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Abstract Hybrid-excited electrical machines aim to combine the advantages of per-
manent magnet machines (high efficiency and torque density) with those of sep-
arately excited machines (ease of flux-weakening at high speed). These machines
are of interest to electric vehicles, and only parametric approaches are available in
the literature for their optimization. This work proposes a more general topology
optimization methodology by extending the formalism of density methods. The dif-
ficulty lies in integrating the numerous natures of materials (conductors, permanent
magnets, ferromagnetic material, air...) without strongly deconvexifying the opti-
mization problem, which leads to non-physical results with unsatisfactory perfor-
mance. To address this issue, a recursive material interpolation is introduced. The
hybrid-excited rotors optimized by this approach are compared with those of exist-
ing techniques, demonstrating a clear superiority of the recursive interpolation.

1 Introduction

Topology optimization is a promising tool for designing innovative electromagnetic
actuators, overcoming state-of-the-art structures. Unlike conventional optimization
methodologies relying on a geometric parametrization of an initial structure arbi-
trarily chosen by the designer from experience [1], topology optimization is non-
parametric and thus aims to extend the space of possible results. Initially developed
in mechanical engineering [2], topology optimization was progressively applied to
electromagnetic actuators from the 1990s [3]. Topology optimization is now mature
for single-material problems and is implemented in many commercial software.
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2 Théodore Cherrière

Among the various topology optimization techniques (cf [5] for a detailed state
of the art), density methods are the most widely used. They rely on a so-called
”density” field ρ : Ω → D over the design region x ∈ Ω , from which the physi-
cal properties at each point x ∈ Ω are defined by interpolating the candidate ma-
terials’ properties. Each vertex of the interpolation domain D is associated with
a candidate material, so to consider more than two materials, the dimension of D
must be increased. The literature generally considers hypercubic domains [6] so that
D = [0,1]n, with n ∈N∗, as illustrated in Figure 1 for n = 1 and 2. Note that despite
its name, there is generally no physical interpretation of intermediate values of ρ .
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Fig. 1 Interpolation of single/bi-material (left) and multi-material (right) with density methods.

We consider an objective function f to be maximized, which generally depends
on a physical state a ∈ H1

0 (Ω) that implicitly depends on the design field ρ by
solving the physical equations. The optimization problem is then written as

find ρopt = arg min
ρ:Ω→D

f (a(ρ)). (1)

Since the sensitivity dρ f can be computed efficiently by the adjoint method [8],
we can solve (1) by a projected gradient descent [7]. Unfortunately, hypercubic do-
mains are not suitable for all optimization problems since the resulting interpolation
of physical properties is often non-monotonic, as shown in Figure 1, which strongly
dexonvexifies the problem and leads to uninteresting local optima. One solution is to
extend D to the set of convex polytopes [9]. These polytopes allow materials of the
same nature (typically, conductors or magnets with different phases or orientations)
to lie on the same plane and the other materials to be placed on an orthogonal axis.
However, this solution is limited in practice to low dimensions (dimD ≤ 3) because
of the complexity of the projection, shape function computation, and the difficulty
of visualization to select appropriate higher-dimensional domains. This dimension
limitation prevents more materials from being considered, as in the case of hybrid-
excited electric machines that aim to combine the flexibility of wound-field excita-
tion with the efficiency of permanent magnets (PM) for traction applications [10].

In this context, this work presents a generalization of the interpolation framework
required for multi-material density-based topology optimization. It relies on recur-
sive interpolations supported on subdomains up to three dimensions. The implemen-
tation is freely available [11] and is briefly described in Section 2. This formalism
is then applied to the topology optimization of a hybrid-excited machine rotor and
compared with existing techniques in the literature in Section 3.
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2 Interpolation framework

Let us first consider nm candidate materials distributed over a single polytope D .
Each material i is associated with the i-vertex of D . The interpolation of a mate-
rial property κ , possibly dependent on the physical state a in the case of non-linear
materials, is denoted κ̃(a,ρ). This interpolation is constructed using generalized
barycentric coordinates of D [9]. We denote ωi(ρ) the barycentric coordinate asso-
ciated with vertex i, which is 1 when ρ corresponds to the coordinates of vertex i,
and 0 when ρ corresponds to the coordinates of the other vertices. These barycentric
coordinates partition the unit, and their computation is automatic [12]. Therefore, a
generic interpolation is defined by:

