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Abstract This contribution answers the question that Tom Lyche addressed to
the public of the 2022-INDAM meeting in Cortona “Approximation Theory and
Numerical Analysis meet Algebra, Geometry, Topology” while presenting his work
with Carla Manni and Hendrik Speelers.

The question is if the number of lines through a point in the Wang-Shi split of
degree d is always less than or equal to d + 1. While expressed in simple terms it has
application to the construction of piecewise polynomials spaceswithmaximal degree
of continuity on general triangulation by splitting each triangle in sub-polygons.

1 Introduction

Let T ⊂ R2 be a triangle with vertices w0, w1, w2. The Wang-Shi-split of degree d of
T is obtained by defining the set of knots V(d,T) = {v0, . . . , v3d−1} with

vi = d−1


iw1 + (d − i)w0 i = 0, . . . , d
(i − d)w2 + (2d − i)w1 i = d + 1, . . . , 2d
(i − 2d)w0 + (3d − i)w2 i = 2d + 1, . . . , 3d − 1.

For ease of discussion let `i, j = vivj be the segment connecting vi and vj ,

L(d,T) = {`i, j : bi/dc , b j/dc, di/de , d j/de},
P(d,T) = {`1 ∩ `2 : `1 , `2 ∈ L(d,T)}.
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Then the Wang–Shi split has for subdomains the connected components of

T \
⋃

L(d,T),

which we denote by T d
WS. The subdomains τ ∈ T d

WS are convex, but not necessarily
triangles.

Tom Lyche presented the following open problem to the public:

Is the maximum number of graph edges
intersecting at the same point less or equal to d + 1?

and, since the question is independent of T it is about

Q(d) := max
p∈P(d,T )

#{` ∈ L(d,T) : p ∈ `}.

The answer is related to the dimension formula for the space of piecewise poly-
nomials of degree d on the Wang–Shi split; the formula simplifies significantly if
the answer is affirmative, see [3, 1] and Section 5 for details.

Partial answers were already known at the meeting: Tom Lyche with Carla Manni
and Hendrik Speleers had checked the result computationally for d ≤ 8; other
participants like Francesco Patrizi and Frank Sottile extended the checked cases
using their own code at least till d ≤ 18. Our main theoretical result is

Theorem 1. For all d ≥ 17,
Q(d) ≤ d + 1.

It is clear from the definition that Q(d) can become arbitrarily large: take T with
rational vertices and p ∈ T◦ with rational coordinates. Then take k lines through p
with rational slope. The intersections of the lines with ∂T have rational coordinates
and spit each edge in segments whose length is a fraction of the edge length. If
all the denominators of these fractions divide d then all lines are in L(d,T) so that
Q(d) ≥ k.

Section 2 is the proof of Theorem 1. Section 3 explains how to numerically verify
the remaining cases. In fact, asymptotically Q(d) is much smaller, as is shown in
Section 4 using a number theoretical argument. Section 5 shows the application to
the spline dimension formula.

To ease notation X(d,T) will be shortened to X , and the indexing of vertices
and edges of T is done in Z/3Z, i.e. w3 = w0. With this convention ei = wiwi+1,
i = 0, 1, 2, are the edges of T .

2 A proof for large degrees: d ≥ 17

Let p ∈ P be any intersection point, and Lp the set of segments containing p

Lp := {` ∈ L : ` 3 p}.
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The segments in Lp connect two knots in two adjacent edges ei and ei+1 so it is
covered by

Lp,i := {` ∈ Lp : ei ∩ ` , ∅, ei+1 ∩ ` , ∅, wi+1 < `}.

The Lp,i , i = 0, 1, 2 are not necessarily disjoint as both Lp,i , Lp,i+1 can contain a
segment connecting the vertex wi = vid = wi+3. This gives that ki(p) := #Lp,i and
k(p) := #Lp are related by

k0(p) + k1(p) + k2(p) − 3 ≤ k(p) ≤ k0(p) + k1(p) + k2(p). (1)

To p ∈ P corresponds an homeomorphism Sp : ∂T → ∂T that maps a point
g to the other intersection of the line through p and g with ∂T . Of interest for the
following discussion are the sets

ei, j(p) := Sp(ej) ∩ ei = Sp(ej,i).

The extrema of the segments in Lp,i are contained in ei,i+1(p)∪ei+1,i(p). See Figure 1.

Fig. 1 Picture of a triangle
T with a chosen point p and
the parts of the edges ei, j
that correspond through the
map Sp . Each line through p
intersects the boundary ofT in
two corresponding segments
ei, j and e j, i .
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Let µi be the distance between two consecutive knots in ei . Let δi, j(p) be the
maximum distance between two knots in ei, j(p) ∩

⋃
L and for i ∈ Z/3Z

ui(p) =
δi,i+1(p)

µi
+
δi+1,i(p)
µi+1

.

