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Abstract

In order to perform isogeometric analysis with increased smoothness on complex domains, trim-
ming, variational coupling or unstructured spline methods can be used. The latter two classes
of methods require a multi-patch segmentation of the domain, and provide continuous bases
along patch interfaces. In the context of shell modeling, variational methods are widely used,
whereas the application of unstructured spline methods on shell problems is rather scarce. In
this paper, we therefore provide a qualitative and a quantitative comparison of a selection of
unstructured spline constructions, in particular the D-Patch, Almost-C1, Analysis-Suitable G1

and the Approximate C1 constructions. Using this comparison, we aim to provide insight into
the selection of methods for practical problems, as well as directions for future research. In the
qualitative comparison, the properties of each method are evaluated and compared. In the quan-
titative comparison, a selection of numerical examples is used to highlight different advantages
and disadvantages of each method. In the latter, comparison with weak coupling methods such as
Nitsche’s method or penalty methods is made as well. In brief, it is concluded that the Approxi-
mate C1 and Analysis-Suitable G1 converge optimally in the analysis of a bi-harmonic problem,
without the need of special refinement procedures. Furthermore, these methods provide accurate
stress fields. On the other hand, the Almost-C1 and D-Patch provide relatively easy construc-
tion on complex geometries. The Almost-C1 method does not have limitations on the valence of
boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Follow-
ing from these conclusions, future research directions are proposed, for example towards making
the Approximate C1 and Analysis-Suitable G1 applicable to more complex geometries.
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Figure 1: General workflow for solving a physics problem and optimizing a geometry or topology coming from CAD
and CAE processes. Starting from CAD and CAE, the IGA Setup is performed. In this block, a computational basis is
extracted from the geometry, to be used for simulation. Then, the Simulation block involves assembly of the operators of
the physics problem on the computational basis coming from the IGA Setup. In case of shape or topology optimization
problems, the simulation results are evaluated and the shape/topology is modified. From this changed shape/topology,
a new computational basis can be obtained and the process can be repeated. The IGA Setup block is marked to be
elaborated further on in Fig. 2.

1. Introduction

Present day engineering disciplines depend on Computer-aided design (CAD) and numer-
ical simulation models for physics for design and analysis. Typically, geometries designed in
CAD are converted to meshes for an analysis with numerical techniques like Finite Element
Methods (FEMs). Since the geometry description in CAD is based on so-called splines whereas
meshes for simulation are based on linear geometry approximations, geometric data is lost dur-
ing this conversion. Isogeometric analysis [1] is the bridge between CAD and Computer-Aided
Engineering (CAE), since it is employing splines as a basis for geometric design and numer-
ical analysis. In practice, an isogeometric analysis and optimization workflow can be seen as
depicted in Fig. 1. Starting with a geometry from CAD as well as from material parameters,
boundary conditions et cetera from CAE, isogeometric simulations and eventually geometry or
topology optimization can be performed. The step connecting the inputs from CAD and CAE is
referred to as IGA Setup in Fig. 1. This step takes care of the preparation for the simulation step,
including the pre-processing of the geometry, if needed, and the construction of the isogeometric
discretization space.

Due to the arbitrary smoothness of spline basis functions, isogeometric analysis has several
advantages over conventional finite element methods. For example: (i) the introduction of k-
refinements, which are proven to provide high accuracy per degree of freedom [2, 3]; (ii) high
accuracy in eigenvalue problems, e.g. for structural vibrations [4–6]; or (iii) geometric exactness
in parametric design and interface problems, e.g. applied to the parametric design of prosthetic
heart valves [7]. Furthermore, the C1-smooth discretization spaces allow to solve equations such
as the biharmonic equation, the Cahn–Hilliard equations or the Kirchhoff–Love shell equations
without introducing auxiliary variables. However, due to the tensor-product structure of the
spline basis, higher-order smoothness can be enforced easily only on domains that allow simple
patch partitions (e.g. an L-shape or an annulus), whereas on geometrically and topologically
more complicated domains alternative approaches are required to solve equations that require
basis functions of higher-order continuity.

2



For more complicated domains, the IGA setup block in Fig. 1 involves a pre-processing step
of either the geometry, the system of equations or the solution space to solve the original sys-
tem of equations. In Fig. 2, this pre-processing step is subdivided into three options: trimmed
domain approaches, unstructured splines and variational coupling methods. Given an initial ge-
ometry (cf. Fig. 3a), the trimmed domain approaches alter the tensor-product domain by defining
parts of the domain that are physical or non-physical (cf. Fig. 3b). In case of unstructured splines
or variational coupling methods, the geometry is decomposed into multiple different patches (cf.
Fig. 3c) on which continuity conditions are enforced by constructing a smooth basis (unstructured
splines) or by adding extra terms to the system of equations (variational coupling approaches). In
Section 2 of this paper, a review of trimmed domain approaches, unstructured splines and varia-
tional coupling methods is provided. Examples include immersed methods, degenerate patches
and Nitsche’s method, respectively. In case of simple geometries (and given the right inputs) the
methods are identical.

