ns0 be a sequence of

reduction indices with 0 = w1 ≤ w2 ≤ · · · ≤ ws. Let s∗ ≤ s be the largest index such that
ws∗ < m. Let C̃(m)

1 , . . . , C̃
(m)
s be the reduced generating matrices corresponding to w1, . . . , ws,

and let Q be the corresponding reduced digital net. Let x0, . . . ,xN−1 be the points of Q,
where we interpret x0, . . . ,xN−1 as column vectors. Let

X = [x>0 ,x
>
1 , . . . ,x

>
N−1]

>

be the N × s matrix whose k-th row is the k-th point of Q for 0 ≤ k ≤ N − 1.
Let ξj denote the j-th column of X, i.e., X = [ξ1, ξ2, . . . , ξs]. Let A = [a1, . . . ,as]

>, where
aj ∈ R1×τ is the j-th row of A. Then we have

XA = [ξ1, ξ2, . . . , ξs] · [a1, . . . ,as]> = ξ1a1 + ξ2a2 + · · ·+ ξsas. (11)

We will make use of a certain inherent repetitiveness of the reduced net Q, which we will
illustrate by considering a reduction index 0 ≤ wj < m for 1 ≤ j ≤ s∗, and the corresponding
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generator matrix C̃(m)
j . The j-th components of the N = bm points of Q (i.e., the j-th column

ξj of X) are then given by

ξj =
((
C̃

(m)
j

−→
0
)
· (b−1, . . . , b−m), . . . ,

(
C̃

(m)
j

−−−−−→
(bm − 1)

)
· (b−1, . . . , b−m)

)>
= (Xj , . . . , Xj︸ ︷︷ ︸

bwj times

)>,

where, as above, we write
−→
k to denote the vector of base b digits of length m for k ∈

{0, 1 . . . , bm − 1}, and where

Xj =
((
C̃

(m)
j

−→
0
)
· (b−1, . . . , b−m), . . . ,

(
C̃

(m)
j

−−−−−−−−→
(bm−wj − 1)

)
· (b−1, . . . , b−m)

)>
.

The reason for this repetitive structure is that, for any wj with 0 < wj < m, the last wj
columns of C̃(m)

j are equal to zero, and thus, in the product C̃(m)
j

−→
k , the last wj entries of

−→
k become irrelevant. We will exploit this structure within Q to derive a fast matrix-matrix
multiplication algorithm to compute XA.

Based on the above observations, it is possible to formulate the following algorithm to
compute (11) in an efficient way. Note that for j > s∗ the j-th column of X consists only of
zeros, so there is nothing to compute for the entries of X corresponding to these columns.

11



Algorithm 1 Fast reduced matrix-matrix product using column reduced digital nets

Input:
Matrix A ∈ Rs×τ , integer m ∈ N, prime b, reduction indices 0 = w1 ≤ w2 ≤ · · · ≤ ws,
corresponding generating matrices C̃(m)

1 , . . . , C̃
(m)
s of a reduced digital net.

Set N = bm and set Ps∗+1 = 01×τ ∈ R1×τ .
for j = s∗ to 1 do
• Compute Xj as

Xj =
((
C̃

(m)
j

−→
0
)
· (b−1, . . . , b−m), . . . ,

(
C̃

(m)
j

−−−−−−−−→
(bm−wj − 1)

)
· (b−1, . . . , b−m)

)>
∈ Rb

m−wj×1.

• Compute Pj as

Pj =

bm
in
(w

j
+
1
,m

)−
w

j
ti
m
es


Pj+1

Pj+1
...

Pj+1

 +Xjaj ∈ Rb
m−wj×τ ,

where aj ∈ R1×τ denotes the j-th row of the matrix A.
end for
Set P = P1.

Return: Matrix product P = XA.

Remark 4. The number of computations needed for Algorithm 1 is of order

O

 s∗∑
j=1

bm−wj (τ +m(m− wj))

 .

Note that this algorithm also generates the points of the reduced digital net, whereas the
standard multiplication or the analogous “row reduced algorithm” [1, Algorithm 4], both require
pre-computed points of the digital net as input. Generating the points of a non-reduced digital
net requires O(bmsm2) operations, see also [1, Algorithm 3] and the standard non-reduced
matrix-matrix multiplication usually requires O(bmsτ) operations. Therefore, Algorithm 1
improves the runtime of both steps. We also point out that the number of operations necessary
for Algorithm 1 is independent of s, and only depends on s∗. If the reduction indices wj grow
sufficiently fast, then s∗ can be significantly lower than s.