By construction

ui(p) ≤
|ei,i+1 |

µi
+
|ei+1,i |

µi+1
(2)

so that
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u(p) :=u0(p) + u1(p) + u2(p)

≤
|e0,1 |

µ0
+
|e0,2 |

µ0
+
|e1,2 |

µ1
+
|e1,0 |

µ1
+
|e2,0 |

µ2
+
|e2,1 |

µ2

= 3d.

On the other hand, u(p) is bound from below as a function of the ki = #Lp,i and
this will imply a maximum for k as a function of d.

This can be analyzed on the reference triangle for segments connecting the hor-
izontal with the vertical edge, i.e. studying Lp,2 in the case w0 = (0, 0), w1 = (d, 0)
and w2 = (0, d). For this case let the segments in Lp,2 be

(xi, 0)(0, yi), i = 1, . . . , k2,

ordered by increasing xi so that

u2(p) = (xk2 − x1) + (y1 − yk2 ) =

k2−1∑
i=1
(xi+1 − xi + yi − yi+1).

The relation between xi and yi is given by yi = π2Sp(0, xi), where π2 is the projection
on the ordinate, and extends to rational bijection between R>p1 and R>p2 (where
p = (p1, p2))

y(x) =
p1p2

x − p1
+ p2. (3)

Studying the integer solutions of (3) leads to number theoretical questions, see
Section 4. However, in the following, we remain in the context of real numbers.

Lemma 1. Given s, t > 0 there exists a unique x > p1 such that

y(x + s) = y(x) − t . (4)

Proof. By (3)
y(x) − y(x + s) =

p1p2s
(x − p1)(x + s − p1)

.

The right hand side is a monotone decreasing function of x on {x > p1} with limits

lim
x→+p1

p1p2s
(x − p1)(x + s − p1)

= +∞, lim
x→+∞

p1p2s
(x − p1)(x + s − p1)

= 0.

This implies that for all s and t, (4) has a unique solution. ut

Corollary 1. The map {1, . . . , k2 − 1} → N2
>0 defined by

i → (xi+1 − xi, yi − yi+1).

is injective.

Lemma 2. Let πi , i = 1, 2 be the coordinate projection, and
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m(t) := min
I⊂N2

>0,#I=t−1

{ ∑
K ∈I

(π1 + π2)K
}

then
m(ki) ≤ ui(p).

Proof. It is enough to prove the result for i = 2. Since themap i → (xi+1−xi, yi−yi+1)
is injective by Corollary 1 its range R is a subset of N2

>0 having cardinality k2 − 1.
Then

∑
K ∈R(π1 + π2)K = u2(p) is greater than the minimum over all subsets. ut

Lemma 3. The following estimate holds

m(k) := (k − 1)
√

8k − 7 + 3
3

≤ m(k)

Proof. For r ∈ N>0 there are r elements whose sum-of-components is r + 1 in N2
>0,

namely
(1, r), (2, r − 1), . . . (r, 1).

This means that m is the restriction to N>0 of a piecewise linear function that for
k = 1 +

∑t
r=1 r is

m(k) = m
(
1 +

t∑
r=1

r
)
=

t∑
r=1

r(r + 1) =
t(t + 1)(t + 2)

3
.

Now from
k =

t(t + 1)
2

+ 1

we get

t + 2 =
√

8k − 7 + 3
2

and, for the selected k, m agrees with m

m(k) = t(t + 1)
t + 2

3
= 2(k − 1)

√
8k − 7 + 3

6
= m(k).

Since m is piecewise linear and m is convex,

m′′(k) =
8
3

6k − 5
(8k − 7)3/2

> 0, (5)

it follows that m is a global lower bound for m. ut

Lemma 4. The number k of segments in ` ∈ L passing through a point p ∈ P
satisfies

m(k) :=
1
9
(k − 3)(

√
3
√

8k − 21 + 9) ≤ 3d. (6)
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Proof. Indeed we have

m(k0) + m(k1) + m(k2) ≤ u(p) ≤ 3d.

The Hessian of m(k0) + m(k1) + m(k2) is diagonal with positive entries, see (5).
Consequently the left hand side is a convex function, and for fixed k0 + k1 + k2 the
stationary point k0 = k1 = k2 is a minimum. Using (1), we replace ki with k/3
leading to

3
( k
3
− 1

) 3 +
√

8/3k − 7
3

≤ 3d,

which is the thesis up to algebraic manipulations. ut

Proof of Theorem 1. For Q(d) to be d + 2 the inequality

m(d + 2) ≤ 3d

must be satisfied. Solving for equality gives

d =
43 +

(
96011 − 72

√
19653

)1/3
+

(
96011 + 72

√
19653

)1/3

8
≈ 16.8 . . .