As shown in Fig. 2, each class of methods has its own characteristics and previous work
has provided several comparisons of methods among each other, which are elaborated more in
Section 2. In the context of the workflow sketched in Fig. 1, unstructured splines provide a
valuable alternative to the other methods, since they are constructed for a fixed topology and
hence the computational costs of their construction are not related to changing shapes or moving
domains. However, recent developments mainly focused on different unstructured spline meth-
ods separately, rather than providing a valuable comparison. In this paper, we therefore provide
a qualitative and a quantitative comparison of a selection of unstructured spline constructions.
We consider finite, piece-wise polynomial spline constructions, hence we do not include ratio-
nal constructions or infinite representations, such as subdivision surfaces. More precisely, we
compare examples of (globally) G1-smooth multi-patch constructions (the Analysis-Suitable G1

construction of [8] and the Approximate C1 construction of [9]), the D-Patch method of [10] and
the Almost-C1 construction of [11], motivated in Section 2.3. The selected methods are qualita-
tively compared based on their properties, and quantitatively based on several different examples
with biharmonic and Kirchhoff–Love shell equations. The aim of this paper is to provide a fair
comparison of these methods, providing a good overview of the strengths and weaknesses of
each method in different cases.

The paper is outlined as follows: in Section 2, a detailed overview of the methods appearing
in Fig. 2 is provided. In Section 3 we provide a qualitative analysis of the four constructions that
are discussed in this paper, while in Section 4 we provide a quantitative analysis of all methods.
There, we present five benchmark problems solving either a biharmonic or a Kirchhoff–Love
equation. These benchmark problems serve different purposes and we compare which method,
in which setting, performs best. In Section 5, we conclude this paper based on the findings from
the previous sections and we provide directions for future research.

2. Multi-patch isogeometric analysis: literature review

As discussed in the introduction of this paper, in particular in Fig. 2, three classes of methods
for the modelling of complicated domains can be characterised: trimmed domain approaches,
variational coupling methods and unstructured splines. The goal of all methods is to achieve a
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Figure 2: Inside the IGA Setup block from Fig. 1, three methods are distinguished. Firstly, trimmed domain approaches
use trimming curves or surfaces to identify parts of a tensor-product domain as the actual domain. However, since ele-
ments can be trimmed poorly, specialized quadrature rules and solver preconditioners are typically needed. Alternatives
to trimming are weak coupling or unstructured spline methods. For both classes of methods, a geometry with a given
topology needs to be decomposed into multiple sub-domains (i.e. patches) via quadrilateral meshing. Given a quadri-
lateral mesh, weak methods assemble extra penalty terms into the equation to be solved, or add extra equations to be
solved to satisfy continuity constraints. Lastly, unstructured spline constructions can be used to couple multiple domains
by constructing a continuous basis. These methods, however can only be used on manifold geometries and conforming
meshes. When these requirements are satisfied, unstructured spline pre-processing is required before the unstructured
spline construction can take place. The pre-processing is highlighted and will be elaborated on more in Fig. 7 in Sec-
tion 3.
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(c) Domain segmentation

Figure 3: Given an initial geometryΩ (a), trimming (b) uses the curves of the boundary of the original geometry to define
the interior domainΩint and the exterior domainΩext. An alternative approach for modelling the domain is to use domain
segmentation (c). Here, the domain is decomposed into several patches Ωi which together define the full domain Ω.

certain level of continuity across the whole analysis domain such that multi-patch isogeometric
analysis can be performed for example for the Kirchhoff–Love shell model [12], the biharmonic
equation or the Cahn–Hilliard equation [13]. As shown in Fig. 3, trimmed domain approaches
use the fact that parts of tensor-product geometries are trimmed away, using trimming curves to
separate regions of interest and regions that should be omitted, see Fig. 3b. Variational coupling
approaches and unstructured splines are defined on multi-patch domains, typically following
from a segmentation of the original domain, see Fig. 3c. In case of variational coupling methods,
the system of equations is enriched with terms that will enforce continuity (typically in a weak
sense) between the patches. In case of unstructured spline constructions, a basis is constructed
on the multi-patch object, where certain smoothness is enforced strongly. When starting from a
trimmed geometry, the step of creating a multi-patch domain decomposition (i.e. untrimming)
from an arbitrary geometry with an arbitrary topology is a very important step in the application
of weak coupling methods and unstructured spline constructions, as can be seen in the flowchart
in Fig. 2. In this paper, however, the topic of untrimming will not be discussed as it is out of
scope of our study. Hence, the reader is referred to [14, 15] for an overview of these methods.

In this section, an overview of the trimmed domain approaches (Section 2.1), variational cou-
pling methods (Section 2.2) and unstructured splines (Section 2.3) is provided. A fourth method,
which will not be discussed in this section, is to introduce auxiliary variables for derivatives of
the solution, so that C1 continuity requirements are reduced to C0 and standard interface coupling
can be used. These so-called mixed formulations are common in conventional FEM, although
recent advances have also been made for Kirchhoff–Love plates and shells and the biharmonic
eigenvalue problem [16–18].

2.1. Trimming approaches

Trimming is a technique where so-called trimming curves or surfaces separate parts of tensor-
product spline domains to define a geometry. Trimming is a common technique to represent
complex geometries in CAD, and typically geometries consist of multiple trimmed patches with
boundary and interface curves trimming the actual patches. We refer to the work [19] for an
overview of trimming methods in isogeometric analysis. Generalizing the idea of trimming to
techniques where curves or surfaces are used to define the domain of interest as trimmed domain
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approaches, several approaches have been proposed to perform simulations on complex geome-
tries, including the finite cell method [20–22], Cut-FEM [23] or immersed methods [24, 25].
The advantage of these methods is that the trimmed CAD geometries could directly be used for
analysis. However, when only small parts of the physical domain are cut, leading to small cut
elements, numerical difficulties can occur in the conditioning of the system, leading to solver
instabilities or accuracy problems [26]. Therefore, the analysis of complex trimmed geome-
tries via methods like the FCM typically require special quadrature schemes to take into account
small cut cells [27] or preconditioners to stabilize the numerical analysis [28]. In the context
of Kirchhoff–Love shell modelling, isogeometric analysis on trimmed geometries has been per-
formed in several studies [29–31] including some with focus on multi-patch coupling [31–35].