κ̃(ρ,a) =
nm

∑
i=1

ωi(ρ)κi(a). (2)

In (2), another interpolation κ̃i on a new sub-domain can replace any material
property κi. Figure 2 (left) gives a convenient representation of a possible hierar-
chical interpolation domain. Projection onto such a structure is simply reduced to
projection onto each low-dimensional sub-domain, which is easy to handle. The
optimization variables are then dissociated and defined on each sub-domain.

From a computational point of view, this structure is a rooted tree denoted as
T , the branches being products by shape functions, the nodes being sums, and the
leaves being material properties. Using Neveu’s notation [13], the set of children
associated to the node l is C (l) = {[l,n] | n ∈ N∗, [l,n] ∈ T }, with [α,β ] the con-
catenation of the lists of indices α and β . An example is shown in Figure 2 (right).
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Fig. 2 Hierarchical D : 3D visualization (left) and associated rooted tree with Neveu’s labels (right)

Each subdomain Dl is associated with a specific optimization variable ρl . The
evaluation of the interpolated physical property κ̃ /0 can be performed recursively by
applying the chain rule with l = /0:

κ̃l(a,ρ) =
{

κl(a) if C (l) = /0
∑i∈C (l) ωi(ρl)κ̃i(a,ρ) else. (3)
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It is necessary to compute the derivatives with respect to a to solve the nonlinear
physical problem using Newton’s method and the derivative with respect to ρ to
compute the sensitivities of f within the gradient descent framework. The evaluation
of ∂aκ̃ is straightforward by replacing κ̃ and κ by ∂aκ̃ and ∂aκ in (3), respectively.
The computation of ∂ρ κ̃ is a little bit more involved since the optimization variables
are dissociated in each subdomain Dl . Each partial derivative ∂ρl κ̃ can therefore be
evaluated recursively for all l ∈T by calling drho k( /0,1) defined in Algorithm 1.

Algorithm 1 drho k(l,k) : Evaluate ∂ρ κ̃

Compute C (l)

∂ρl κ̃ ← k ∑
i∈C (l)

κ̃l(a,ρ)
dωi

dρl
{κ̃l(a,ρ) is computed with (3)}

for i ∈ C (l) do
drho k(i,kωi(ρl))

end for

A general open-source Matlab® implementation is provided in [11], including el-
ements for defining interpolation domains and functions to be interpolated, as well
as evaluation, derivation, and projection routines. An example of application to elec-
trical engineering is given in the next section. This implementation also allows for
the consideration of penalty functions, common in topology optimization to elimi-
nate intermediate materials [14], but not used in this paper.

3 Topology optimization of a hybrid-excited rotor

3.1 Problem definition

The topology optimization of rotors for hybrid-excited machines [10] is a typical
problem where several materials’ natures coexist. These machines combine ferro-
magnetic material, air, PMs, and adjustable direct-current (DC) electrical conduc-
tors. The roles of the DC supply are (i) to reinforce the flux created by the magnets
at low speeds to generate greater torque and (ii) to weaken the magnets’ flux at high
speeds to reduce the back-electromotive force.

We consider a rotor pole with 16 different candidate ”materials”: one ideal mag-
net with a remanent field of 1 T and 12 discrete orientations, two electrical con-
ductors with opposite current density equal to ±10A/mm2, iron-silicon steel with
standard anhysteretic nonlinear behavior [15] and air. Several interpolation domains
D are compared and plotted in Figure 3, one being defined recursively with the
formalism described in Section 2. The optimization problem reads:

find ρ
∗ = min

ρ∈D
−
(

γ +1
2

φ
+(a(ρ))− γ−1

2
φ
−(a(ρ))

)
, (4)
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with γ ∈ [−1,1] an arbitrary coefficient, φ+ and φ− the outward magnetic fluxes
produced by the rotor pole when the supply current is positive and negative, re-
spectively. The physical state a is here the component along z of the magnetic vec-
tor potential, which verifies the classical equations of 2D magnetostatics [15]. The
physical quantities interpolated by (2) are magnetic polarization and current density.
The optimization region is a rotor pole of the same size as that of the BMWi3 mo-
tor, discretized on a mesh of 9663 elements. The stator influence is neglected and is
replaced by air. The optimization algorithm is a regularized projected gradient de-
scent with density filtering that is detailed in [16]. It stops after 500 iterations or if
the design variables stagnate when the norm of the relative difference between two
consecutive iterations is less than 10−4.
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Fig. 3 3D representations of the interpolation domains with the materials’ color scale.