4.2 Error analysis

In the beginning of the paper we set out the task of approximating the integral (1) by the
QMC rule (2). We have shown in the previous sections how to speed up the computation of
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the products x>k A if we choose xk as the points of a column reduced digital net. However, we
should also keep in mind the integration error made by using a QMC rule of the form (2) using
those xk.

In many applications of quasi-Monte Carlo, one considers so-called weighted function spaces
such as weighted Sobolev or weighted Korobov spaces (see, e.g., [3, 5, 6]). The idea of studying
weighted function spaces goes back to the seminal paper [11] of Sloan and Woźniakowski. The
motivation for weighted spaces is that in many applications, different coordinates or different
groups of coordinates may have different influence on a multivariate problem. To give a simple
example, consider numerical integration of a function f : [0, 1]s → R, where

f(x1, . . . , xs) = ex1 +
x2 + · · ·+ xs

2s
.

Clearly, for large s, the first variable has much more influence on this problem than the others.
In order to make such observations more precise, one introduces weights, which are nonnegative
real numbers γu, one for each set u ⊆ {1, . . . , s}. Intuitively speaking, the number γu models
the influence of the variables with indices in u. Larger values of γu mean more influence, smaller
values less influence. Formally, we set γ∅ = 1, and we write γ = {γu}u⊆{1,...,s}. These weights
can now be used to modify the norm in a given function space, thereby modifying the set over
which a suitable error measure, as for example the worst-case error, of a problem is considered.
By making this set smaller according to the weights (in the sense that also here, certain groups
of variables may have less influence than others), a problem may thus become easier to handle
and even lose the curse of dimensionality, provided that suitable conditions on the weights
hold. This effect also corresponds to intuition—if a problem depends on many variables, of
which only some have significant influence, it is natural to expect that the problem will be
easier to solve than one where all variables have the same influence.

The weighted star discrepancy is (via the well-known Koksma-Hlawka inequality or its
weighted version, see, e.g., [3, 6, 9]), a measure of the worst-case quadrature error for a QMC
rule with node set Q, with bm nodes, defined as

D∗bm,γ(Q) := sup
x∈(0,1]s

max
∅6=u⊆[s]

γu |∆Q,u(x)| , (12)

where
∆Q,u(x) :=

#{(y1, . . . , ys) ∈ Q : yj < xj , ∀j ∈ u}
bm

−
∏
j∈u

xj . (13)

Indeed, for certain weighted function classes based on Sobolev spaces of smoothness one, the
weighted star discrepancy equals the worst-case quadrature error of a QMC rule with node set
Q. Here, by the worst-case error, we mean the supremum of the integration error taken over
the unit ball of the function class under consideration. We refer to [3, Section 5.3] for further
details on the weighted Koksma-Hlawka inequality.

As shown in [10], we have

D∗bm,γ(Q) = max
∅6=u⊆[s]

sup
x∈(0,1]s

γu |∆Q,u(x)|

= max
∅6=u⊆[s]

γu sup
x∈(0,1]s

|∆Q,u(x)| .

In the latter expression, the suprema over x ∈ (0, 1]s just yield the values of the star discrepancy
of the projections of Q, and thus, one can use existing discrepancy bounds for the projections
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of Q. Let us proceed as follows. Assume that P is a digital ((tu)u⊆[s],m, s)-net over Fb with
m×m generating matrices C(m)

1 , . . . , C
(m)
s derived from a digital ((tu)u⊆[s], s)-sequence, where

m ≥ t. Let P̃ be the corresponding column reduced digital net based on the reduction indices
0 = w1 ≤ w2 ≤ · · · ≤ ws, and let (t̃u)u⊆[s] be the minimal quality parameters of the projections
of P̃.

Whenever we consider a u ⊆ [s] that is not a subset of [s∗], we know due to Corollary 1
that the quality parameter of the corresponding projection of P̃ is m and therefore we can
bound its discrepancy only trivially by 1. Whenever we have u ⊆ [s∗], however, we can use
existing discrepancy bounds for the corresponding net. To this end, we use the results from [7],
which are, to our best knowledge, the currently best-known general upper discrepancy bounds
for (t,m, s)-nets. This yields, for any non-empty set u ⊆ [s],

sup
x∈(0,1]s

∣∣∣∆P̃,u(x)
∣∣∣ ≤


1 if u 6⊆ [s∗],
(bt̃u/bm)

∑|u|−1
v=0 a

(|u|)
v,b m

v if u ⊆ [s∗] and |u| ≥ 2,
bt̃u/bm if u ⊆ [s∗] and |u| = 1,

(14)

where

a
(|u|)
v,b =

(
|u| − 2

v

)(
b+ 2

2

)|u|−2−v (b− 1)v

2vv!
(a

(2)
0,b + |u|2 − 4)

+

(
|u| − 2

v − 1

)(
b+ 2

2

)|u|−1−v (b− 1)v−1

2v−1v!
a
(2)
1,b ,

for 0 ≤ v ≤ |u| − 1, with

a
(2)
0,b =


b+8
4 if b is even,

b+4
2 if b is odd,

and a
(2)
1,b =


b2

4(b+1) if b is even,

b−1
4 if b is odd.