2.2. Variational coupling methods
We define variational coupling methods as methods that modify the system of equations to

enforce certain continuity across patch interfaces. Examples of these methods are penalty meth-
ods, Nitsche’s methods, mortar methods or Langrangian penalized methods. In the context of
Kirchhoff–Love shell analysis, these weak coupling methods have received a lot of attention in
previous studies and an overview is provided by [36]. Firstly, an in-plane coupling was proposed
in [37] together with a method for coupling non-manifold patches using the so-called bending
strip method [38]. Later, weak coupling approaches have been developed for multi-patch do-
mains. Here, coupling terms can be added inside the existing variational formulation (referred
to as Nitsche’s or penalty methods) or imposed by Lagrange multipliers (referred to as mortar
methods).

Several works on Nitsche techniques (cf. [39]) for isogeometric analysis have been published
starting from the imposition of boundary conditions [40], towards multi-patch coupling and the
coupling of patches [41], later using a non-symmetric parameter-free Nitsche’s method [42].
Nitsche’s methods have been applied to Kirchhoff plates [43], Kirchhoff–Love shells [29, 44, 45],
hyperelastic 2D elasticity [46] and the biharmonic equation [9, 47] and for modelling local sub-
domains [48] for elasticity simulations. The advantages of Nitsche’s methods are that the for-
mulation is variationally consistent and requires only mild stabilization, which can be performed
automatically, by estimating the stability parameter. However, the involved integral terms are
complicated expressions that impose high implementation and assembly efforts. Therefore, cou-
pling approaches using only penalization have been developed [49–53]. Although several im-
provements have been made in these works, the main disadvantage of penalty methods is that
a suitable penalty parameter has to be chosen. Using the super penalty approach [33, 54], the
computation of the penalty parameter can be automated. However, this method has not yet been
tested for non-linear shell problems or on ‘dirty’ geometries. Both Nitsche’s and penalty methods
can be used to couple geometries that are non-manifold, i.e. geometries that have out-of-plane
connections like stiffened structures by penalizing changes in the angle of patches on an inter-
face. Furthermore, the methods can handle interfaces with non-matching parameterizations.

Instead of adding coupling terms in the variational form, as is done in Nitsche’s and penalty
methods, mortar methods [55] add extra degrees of freedom by introducing Lagrange multipli-
ers which are required to resolve additional coupling conditions. The use of mortar methods to
couple non-conforming isogeometric sub-domains was first done by [56]. In [57] the FEA-based
approach of [55] was extended for NURBS-based IGA, but the aim was to develop a method
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for C0-coupling for Reissner-Mindlin shells, hence insufficient for isogeometric Kirchhoff–Love
shells. A mortar method aiming to establish C1 coupling is given in [58] and a method that
provides Cn continuity was given by [59, 60]. Furthermore, G1 mortar coupling, referred to as
extended mortar coupling, was presented in [61] for Kirchhoff–Love shells, based on a coupling
in least square sense. On the other hand, in [62] a mortar method to enforce C1 coupling for
the biharmonic equation was developed, where the Lagrange multiplier spaces are constructed
similarly to [63] for C0-coupling. An approach to reduce computational costs involved in finding
Lagrange multipliers is called dual mortaring [64], where Lagrange multipliers are eliminated
using a compact dual basis. This approach has been developed for Bezier elements [65] and it
has been applied for Kirchhoff–Love shells [66] and a bi-orthogonal spline space has been pre-
sented for weak dual mortaring for patch coupling [67]. In [68], a hybrid method was provided
and applied to Kirchhoff plates, which combines mortar methods and penalty methods. Lastly,
a comparison of Nitsche, penalty and mortar methods is given by [69]. For a more complete
overview of mortar methods for isogeometric analysis, the reader is referred to [70]. In gen-
eral, mortar methods have the advantage over Nitsche’s methods that there are no parameters
involved and that the implementation efforts are lower. However, the disadvantage is that a suit-
able spline space needs to be found for the Lagrange multipliers [62, 63, 71]. Like Nitsche’s and
penalty methods, mortar methods can handle non-matching parameterizations and non-manifold
interfaces, the latter by similar penalization of interfacing patches.

2.3. Unstructured splines

Compared to weak coupling methods, unstructured spline constructions do not alter the sys-
tem of equations to be solved. Instead, the computational basis is modified such that it satisfies
continuity conditions across patch interfaces. Unstructured splines are typically constructed for
in-plane (i.e. manifold) interfaces and not on out-of-plane (i.e. non-manifold) interfaces, since
the notion of smoothness is uniquely defined only in the former setting. However, unstructured
spline constructions for non-manifold interfaces are possible, e.g. as in [72–74] in the con-
text of subdivision. Furthermore, unstructured spline constructions are typically constructed on
conforming interfaces, i.e. interfaces with matching meshes, but, as long as the patch parame-
terizations are matching, this can be overcome by taking the knot vector union of the interface
patches. However, the advantage of unstructured spline constructions is that as soon as the basis
is constructed for a certain untrimmed geometry, there are no additional costs involved other than
evaluation costs for changing shapes, which make unstructured spline bases suitable for shape
optimization problems. In case of topology changes or large changes of the shape, however, the
mesh topology of the unstructured spline space has to be changed as well. Unlike weak methods,
which are typically based on the introduction of penalties (e.g. in terms of energy), unstructured
spline constructions are typically provided as generic geometric methods that are applicable to
any equation that requires C1 coupling across multi-patch interfaces. With the advance of isoge-
ometric analysis, the interest in parametrically C1 and geometrically G1 splines has grown. An
overview of smooth multi-patch discretizations for isogeometric analysis can be found in [75],
and a small overview is provided below. We distinguish between enforcing parametric conti-
nuity, i.e., the type of continuity between mesh elements within a regular tensor-product spline
patch, and general geometric continuity, cf. [76]. In the following, three types of constructions
are classified, depending on their continuity on patch interfaces, around vertices and in the patch
interior:
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• Patch coupling with geometric continuity on patch interfaces and parametric continuity
inside patches.

