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Abstract In the context of the optimization of rotating electric machines, many dif-
ferent objective functions are of interest and considering this during the optimization
is of crucial importance. While evolutionary algorithms can provide a Pareto front
straightforwardly and are widely used in this context, derivative-based optimiza-
tion algorithms can be computationally more efficient. In this case, a Pareto front
can be obtained by performing several optimization runs with different weights. In
this work, we focus on a free-form shape optimization approach allowing for arbi-
trary motor geometries. In particular, we propose a way to efficiently obtain Pareto-
optimal points by moving along to the Pareto front exploiting a homotopy method
based on second order shape derivatives.

1 Introduction

Free-form shape optimization [1] allows for arbitrarily shaped geometries that have
the same topology as the initial design and, thus, yields a larger design space
compared to geometric parameter optimization. In many engineering applications,
one wants to optimize multiple, often conflicting, cost functions and thus is inter-
ested in the set of (locally) Pareto-optimal designs. Within the class of evolution-
ary algorithm [2], it is straightforward to extract Pareto fronts by selecting those
designs which are not dominated by any of the other evaluated designs. While
derivative-based algorithms can yield optimized designs for single-objective opti-
mization problems much faster, obtaining Pareto fronts in the multi-objective setting
requires dedicated strategies such as the weighted sum approach [6] or approaches
based and descent directions with respect to multiple objective functions [8]. These
approaches, however, still require the solution of a full single-objective optimiza-
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tion for each point on the Pareto front. In order to overcome this efficiency is-
sue, methods for tracing along the Pareto front have been introduced in [3, 4], i.e.,
to parametrize the Pareto front and sequentially computing Pareto-optimal points
without running a new optimization. In contrast to the widely used weighted sum
approach, these methods also allow for finding points on non-convex regions of the
Pareto front and to have better control over the spacing of the points on the Pareto
front.

In this work, we extend the Pareto tracing methods for efficiently obtaining many
points on the Pareto front to the case of free-form shape optimization under PDE
constraints. In particular, we apply the methodology to the shape optimization of a
synchronous reluctance machine.

The rest of this paper is organized as follows: In Sect. 2 we describe the physical
model we consider for our numerical experiments. We shortly introduce the math-
ematical tools used for this work, i.e. the concept of homotopy methods and shape
Newton methods, in Sects. 3 and 4, respectively, before presenting their application
to the physical problem and discussing our numerical results in Sect. 5.

2 Problem description

The machine under study is used in X-ray generation machines and it has a large
air gap between rotor and stator. In reality the rotor of the machine is in vacuum
and is separated from the stator by glass, which has magnetic properties of air. We
choose to restrict the shape deformation only to the rotor, changing its distribution
of ferromagnetic material and air. We intend to, at the same time, minimize both
the negative torque (i.e. maximize the torque) and the weight of the rotor, i.e., we
consider the bi-objective optimization problem

min
Ω

(J1(Ω),J2(Ω))⊤ =

(
−ν0 L

1
r2 − r1

∫
Ωg

(∇uΩ )⊤Q∇uΩ dx,Vol(Ω)

)⊤
(1)

where uΩ ∈ H1
0 (D) :

∫
D

νΩ (x, |∇uΩ |)∇uΩ ·∇vdx =
∫

D
Jzvdx ∀v ∈ H1

0 (D). (2)

Here, (2) represents the equation of 2D nonlinear magnetostatics. In (1) we use the
Arkkio formula in order to calculate the torque. We denote as u the z-component of
the magnetic vector potential, being

B = curlA = curl(0,0,u(x1,x2))
⊤. (3)

In Arkkio’s formula, the dot product between the tangential and normal compo-
nent of B is needed. The 2×2 matrix Q

Q(x1,x2) =
1√

x2
1 + x2

2

(
x1x2

x2
2−x2

1
2

x2
2−x2

1
2 −x1x2

)
(4)
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encodes this dot product, taking into account the transformation from the scalar u
to the 2-dimensional B field. Moreover, L is the length of the motor in z dimension,
Ωg is a ring in the air gap with inner and outer radii r1 < r2, respectively.

The magnetic reluctivity ν is defined piecewise. It is constant in air while it
depends on the |B|= |∇u| in the ferromagnetic material,

νΩ (x, |∇u|) :=

{
ν̂(|∇u|), x ∈ Ω ,

ν0, x ∈ D\Ω .
(5)

Here we denote with D the whole domain and with Ω the ferromagnetic subdomain.
The current density Jz is piecewise costant and non-zero only in the coils. The ma-
chine has 1 pole pair and the angle between the fields deriving from the currents and
the y-axis is 45 degrees. The maximum amplitude is 10 Ampere.