This then yields

D∗bm,γ(P̃) ≤ max

 max
∅6=u⊆[s]
u6⊆[s∗]

γu, max
u⊆[s∗]
|u|=1

γu
bt̃u

bm
, max
u⊆[s∗]
|u|≥2

γu
bt̃u

bm

|u|−1∑
v=0

a
(|u|)
v,b m

v

 . (15)

Let us analyze the three maxima in the curly brackets in (15) in greater detail. To this
end, as also in [1], we restrict ourselves to product weights in the following, i.e., we assume
weights γu =

∏
j∈u γj with γ1 ≥ γ2 ≥ · · · > 0.

For the first term, we proceed as in [1], namely we use that wj ≥ m if j ∈ u \ [s∗], and
obtain for v = u ∩ [s∗] that

γu ≤ γvγu\v
1

bm

∏
j∈u\v

(1 + bwj ) ≤ 1

bm

∏
j∈u

γj(1 + bwj ). (16)

For the second maximum in (15), note that we have u = {j} for some j ∈ [s∗], and hence
t̃u ≤ min{m,wj + t{j}} by Corollary 1. Consequently,

max
u⊆[s∗]
|u|=1

γu
bt̃u

bm
≤ max

j∈[s∗]
γj
bmin{m,wj+t{j}}

bm
. (17)
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For the third maximum in (15), we again use Corollary 1, and obtain

max
u⊆[s∗]
|u|≥2

γu
bt̃u

bm

|u|−1∑
v=0

a
(|u|)
v,b m

v ≤ max
u⊆[s∗]
|u|≥2

γu
bmin{m,wu+tu}

bm

|u|−1∑
v=0

a
(|u|)
v,b m

v. (18)

Using these estimates in (15), we obtain

D∗bm,γ(P̃)

≤ max

 max
∅6=u⊆[s]
u6⊆[s∗]

1

bm

∏
j∈u

γj(1 + bwj ), max
j∈[s∗]

γj
bwj+t{j}

bm
, max
u⊆[s∗]
|u|≥2

γu
bmin{m,wu+tu}

bm

|u|−1∑
v=0

a
(|u|)
v,b m

v

 .

(19)

Remark 5. A few remarks on (19) are in order. Note that only the first term in the curly brackets
in (19) depends on s. The two remaining terms depend on s∗, which can be independent of s
if the reduction indices wj increase sufficiently fast. However, let us give a few further details
on these observations.

We may want that the first term

1

bm

∏
j∈u

γj(1 + bwj ) ≤ 1

bm

s∏
j=1

γj(1 + bwj )

be bounded by κ/bm for some constant κ > 0 independent of s. Let j0 ∈ N be minimal such
that γj ≤ 1 for all j > j0. Then we impose

∏s
j=1 γj(1 + bwj ) ≤ γj01

∏s
j=1(1 +γjb

wj ) ≤ κ. Hence
it is sufficient to choose κ > γj01 and for all j ∈ [s],

wj := min


logb


(

κ

γ
j0
1

)1/s

− 1

γj


 ,m

 . (20)

The choice of the wj in (20) depends on s. For sufficiently fast decaying weights γj , it is
possible to choose the wj such that they no longer depend on s. Indeed, suppose, e.g., that
γj = j−2. Then we could choose the wj such that, for some τ ∈ (1, 2),

wj ≤ min
(⌊

logb
(
j2−τ

)⌋
,m
)
. (21)

This then yields

s∏
j=1

(1 + γjb
wj ) ≤ exp

 s∑
j=1

log(1 + γjb
wj )

 ≤ exp

 s∑
j=1

γjb
wj

 ≤ exp(ζ(τ)),

where ζ(·) is the Riemann zeta function. This gives a dimension-independent bound on the term∏s
j=1 γj(1 + bwj ) from above, and hence a dimension-independent bound for all of D∗bm,γ(P̃).
Regarding the second term in (19), this term only depends on one-dimensional projections

of P̃. In particular, if we choose the wj as in (21), this expression should be easy to bound
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from above. This is even more so if the t-values of the one-dimensional projections of the
non-reduced net P are low, which may often be the case (in fact, the t-values of one-dimensional
projections might even be zero in many examples). Thus we can bound the second term by an
expression of the form κ∗/bm, which only depends on s∗ but not on s.