To conclude it is sufficient to notice that m is super-linear and convex so that for all
d grater than the value above the inequality cannot be satisfied and the maximum
number of lines is ≤ d + 1. ut

3 Checking small degrees: d ≤ 109

Two programs that given d compute Q(d) have been written independently by
the authors and tested for agreement. They are available in the public repository
https://github.com/AndreaBressan/lines-on-WS-split.

The programs work as follows:

• The three vertices w0, w1 and w2 of the triangle are initialized.
• The homogeneous coordinates ṽi of the points vi ∈ V(d,T) are computed.
• The homogeneous coordinates ˜̀

i, j = ṽi × ṽj are computed for all lines `i, j ∈
L(d,T). Here the indices are taken such that each line is computed uniquely.

• The homogeneous coordinates p̃µ,ν = ˜̀
µ × ˜̀

ν are computed for all intersections
of pairs of lines {`µ, `ν} ⊂ L(d,T), with µ , ν, and then transformed to Cartesian
coordinates pµ,ν .

• All intersection points outside the triangle are dropped.
• All intersection points inside the triangle are tallied, i.e., for each intersection

point p ∈ T◦ we count the number n(p) of pairs {`µ, `ν} that yield pµ,ν = p.

https://github.com/AndreaBressan/lines-on-WS-split
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• Let k(p) be the number of lines through p, then k(p)(k(p) − 1)/2 is the number
of pairs of line that intersect at p. Thus we compute k(p) = 1

2 (1 +
√

1 + 8n(p)).
We then compute Q(d) as the maximum of k(p) for all p ∈ P(d,T).

The computation of all lines can be done in #L(d,T) = 3d(d − 1) = O(d2) steps,
whereas the computation, handling and tallying of all intersection points can be
performed in O(d4) steps, which is the overall complexity of the algorithm.

A version of the code exploits the symmetries of T , i.e., the invariance by per-
mutation of the vertices to decrease the constant by analyzing only intersections in
a sixth of the triangle.

The first eight cases of d = 1, . . . , 8 for

w0 = (0, 0), w1 = (0, d), w2 = (d, 0)

are depicted in Figures 2–4. Table 1 contains the computed values of Q(d) for
d ≤ 109. Next to the table is a plot of Q(d),m(k) and the line k = d + 2 that gives a
graphical representation of the proof.

d 0 1 2 3 4 5 6 7 8 9
_ 0 3 3 4 5 6 7 6 8
1_ 8 9 9 10 10 10 12 11 12 12
2_ 12 13 14 13 14 14 14 15 16 17
3_ 16 17 16 17 18 17 18 18 19 19
4_ 19 18 18 20 20 18 22 20 19 20
5_ 21 21 21 22 22 21 23 22 22 21
6_ 21 21 25 25 24 25 24 25 24 23
7_ 26 24 26 24 25 26 26 27 26 25
8_ 27 25 28 27 28 27 28 26 28 29
9_ 27 27 28 27 30 28 29 28 30 28
10_ 29 29 31 29 31 31 31 31 31 30 0 20 40 60 80 100

0

5

10

15

20

25

30

≈ (16.8, 18.8)

d

lin
es

th
ro
ug
h
a
po
in
t,
i.e
.k

Q(d)

m(k)

k = d + 2

Table 1: Computed values of Q(d) for d = 1, . . . , 109. The entries until d = 18
coincide with those published by Frank Sottile in [4].

4 Asymptotic behavior

Let us now follow up on the considerations that lead us to the relation (3), i.e., all
line segments ` = (x, 0)(0, y) going through a point p = (p1, p2) in P(d,T) satisfy

y =
p1p2

x − p1
+ p2. (7)
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v0

v1

v2 no inner point

v0

v2

v5

v1

v3

v4 1 point with 3 lines

v0

v3

v8

v1

v4

v7

v2

v5

v6 7 points with 3 lines

v0

v4

v11

v1

v5

v10

v2

v6

v9

v3

v7

v8 6 points with 4 lines

Fig. 2: The Wang-Shi split of degree 1–4 with highlighted the intersection points
with maximum degrees and the lines through one of them.