• Patch coupling with parametric continuity everywhere.

• Patch coupling with parametric continuity almost everywhere.

Geometric continuity on patch interfaces and parametric continuity inside patches
This first category of unstructured spline constructions assumes that a fixed C0-matching

multi-patch parametrization is given. On this multi-patch domain, a C1-smooth isogeometric
space is constructed. As shown in [76], for any isogeometric function the C1 condition over each
interface is equivalent to a G1 geometric continuity condition of the graph surface correspond-
ing to the function. If the domain is planar and the patches are bilinear, then the C1 constraints
can be resolved and a C1 spline space was constructed by [77] and applied to the isogeometric
analysis of the biharmonic equation in [78]. It could be shown in [79] and [80] that C1 splines
over bilinear quadrilaterals and mixed (bi)linear quadrilateral/triangle meshes possess optimal
approximation properties. Furthermore, the work [81] studied the arbitrary Cn-smooth spline
space for bi-linear multi-patch parameterizations, based on their previously published findings.

Considering general C0-matching multi-patch domains, the work of [82] introduces the class
of analysis-suitable G1 (AS-G1) multi-patch parameterizations which includes bi-linear patches.
This AS-G1 condition is in general required to obtain optimal approximation properties. The
condition implies that the gluing data for G1 continuity is linear, which is explained in more
detail in Section 3.1. While it could be shown in [83] that all planar multi-patch domains possess
AS-G1 reparametrizations, creating AS-G1 surface domains is more difficult. Several strategies
to achieve this were introduced in [8], thus making C1-smooth multi-patch parameterizations
applicable to biharmonic equations and isogeometric Kirchhoff–Love shell models [84]. In the
work of [85] the construction of [82] is used to develop a scaled-boundary model for smooth
Kirchhoff–Love shells, similar to the approach of [86] for Kirchhoff plates.

Alternatively to constructing an AS-G1 parametrization, one can relax the smoothness con-
ditions. This was done in [9], where the construction of an approximate C1 (Approx. C1) space
is presented. The basis construction is explicit, possesses the same degree-of-freedom structure
as an AS-G1 space, but the C1 condition is not satisfied exactly but only approximately. It de-
faults to the AS-G1 construction when the AS-G1 requirements are met. In [47] a comparison of
the presented space with Nitsche’s method was performed, yielding optimal convergence results
without the need of a coupling terms. More details on the Approx. C1 method are provided in
Section 3.2.

Parametric continuity everywhere
The starting point for this class of constructions is different from the previous. Here we cre-

ate smooth splines in a parametric sense between neighboring mesh elements. Such parametric
C1 conditions are easy to resolve, but they lead to singularities at vertices of valencies other than
four, so-called extraordinary vertices. This is due to the conflicting coupling conditions on partial
derivatives around the EVs, which lead to all partial derivatives to vanish there. Inspired by the
Degenerate Patch (D-Patch) approach from [87], the works of [10, 88] provide C1 smooth spline
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spaces for multi-patch geometries with parametric smoothness everywhere. On extraordinary
vertices (EVs), which is a junction between 3 or 5 or more patches (i.e. valence ν > 2, ν , 4), the
original D-Patch method shows a singularity of the basis in EVs combined with a reduction of
degrees of freedom in this point. An improvement of the D-Patch method was presented in [88],
by splitting elements around the EVs such that every element is associated to four degrees of
freedom. However, this construction does not have non-negativity and is based on PHT splines,
which have limited smoothness. A new design and analysis framework for multi-patch geome-
tries was presented in [10], based on D-Patches with T-splines for refinement and non-negative
splines yielding optimal convergence properties. This was also demonstrated in [89] for isogeo-
metric Kirchhoff–Love shells. More details on the D-Patch method are provided in Section 3.3.

Alternatively, subdivision surface based constructions lead to unstructured splines that are
parametrically continuous everywhere, cf. [90–94]. However, such approaches require an infi-
nite number of polynomial pieces around each EV. Thus, we discard them for our comparison.
Moreover, in general their approximation properties are severely reduced near EVs [95].

Parametric continuity almost everywhere
As mentioned previously, imposing parametric continuity everywhere leads to singularities

at all EVs. Thus, instead of constructing a space with full parametric continuity, spaces with
parametric continuity almost everywhere except around the EVs can also be considered. This
way, one ends up with regular, smooth rings around EVs which then need to be filled in some
way. Such so-called hole-filling techniques are commonplace in geometric modeling and can
also be used to construct smooth spaces for isogeometric analysis, cf. [96–101]. We focus here
on the simplest possible way of resolving this issue, which is to enforce only C0-smoothness
near the EVs and G1 at the EV, namely the Almost-C1 construction proposed in [11]. Simi-
lar constructions, which enforce no additional smoothness near EVs were proposed for mixed
quadrilateral/triangle meshes in [102] and for arbitrary degree multi-patch B-splines with en-
hanced smoothness (MPBES) in [103].