3 Homotopy methods

Homotopy methods have been introduced for solving (systems) of nonlinear equa-
tions by connecting the problem of interest smoothly to a problem whose solution
is known or readily computed and following the solution path. More precisely, let
F : Rn → Rn and x(0) ∈ Rn be given. We look for a root satisfying the equation

F(x) = 0. (6)

Often, a solution to problem (6) cannot be found from the given initial guess x(0). A
homotopy map H : Rn ×R→ Rn defines a family of equations

H(x, t) = 0 (7)

parametrized by the homotopy parameter t ∈ [0,1]. The homotopy map should be
chosen in such a way that the initial problem H(x,0) = 0 has a known solution x(0)

or its solution can be easily computed from the initial guess x(0), and the equation
H(x,1) = 0 is equivalent to the original equation (6). A popular example is the
convex homotopy

H(x, t) = tF(x)+(1− t)G(x) (8)

where G : Rn → Rn and x(0) with G(x(0)) = 0 are given. The general idea of homo-
topy methods then is, starting out from t = 0, to follow the solution path, most often
using a predictor-corrector method.

We want to use this approach in the context of shape optimization, meaning that
the functions G and F will be replaced by optimality conditions for a simple and
desired optimization problem, respectively. For the predictor step, first or higher
order shape derivatives may be used. For the corrector step, it makes sense to use
the contraction properties of Newton-like second order methods in order to be sure
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to be and remain close enough to the homotopy curve. In our framework, this lead
us to the use of a shape Newton method.

4 Shape Newton

Given a shape function J = J (Ω), smooth vector fields V,W : Rd → Rd , pa-
rameters s,r ≥ 0 and corresponding perturbed domains Ωs := (id + sV )(Ω) and
Ωs,r := (id+ sV + rW )(Ω), we will make use of the first and second order shape
derivatives defined as

dJ (Ω)(V ) :=
(

d
ds

J (Ωs)

)∣∣∣∣
s=0

, d2J (Ω)(V,W ) :=
(

d2

dsdr
J (Ωs,r)

)∣∣∣∣
s=0,r=0

.

(9)
The main idea of most first order shape optimization algorithms consists in repeat-
edly finding a descent direction V such that dJ (Ω)(V ) < 0 and updating the cur-
rent domain by the action of this vector field to get Ω̃ = (id+ sV )(Ω) as the new
iterate. A descent direction can be obtained by solving an auxiliary boundary value
problem to find V ∈ H satisfying

b(V,W ) =−dJ (Ω)(W ) (10)

for all W ∈ H for a given vector-valued Hilbert space H and a positive definite
bilinear form b(·, ·) : H ×H → R. Replacing the bilinear form b(·, ·) in (10) by the
(symmetric) second order shape derivative defined in (9) for the problem at hand
and the current domain Ω yields the shape-Newton system to find V ∈ H satisfying

d2J (Ω)(V,W ) =−dJ (Ω)(W ) (11)

for all W ∈ H. The operator on the left hand side of (11), however, is not invertible.
In fact, from Hadamard’s structure theorem [1] we know that only normal deforma-
tions at the boundary lead to changes in the cost function. Any other deformations,
such as interior or tangential deformations, are in the kernel of the operator.

After finite element discretization, we remove interior deformations by restrict-
ing (11) to the boundary ∂Ω and we filter out tangential movements by imposing
the pointwise constraints (V · τ)(xk) = 0 for all mesh vertices xk on ∂Ω where τ

denotes the tangential vector.

5 Application to model problem

Here, we combine the methods introduced in Sects. 3 and 4 and apply them to the
bi-objective PDE-constrained shape optimization problem (1)–(2).



Tracing Pareto-optimal points for multi-objective shape optimization 5

5.1 Pareto tracing for shape optimization

As outlined in Sect. 3, we define the convex homotopy between the optimality con-
ditions for cost functions J1(Ω) and J2(Ω) defined in (1),

H (Ω , t)(·) := (1− t)dJ1(Ω)(·)+ tdJ2(Ω)(·), (12)

where (·) represents some vector-valued test functions. For the shape derivatives
of the torque and the volume, see e.g. [8]. Given a solution of H (Ω ,0)(V ) = 0
for all test functions V , i.e., a locally optimal design with respect to the torque,
we adaptively choose a sequence of intermediate homotopy values 0 < tk ≤ 1 and
obtain the next Pareto optimal design Ω (k+1) as the solution of H (Ω , tk+1)(·) = 0
by a shape Newton method starting out from Ω = Ω (k), i.e., by repeatedly solving
systems of the form (11) as described in Sect. 4. Note that the procedure can also be
extended to more than two cost functions, see [3].