3.2 Optimization results

Optimizations are performed for a regular distribution of γ ∈ [−1,1] and homoge-
neous initializations in the different interpolation domains shown in Figure 3.

According to (4), the outwards flux should be maximized when γ = 1, and the
inwards flux should be maximized when γ = −1. Then, the associated optimized
rotors contain only PMs arranged in a well-known Halbach structure [17], because
the magnets generate higher flux than electrical conductors with reasonable current.

When γ = 0, the flux must be maximized outwards with a positive current feeding
and inwards with a negative current feeding. Then, the optimized result contains no
magnets (that cannot reverse the direction of their flux) but rather conductors and
steel to carry the magnetic flux. These single-excited optimized rotors obtained with
integer γ are shown in Figure 4, and the color scale to interpret the materials is given
in the previous Figure 3.
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γ =−1 γ = 0 γ = 1

φ+ =−23.1mWb/m φ+ = 7.3mWb/m φ+ = 23.1mWb/m
φ− =−23.1mWb/m φ− =−7.3mWb/m φ− = 23.1mWb/m

Fig. 4 Non-hybridized optimized designs obtained with integers γ and the recursive interpolation
domain (results obtained with the other domains are similar). φ is normalized on 1 m axial length.

Hybrid excited rotors are obtained with intermediate (non-integer) values of γ .
In particular, a ”hybridization indicator”, denoted sd0, can be defined by the nor-
malized signed distance to points where |φ+| = |φ−|. It is maximum when |φ+|
is maximum and |φ−| = 0, or vice versa, corresponding to an ideal hybrid-excited
rotor. This indicator is plotted in the (φ+,φ−) plane in Figure 5, where the Pareto
front based on recursive interpolation reaches higher values than the others, and
stays between the physical lower and upper bounds of the flux.
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Fig. 5 Pareto front obtained for γ ∈ [−1,1]. The step size between γ values is 10−3.
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The best structures according to sd0 indicator are plotted in Figure 6. We note that
the recursive interpolation domain leads to a more performing hybrid-excited rotor.
Moreover, this design is symmetric and contains fewer ”gray” intermediate materi-
als, highlighting the non-convergence in the optimizations relying on the other do-
mains. The structure obtained by recursive interpolation is close to a machine with
parallel hybrid excitation [18], in which the flux created by the windings is in par-
allel with the flux created by the magnets. This structure is more controllable than
serial double-excitation, in which the flux generated by the windings passes through
the magnet, whose permeability is very low. Once again, the remaining magnets are
arranged in a Halbach array, which maximizes their flux.

Hexadecagon Diamond Recursive domain

γ =−0.032 γ =−0.068 γ = 0.174

φ+ =−0.3mWb/m φ+ =−0.6mWb/m φ+ = 12.1mWb/m
φ− =−6.5mWb/m φ− =−8.1mWb/m φ− = 0.4mWb/m

sd0 = 26% sd0 = 32% sd0 = 50%

Fig. 6 Optimized designs that maximize the hybridization indicator sd0 for the three different
interpolation domains.

4 Conclusion

The recursive interpolation proposed in this article offers more flexibility than the
interpolation domains currently available in the literature and can be adapted to a
wide variety of applications. In particular, the formalism is suitable for the topology
optimization of double-excitation machines, which is original.

Further work will focus on the rotor’s mechanical integrity and include additional
alternating current conductors for applications such as stators of hybrid-excited flux-
switching machines [19]. The long-term objective is to build a comprehensive tool-
box for optimizing electromagnetic actuators without initial information on the ge-
ometry and requiring as few tuning parameters as possible.
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