The Almost-C1 construction we consider here yields piece-wise biquadratic splines which
are C1 in regular regions and which have reduced smoothness around extraordinary vertices, in-
dependent of the valence or the location (i.e. interior or boundary EVs). In contrast to that, most
commonly used hole-filling approaches yield exactly C1-smooth spaces but introduce locally
polynomials of higher degree, or require a higher degree to start with, such as the construction
presented in [104], which converts Catmull–Clark subdivision surfaces to G1-smooth piece-wise
biquintic elements. While exact smoothness is of relevance for geometric modeling, it is not
necessary from an analysis point of view.

3. Qualitative comparison

In the qualitative comparison of this paper, we focus on the properties of different unstruc-
tured spline constructions and their implication on the application of these constructions in a
workflow as in Fig. 1. More precisely, we comment on the continuity of each construction and
their nestedness properties and we aim to provide a set of requirements for the unstructured
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(a) A simple mesh with boundary edges
in black and interior edges in gray. The
boundary extraordinary vertices (bEVs),
i.e. the vertices on a boundary with va-
lence ν ≥ 3 are denoted by a black cir-
cle and the interior extraordinary vertices
(iEVs), i.e. interior vertices with valence
ν ≥ 4, ν , 4 are denoted by gray circles.

(b) Illustration of the interface tracing
procedure. From each EV all outgoing
edges are traced as illustrated until an-
other EV or a boundary is hit.

(c) Result of interface tracing from all
the EVs. Every patch is now bounded
by a a set of boundary and traced inter-
face curves. All patch corners are corners
where a traced interface and/or a bound-
ary edge form a corner. Along the hole,
different patches are indicated with dif-
ferent shades of gray. In the part bottom-
right of the hole, every face forms a
patch, since all traced curves denoted by
colors intersect with other traced curves.

Figure 4: Procedure to find a multi-patch segmentation from a given mesh. The original mesh in (a) has 46 vertices, 81
edges and 45 faces and the final multi-patch (c) has 20 patches.

spline pre-processing block in Fig. 2. Since the qualitative comparison of the considered meth-
ods in this paper mostly covers properties of the methods and their implications, mathematical
details about the methods are not provided. For these mathematical details, the reader is referred
to [8] for the Analysis-Suitable G1 (AS-G1) method, which extends the 2D construction from
[105], to [9] for the Approximate C1 (Approx. C1) method, to [10] for the Degenerate Patches
(D-Patch) and to [11] for the Almost-C1 method. However, for the qualitative comparison, some
key terms are introduced as preliminaries.

Firstly, a quadrilateral mesh (quad mesh) is a mesh of quadrilateral elements, representing
a (planar) surface geometry. The quadrilaterals can be represented by tensor B-splines of any
degree which can be mapped onto a parametric unit-square. Typically, when the tensor B-spline
quadrilaterals have different sizes in different directions or even different refinement levels, as-
semblies of these patches are typically referred to as multi-patches. An example of a multi-patch
is given in Fig. 3c. The conversion of a quad-mesh with many elements to a multi-patch with
a smaller number of patches derived from groups of elements can be done using the procedure
described in Fig. 4. Here, a half-edge mesh is traversed and elements are collected into groups
corresponding to final patches. The vertices of the elements in one group (i.e. patch) form the
control net of the bi-linear patch.

Secondly, for parametrically smooth constructions, different classes of vertices are consid-
ered. For so-called extraordinary vertices (EVs) , these constructions typically are different. An
interior extraordinary vertex (interior EV) is a vertex on a quad mesh on which three or more
than four patches meet. The number of patches coming together at a vertex is referred to as the
valence, denoted by ν. Furthermore a boundary extraordinary vertex (boundary EV) is a vertex
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on the boundary of the quad mesh with valence ν ≥ 3. For geometrically smooth constructions,
the construction depends on the geometry around the vertex rather than the valence of the vertex.
Hence, for these constructions the notion of EVs is irrelevant.

Lastly, a refinement of a spline space is called nested if the refined spline space is fully con-
tained in the unrefined space. As a consequence, the geometry is exact under element refinement,
which is beneficial from an analysis point of view.

3.1. Analysis-suitable G1

The analysis-suitable G1 (AS-G1) construction is a novel approach in isogeometric analysis
that was introduced for planar geometries and surfaces in [82], but a construction which extends
[105] for planar domains to surfaces is detailed in [8]. This construction ensures that basis func-
tions at interfaces have C1 continuity, while basis functions at vertices have C2 continuity. The
approach is based on the concept that Gk-smooth surfaces can produce Ck-smooth isogeometric
functions [76]. When dealing with general C0-matching multi-patch domains, the so-called AS-
G1 conditions must be satisfied to ensure optimal approximation. If these conditions are met,
a C1-smooth subspace of the isogeometric space can be constructed, which is sufficiently large.
Such geometries are referred to as analysis-suitable geometries. However, it should be noted that
the C1-smooth multi-patch isogeometric space generally depends on the geometry, as discussed
in [106]. To overcome this issue, an Argyris-like space was proposed in [105], which has a di-
mension that is independent of the geometry.

Given an interface between two patches, the C1 continuity condition at the interface is de-
fined by a linear combination of tangent vectors and transversal derivatives, which is referred to
as gluing data [82]. The C1 smooth basis functions at the interface, or more generally at the edge,
can be described by the first order Taylor expansion of the trace and the transversal derivative.
It is shown in [82], that the ideal choice for the space-representation of the trace and transver-
sal derivative is S(p, r − 1,h)1 and S(p − 1, r − 2,h), respectively. These basis functions have
local support and are linearly independent, but they depend on the gluing data and, therefore,
on the geometry reparameterization itself. To ensure that the basis functions form a C1-smooth
subspace of the isogeometric space, and to maintain the nestedness of the spline spaces, it is
necessary to have gluing data as a linear function which fulfils all analysis-suitable geometries.
For instance, all bi-linear patches meet this requirement. However, if a geometry is not analysis-
suitable, it can be reparameterized using the technique presented in [83].