Regarding the third term in (19), it crucially depends on the weights γ and their interplay
with the quality parameters of the projections of P , tu. In particular, small quality parameters,
in combination with sufficiently fast decaying weights and a suitable choice of the reduction
indices wj , should yield tighter error bounds. Indeed, we could proceed similarly to [7, Corollary
1], and bound the third term in (19) by a term of the form

max
u⊆[s∗]
|u|≥2

γu
1

bm

(
c|u|m

|u|−1 +O(m|u|−2)
)
,

where c|u| depends on b, tu and |u|, but not on m. Note that also the third term only depends
on s∗ and not on s, so for sufficiently fast increasing reduction indices wj , the dimension s
does not matter. In summary, we obtain

D∗bm,γ(P̃) ≤ max

 κ

bm
,
κ∗

bm
, max
u⊆[s∗]
|u|≥2

γu
1

bm

(
c|u|m

|u|−1 +O(m|u|−2)
) .

Remark 6. Note that our new result yields an advantage over the corresponding result for
row reduced nets in [1]. In that paper, one needs to work with the quality parameters of the
projections of the reduced net, which are, in general, not known. In the present paper, we
benefit from the combination of the column reduction and the fact that the nets considered
here are derived from digital sequences, which guarantees additional structure. Usually, it
is computationally involved to determine the t-value of a digital net or sequence from the
generating matrices, since many linear independence conditions need to be checked. Here,
however, we can use Theorem 1 and Corollary 1, which relate the t-values of P to those
of P̃, and thus give us an advantage. In particular, if P is obtained from, say, a Sobol’ or
a Niederreiter sequence, it should be possible to have t-values that are guaranteed to be
reasonably low.

5 Numerical experiments

In this section, we test the computational performance of column reduced digital nets for
matrix products XA, where A is an s× τ matrix, as detailed in Section 4.1. We implemented
Algorithm 1 in the Julia programming language (Version 1.9.3).1 In the following plots, we
compare the runtime of Algorithm 1 to the standard matrix multiplication and also the matrix
multiplication using the points from row reduced digital nets as given in [1, Algorithm 4]. We
remark that the reported runtimes are also affected by technical implementation details such
as memory efficiency, a detailed discussion of which is out of scope here.

For the generating matrices C(m)
1 , . . . , C

(m)
s , we used random matrices in Fm×mb , since the

matrix product computation itself does not depend on the entries of the matrix, i.e, we get
similar relations of runtimes if we use generating matrices of specific digital sequences like
Sobol’ or Niederreiter sequences.

1Source code available at https://github.com/Vishnupriya-Anupindi/ReducedDigitalNets.jl
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In Figure 1 we see, for fixed b = 2,m = 12, and τ = 20, how the runtime changes as we
vary s. We compare this for two different choices of reduction indices wj . We see that in this
case, using column reduced digital nets in Algorithm 1 performs better than the use of row
reduced digital nets in [1, Algorithm 4] and also the standard matrix multiplication.

As the reduction indices wj increase more slowly (as in Figure 1b), the difference in
performance between the standard multiplication and Algorithm 1 reduces. We can see this
also theoretically by inserting the weights in Remark 4.

(a) wj = min(blog2(j)c,m) (b) wj = min(blog2(j1/2)c,m)

Figure 1: m = 12, τ = 20, varying wj

Figure 2: s = 800, τ = 20, varying m

In Figure 2, we study the behavior for fixed b = 2, s = 800, and τ = 20 as m increases.
Note that we use the logarithmic scale for the time but not for m. We observe that also in this
case Algorithm 1 seems to perform better than the row reduced case.

Overall, the numerical tests for the runtime using column reduced digital nets fit our
theoretical estimate for the runtime as given in Remark 4 and comparison with the row
reduced algorithm reveals that the column reduced algorithm could yield a better performance.
Additionally to this practical advantage, column reduced matrices also have a theoretical
advantage over row reduced matrices, as pointed out in Remark 6.
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6 Conclusion

Column reduced digital nets have applications in the field of quasi-Monte Carlo methods. We
can speed up the matrix-matrix multiplication in the quasi-Monte Carlo method by exploiting
the repetitive structure of the points of a column reduced digital net. The bounds for the
quality parameter (t-value) of column reduced digital nets have not been studied before.

In our research, we provide an algorithm for the matrix-matrix product using column
reduced digital nets, which is faster than the standard matrix multiplication algorithm. In
addition, we provide bounds for the t-value for column reduced digital nets. This is very
essential for the error analysis of our method and has an advantage over the corresponding
result for the row reduced nets in [1].

For future work, one could consider relaxing the conditions we impose on the t-value of the
underlying digital sequence. One could also explore in-depth the interplay between column
and row reduced digital nets.
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