Let `1 and `2 be line segments, with `i = (xi, 0)(0, yi), that intersect at p. Then we
have

p1 =
x1x2(y1 − y2)

x2y1 − x1y2
=

p̂1
q

and p2 =
y1y2(x2 − x1)

x2y1 − x1y2
=

p̂2
q
,

where p̂1, p̂2 and q are integers. Hence, (7) is equivalent to

(y − p2) (x − p1) = p1p2,

which can be rewritten as

(y q − p̂2) (x q − p̂1) = p̂1 p̂2. (8)
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v0

v5

v14

v1

v6

v13

v2

v7

v12

v3

v8

v11

v4

v9

v10 3 points with 5 lines

v0

v6

v17

v1

v7

v16

v2

v8

v15

v3

v9

v14

v4

v10

v13

v5

v11

v12 1 point with 6 lines

Fig. 3: The Wang-Shi split of degree 5, 6 with highlighted the intersection points
with maximum degrees and the lines through one of them.

v0

v7

v20

v1

v8

v19

v2

v9

v18

v3

v10

v17

v4

v11

v16

v5

v12

v15

v6

v13

v14 3 points with 7 lines

v0

v8

v23

v1

v9

v22

v2

v10

v21

v3

v11

v20

v4

v12

v19

v5

v13

v18

v6

v14

v17

v7

v15

v16 12 points with 6 lines

Fig. 4: The Wang-Shi split of degree 7, 8 with highlighted the intersection points
with maximum degrees and the lines through one of them.

Thus, for a fixed point p the number of pairs (x, y) that satisfy the equation is bounded
by the number of divisors of p̂1 p̂2, for which asymptotic growth rates are known.
This leads to the following.

Corollary 2. We have
Q(d) = o(dε)

for all ε > 0.

Proof. We follow the notation in Section 2. We use (1) and obtain
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Q(d) ≤ max
p∈P(d,T )

|Lp | ≤ max
p∈P(d,T )

(k0(p) + k1(p) + k2(p)) ≤ 3 max
p∈P(d,T )

k2(p).

Here k2(p) is the number of line segments of the form ` = (x, 0)(0, y), with integers
1 ≤ x, y ≤ d, going through the point p. Following from (8), this number is bounded
by the number of divisors of p̂1 p̂2, i.e.,

k2(p) ≤ δ(p̂1 p̂2),

since the mapping
Lp,2 7→ {ρ ∈ Z

+ : ρ | p̂1 p̂2}

(x, 0)(0, y) → x q − p̂1

is an injection. Every integer pair (x, y) yields one divisor pair ρ and p̂1 p̂2/ρ, but
not vice versa, since, for an arbitrary divisor ρ the terms x = (ρ + p̂1)/q and
y = (p̂1 p̂2/ρ + p̂2)/q are not necessarily integers between 1 and d.

Let d(n) be the number of (positive) divisors of the integer n (unfortunately, in
number theory the standard notation for this function is d, to avoid confusion, we
use d). It is a well-known result that d(n) = o(nδ) for all δ > 0, cf. [2, Sec. 18.1,
Thm. 315]. We have by definition p̂1 p̂2 ≤ d6, therefore

Q(d) ≤ 3 max
p∈P(d,T )

k2(p) ≤ 3 max
N ≤d6

d(N) = o((d6)δ).

Selecting δ = ε/6 yields the thesis. ut

Thus, the growth rate of Q(d), as d goes to infinity, is very small. However, the
argument that is used in the proof is not yet strong enough to yield any meaningful
estimates for reasonably sized d. Further studies would require deeper insights into
the integer solutions of equations of the form (8).

5 Splines on the Wang–Shi split

Knowing that Q(d) ≤ d + 1, the dimension formula for splines defined on the
Wang–Shi split simplifies. We denote by Sd−1

d
(T d

WS) the spline space of degree d and
smoothness Cd−1 over the partition T d

WS generated by the Wang–Shi split of degree
d, i.e.,

Sd−1
d (T d

WS) = {s ∈ Cd−1(T) : s |τ ∈ Pd, ∀τ ∈ T d
WS}.

It was shown by Lyche, Manni and Speleers in [3, Theorem 1] that the dimension of
this space satisfies

dim Sd−1
d (T d

WS) = dimPd + m +
∑

p∈P(d,T )

ζ(k(p)),
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where m = #L(d,T) is the number of lines through T and ζ(k(p)) is a function that
depends non-trivially on the number of lines k(p) through p. This result is based on
a general dimension formula for splines over cross-cut partitions developed in [1,
Theorem 3.1]. The function ζ(k(p)) is such that it vanishes if k(p) ≤ d + 1, thus we
have the following.

Corollary 3. We have

dim Sd−1
d (T d

WS) =

(
d + 2

2

)
+ 3d(d − 1),

for all d ≥ 1.

Proof. This result follows from [1, Theorem 3.1], together with Theorem 1 and the
results in Table 1, cf. [4] and [3, Theorems 1 and 2]. ut
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