For any vertices in the quad mesh, to describe the C1 condition is not that straight-forward. In
order to keep it general, the vertex basis functions is constructed by the C2 interpolation using the
C1 basis functions from the corresponding edges. As a consequence, the vertex basis functions
also have local support and are linearly independent.

Summarizing, the AS-G1 construction can be constructed by three different, linearly inde-
pendent sub-spaces: interior, edge and vertex space. They can be described as follows:

1The notation S(p = (p, p), r = (r, r),h = (h, h)) indicates a two-dimensional spline space with p as the polynomial
degree, r as the regularity and h as the mesh size in both directions.
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• Interior space: basis functions that have zero values and derivatives on the patch edges and
vertices.

• Interface space: basis functions that have vanishing function values up to the second
derivatives at the vertices.

• Vertex space: C2 interpolating functions at the vertex, i.e., basis functions that have non-
vanishing C2 data at the vertex.

The AS-G1 construction with the interface and vertex constructions as described above are fully
C1 over the whole domain. In addition, the AS-G1 construction can only be constructed when
the degree of the basis is p ≥ 3 and the regularity is reduced as r ≤ p − 2.

Figure 5a presents a local region around and EV with valence five with line styles indicating
different continuity levels on patch or element boundaries (see the caption of Fig. 5). For the
AS-G1 construction, the continuity at the vertex is C2 by construction. Furthermore, the conti-
nuity at the interior element interfaces is Cp−2 due to the restriction on keeping the isoparametric
concept. Lastly, since the AS-G1 construction provides a G1 surface, the patch interfaces are C1

by construction [76].

In sum, the core ideas behind the AS-G1 construction are as follows:

• Degree, regularity, continuity
The spline space is fully C1, hence suitable to solve fourth-order problems. However, the
computation of the space requires analysis-suitability of the parameterization as well as
degree p ≥ 3 and regularity r ≤ p − 2 for the basis functions.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both interior
and boundary extraordinary vertices. The construction of the basis functions is indepen-
dent of the location or valence of the EVs. However, the analysis-suitability condition
imposes a requirement on the geometries on which the construction can be constructed.
Furthermore, the geometry parameterization is not changed.

• Nestedness
The spline spaces are nested.

• Refinement procedure
Refinement procedure is standard (by knot insertion) since the parameterization does not
change.

3.2. Approximate C1

The Approximate C1 construction [9] provides, as the name suggests, approximately C1 con-
tinuity on interfaces and vertices, more precisely the construction provides C1 continuity in the
refinement limit. The Approx. C1 construction shares similarities with the AS-G1 construction,
but the main difference between the construction of the Approx. C1 and the AS-G1 spaces is that
it relaxes the AS-G1 condition on the geometry, i.e., it allows geometries with non-linear gluing
data. In fact, the exact gluing data are splines with higher polynomial degree and lower regular-
ity or even piece-wise rational. As a consequence, trying to extend the construction for AS-G1
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parameterizations directly to non-AS-G1 geometries yields complicated basis functions that are
challenging to evaluate and integrate accurately. To overcome this issue and obtain a construc-
tion with more easily definable basis functions, the gluing data are approximated. However, this
approximation means that the C1 condition is no longer satisfied exactly but only approximately.

By utilizing the approximation of the gluing data, the Approximate C1 construction incor-
porates the concept of different spline spaces found in the AS-G1 construction. In this case, the
interior, vertex, and interface basis functions fulfill the same conditions as in the AS-G1 con-
struction, but the degree and regularity differ between these spaces. Specifically, the sub-spaces
for the AS-G1 construction have p ≥ 3 and r ≤ p − 2, while the Approximate C1 construction
employs an interior space with p ≥ 3 and r ≤ p − 1, along with vertex and interface spaces that
have locally reduced smoothness based on the approximation of the gluing data. Consequently,
on the one hand the Approximate C1 construction restores the potential for maximal smoothness
of isogeometric functions in the refinement limit, but the nestedness of the basis is lost. On the
other hand, the approximation of the gluing data in the Approximate C1 construction does not
require analysis-suitability for the optimal convergence rate, unlike the AS-G1 construction. This
feature makes the method applicable to more complex geometries. When the Approximate C1

construction is applied to an analysis-suitable geometry with p ≥ 3 and r ≤ p− 2, and the gluing
data approximation is exact, the construction becomes equivalent to the AS-G1 construction.

Figure 5b presents a local region around and EV with valence five with line styles indicat-
ing different continuity levels on patch or element boundaries (see the caption of Fig. 5). For
the Approx. C1 construction on a fully smooth basis (p ≥ 3 and r = p − 1), the interior basis
recovers full smoothness on element boundaries, hence Cp−1 continuity. In the shaded region
around the interfaces and the EV, the continuity is locally reduced by construction of the locally
reduced continuous subspace and the approximation of the gluing data. Similar to the AS-G1

construction, the continuity on the EV is C2 by construction and the element boundaries are C1

approximately.

In sum, the core ideas behind the Approx. C1 construction are as follows:

• Degree, regularity, continuity
The spline space is approximately C1 and fully C1 in the limit of refinement. This makes
the spline space suitable to solve fourth-order problems. Contrary to the AS-G1 construc-
tion, the spline space approximates the gluing data, allowing maximal smoothness in the
interior space (r = p − 1) for degrees p ≥ 3.