5.2 Numerical results

In this subsection, we present results obtained by applying the procedure detailed
in Sect. 5.1 to problem (1)–(2). We start from a simple rotor design constituted by
a single piece of ferromagnetic material which is straight on the side and round on
the top and the bottom, see Fig. 5.2 (left). This design is referred to I in in Fig. 5.2
(right). We then perform a single objective optimization, maximizing the torque, by
a gradient descent algorithm repeatedly using (10) to obtain the design Ω (0) solving
H (Ω ,0)(·) = 0. This design optimizes the torque and is refered to as A in Fig. 5.2.

Remark 1. When using a gradient descent algorithm to obtain the optimized design
for the torque, one typically arrives in the proximity of a local minimum but not with
very high precision. In our experiments, the residual in the optimality condition was
still in the order of 10−4. Here, one has to hope that this is close enough for the shape
Newton to converge and to get back to the homotopy curve. During the homotopy
method which is based on Newton updates, the residual is reduced to below 10−10.

As an alternative to using a gradient descent method for this initial problem, also
here one could apply a homotopy method with a suitably chosen ”simple” problem
that is solved by the initial design. The choice of such a suitable ”simple” problem,
however, is in general not clear in the case of shape optimization.

From here we follow the homotopy defined by (12) by progressively increas-
ing the homotopy parameter t in order to get optimized design which are Pareto-
optimal. The increase in the homotopy parameter can be arbitrarily chosen, giving
some control on the number of points of the Pareto front and the distance between
them, which is desirable from the applications point of view. In general, t can be
chosen small enough to get an arbitrary number of points on the Pareto front with-
out large gaps in the objective space. The higher the number of desired points is, the
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more this approach becomes computationally efficient when compared to multi-start
gradient-based methods such as the weighted sum method. The Pareto front points
obtained are shown in Fig. 5.2 (right).

The homotopy method stops at t = 0.999864. Due to the different order of magni-
tude of the 2 considered cost functions, the majority of the Pareto-optimal points are
obtained with t very close to 1. Rescaling the cost functions is possible, if desired.
The algorithm stops before actually getting to 1, though. This is expected, because
for t = 1 the problem is to minimize the iron volume, meaning that the rotor should
get to only air. This is not possible to obtain without changing the topology. Also,
we keep the design fixed at the boundary of the rotor by enforcing deformations
there to vanish. The algorithm might go a bit further by allowing the points on the
rotor boundary to move tangentially.

FIGURE 0: Left: Initial design. Ferromagnetic material is in red, air is in blue and
copper coils are in yellow. Right: Set of Pareto-optimal points traced starting by A

in which the negative torque is minimized (homotopy parameter t=0), towards
points B (t=0.999779) and C (t=0.999864). Points Ar, Br and Cr are obtained

respectively from points A, B and C with one uniform refinement of the mesh and
following gradient descent optimization.

In our numerical experiments, we followed the idea of multi-resolution shape
optimization [11], meaning to perform first optimization runs on a very coarse mesh.
Besides the obvious aspect of efficiency, we also experienced less problems with
mesh quality due to large deformations and local minimizers. While the former
problem could be remedied by remeshing, the latter aspect was also reported in [11].

In our framework this is translated into finding Pareto-optimal points of a coarse
problem, that can be the starting point for a following optimization after a mesh
refinement. This is how we obtain the points Ar, Br and Cr, whose designs are shown
in Fig. 5.2, starting from the points A, B and C, shown in Fig. 5.2. The corresponding
objective values are depicted in Fig. 5.2 (right).
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FIGURE 1: Optimized designs corresponding to Pareto-optimal points A (t=0), B
(t=0.999779) and C (t=0.999864), from left to right.

FIGURE 2: Optimized designs corresponding to Pareto-optimal points Ar, Br and
Cr, from left to right.

6 Conclusions

In this work we dealt with multi-objective shape optimization in the context of elec-
tric machines and in particular of a synchronous reluctance motor with a single pair
of poles. We presented an extension of the Pareto front tracing methods used for
gradient descent optimization algorithms to our framework of shape optimization
using shape derivatives. In order to do so, we used homotopy and shape Newton
methods. We achieved a Pareto front with several Pareto-optimal points, starting
from the optimized design, result of one single-objective optimization. We also fur-
ther optimized 3 selected designs on a finer mesh, in a multi-resolution approach.
Further work may include considering other scenarios, with different type of ma-
chines and different cost functions. Also, it is natural to think about the extension of
the proposed method to the case of more cost functions, resulting in a Pareto front
in more dimensions, with the challenge of the increase in computational cost.
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