• Limitations on construction
The space can be constructed on fully unstructured quadrilateral meshes with both interior
and boundary extraordinary vertices. The construction of the basis functions is indepen-
dent of the location or valence of the vertices. Contrary to AS-G1 the analysis-suitability
condition is not needed. However, the construction requires a G1 condition at the interfaces
of surfaces.

• Nestedness
The spline spaces are not nested.

• Refinement procedure
Refinement procedure is standard since the parameterization does not change.
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(a) AS-G1 (b) Approx. C1

Figure 5: Schematic representation of the continuity across element boundaries and patch interfaces for the (a) AS-
G1 construction, (b) Approx. C1 constructions. Thin lines indicate element boundaries and thick lines indicate patch
interfaces. Solid lines represent Cp−1 continuity, dashed lines represent Cp−2 continuity, thick dashed lines represent C1

interfaces and loosely dashed lines represent approximate C1 interfaces. A double lined circle represent a C2 continuous
vertex, a filled circle represent a singular vertex and a white filled circled with a single line represents a C1 continuous
vertex. The gray shaded area for the Approx. C1 represents local reduced continuity.

3.3. D-patch

The relative ease of imposing parametric smoothness for splines has led to the development
of degenerate Bezier patches, or D-patches [87], which can be used to build C1 smooth splines
on unstructured quadrilateral meshes with no boundary extraordinary vertices. The construc-
tions can be formulated for splines of any bi-degree [75], and there are no restrictions on their
smoothness in the locally-structured regions of the mesh. In the locally-unstructured regions of
the mesh (i.e., in a neighbourhood of an extraordinary vertex), the splines are C1 smooth and
first-order degenerate. Note that this degeneracy means that the spline spaces are not necessarily
H2-conforming, but numerical evidence shows that they can still be used to solve fourth-order
problems.

Specifically, imposition of strong C1 smoothness around an extraordinary vertex requires that
the splines vanish up to first order at the extraordinary vertex. This degeneracy trivially implies
matching first derivatives at the extraordinary vertex (since all of them vanish) but does not im-
ply C1 smoothness of the resulting spline functions and the geometries built using them. As
shown in [87], additional conditions can be imposed upon certain higher-order mixed derivatives
to ensure this desired C1 smoothness. Furthermore, the effect of these additional constraints can
be localised to a neighbourhood of the extraordinary vertex by imposing them on a subdivided
representation of the splines [88]. This means that a patch-based representation of C1 D-patch
splines takes functions that are in S(p, r,h/2) on each patch, where almost all basis functions are
in S(p, r,h), except a few basis functions supported in a neighbourhood of extraordinary points
(the number of basis functions depends on the valence).

The D-patch construction allows for nested refinements of the spline spaces [87]. If different
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orders of smoothness are being imposed in locally-structured and locally-unstructured regions of
the mesh, then nested refinements produce spline spaces with a higher number of basis functions
supported in the vicinity of extraordinary points (the number depends on the refinement-level),
see [10] for instance. On the other hand, a patch-based approach allows for a simpler implemen-
tation by limiting the smoothness across patch interfaces to C1; the smoothness in patch-interiors
can still be arbitrarily chosen. However, special care should be taken when using D-patches with
nested refinements – the degeneracy of the splines near extraordinary vertices means that, with
mesh refinements, the shape regularity of the mesh starts to worsen with refinements and the
finite element matrices become very ill-conditioned.

In sum, the core ideas behind the D-patch spline construction are the following:

• Degree, regularity, continuity
The spline space is fully C1. In general, the degeneracy of derivatives means that the
spaces are H2-nonconforming, however numerical evidence supports their use in solving
fourth-order problems. The construction can be formulated for splines of any degree and
the smoothness away from extraordinary vertices can be chosen arbitrarily.

• Limitations on construction
The space can be constructed on unstructured quadrilateral meshes with no boundary ex-
traordinary vertices.

• Nestedness
The spline spaces can be refined in a nested manner, however the resulting mesh have poor
shape regularity and the corresponding finite element matrices may be very ill-conditioned.

• Refinement procedure
Refinement procedures can be derived from standard B-spline knot insertion.

3.4. Almost C1

Almost-C1 splines are defined on a general, conforming quadrilateral mesh. They are piece-
wise biquadratic and possess mixed smoothness, i.e., they are C1 in regular regions, while the
smoothness near extraordinary vertices, i.e., vertices with valence different from four, is reduced.
To be precise, they are C1 smooth at all vertices (including extraordinary vertices) and across all
edges except for the ones emanating from an extraordinary vertex. Moreover, while they are de-
fined to be biquadratic on all regular elements, they are piece-wise biquadratic splines (with one
inner knot in each direction) on all elements that are neighboring an extraordinary vertex. Details
can be found in [11]. As a consequence, a patch based representation of Almost-C1 splines takes
functions that are in S(2, 1,h/2) on each patch, where almost all basis functions are in S(2, 1,h),
except a few basis functions supported in a 1-ring neighbourhood of extraordinary points (the
number depends on the valence).

A central feature of Almost-C1 splines is the mixed smoothness imposition described above.
In particular, this choice of mixed smoothness only depends on the current refinement level of
the mesh. That is, standard C1-smoothness is enforced across all edges at the current refinement
level except the ones that are incident upon extraordinary vertices, where only C0 smoothness is
enforced. Additionally, these smoothness conditions are combined with G1 smoothness imposi-
tion at each extraordinary vertex. This means that almost-C1 splines do not yield nested spaces
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when refining. As a result, the refinement process essentially amounts to a projection of coarse
Almost-C1 splines onto the refined Almost-C1 spline space. This projection can be chosen in
many different ways and can have a significant impact on the limit surface description as well as
isogeometric simulations using these spaces. In [11] a smoothing and refinement procedure is
proposed that results in a C1-smooth limit surface for sufficiently regular input data.

Let us briefly summarize the refinement procedure here. We assume that we are given a quad
mesh and associate a control point with each face of the mesh. The initial smoothing step guaran-
tees that all control points associated to the one ring around an extraordinary vertex are coplanar.
Having given such an initial control point grid, we then refine the geometry using explicit sub-
division rules as specified in [11, 102]. The rules are the same as for quadratic tensor-product
B-splines in regular regions and maintain the coplanarity near extraordinary vertices.

In sum, the core ideas behind the Almost-C1 spline construction are the following:

• Degree, regularity, continuity
The spline space locally reproduces biquadratic polynomials and it is sufficiently smooth
to be able to solve fourth order problems.

• Limitations on construction
The splines can be constructed on fully unstructured quadrilateral meshes, in particular,
those that contain both interior and boundary extraordinary vertices.

• Nestedness
Since the spaces are not nested, the convergence behavior of Almost-C1 splines depends
on how the geometry parameterization is refined.

• Refinement procedure
An initial geometry and a refinement procedure can be constructed in such a way, that the
limit geometry parameterization is normal continuous everywhere.

Thus, the concept introduced in [11] is quite flexible, since the initial smoothing procedure
and the refinement procedure are not unique and can be tailored to the needs coming from geo-
metric modeling, e.g., one may want to reproduce Doo-Sabin subdivision surfaces, thus having
to modify the subdivision rule for refinement accordingly. The spline space that is introduced
on each refinement level can be seen as a simple hole-filling construction, which is sufficient for
numerical analysis.

3.5. Conclusions

In this section, a summary of the construction and the properties of the analysis-suitable G1

(AS-G1), the approximate C1 (Approx. C1), the degenerate patches (D-patch) and the Almost-C1

methods have been provided, referring to the relevant publications for the mathematical details.
For each method, comments have been provided on the degree, regularity and continuity of the
space, on the limitations of the construction in terms of the quadrilateral mesh, on nestedness for
refinement and on the refinement procedure itself. In addition, Figs. 5 and 6 provides detailed
information on the local continuity of the constructions around an extraordinary vertex.
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(a) D-Patch (b) Almost-C1

Figure 6: Schematic representation of the continuity across element boundaries and patch interfaces for the (a) D-Patch
and (b) Almost-C1. Line styles are as in Fig. 5.

The aim of the qualitative analysis of the methods in this paper is to provide a comparison
of a set of properties and requirements of each method and their implications on their applica-
bility. While the subsections presented before provide a brief description of the properties of the
methods and the reason behind these properties and requirements, Table 1 provides a side-by-
side comparison of each method based on the subsections before. In particular, the table lists the
(i,ii) requirements on degree and regularity for the constructions, iii geometrical or topological
limitations if applicable, (iv,v) the continuity of the constructed bases in the interior and on the
interfaces and element boundaries and vi nestedness of the constructed basis.

Following from Table 1, the requirements for construction of the unstructured spline bases
are summarized in Fig. 7 as pre-processing conditions that have to be satisfied for each unstruc-
tured spline construction in the process depicted in Fig. 2. The degree and regularity conditions
(cf. i,ii in Table 1) must be satisfied for each construction, e.g. by performing projections on
suitable spline spaces or by knot insertion routines. Furthermore, the geometric or topological
limitations (cf. iii in Table 1) impose additional constraints that the geometry must satisfy.

4. Quantitative comparison

In this section a quantitative comparison between the methods provided in Section 3 is pro-
vided. In addition, variational coupling methods are compared if applicable. The quantitative
comparison is composed of various benchmark problems, each providing a different conclusion
with respect to the methods considered:

Biharmonic problem on a planar domain (Section 4.1) The first example entails solving the
biharmonic problem on a planar domain. The goal of this example is to assess the con-
vergence properties of all considered unstructured spline constructions, hence the problem
will be solved on a simple analysis-suitable geometry without EVs on the boundary, such
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Table 1: Summary of the requirements for the construction and the properties for each of the considered bases. The
construction requirements include the degree and regularity of the basis used for construction as well as geometrical
or topological properties of the input geometry. The properties include the continuity on interfaces, vertices and in the
interior of the unstructured spline construction, as well as the nestedness property.

Requirements AS-G1 Approx. C1 D-Patch Almost-C1

(i) Degree p ≥ 3 p ≥ 3 p ≥ 3 p = 2
(ii) Regularity r ≤ p − 2 r ≤ p − 1 r ≤ p − 1 r = 1
(v) Geometrical /
topological limita-
tions

Analysis-
suitability

G2 continuity BEVs: ν ≤ 3,
C1 continuity

C1 continuity

Properties AS-G1 Approx. C1 D-Patch Almost-C1

(iii) Interface &
Vertex Continuity

C1 C1 in the limit C1 C1 in the limit

(iv) Interior conti-
nuity

Cp−2 Cp−1 Cp−1 C1

(vi) Nestedness Yes No Yes No

p ≥ 3
r ≤ p − 1

p ≥ 3
r ≤ p − 2

p ≥ 2
r ≤ p − 1

p = 2
r ≤ p − 1

From Unstructured Spline Constraints

G2

geometry
Analysis

suitability

C1

geometry &
BEV ν ≤ 3

C1

geometry

To Unstructured Spline Construction

D-P
atc

h

App
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os
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Figure 7: Inside the unstructured spline pre-processing block from Fig. 2. The unstructured spline requirements are
depicted in diamond-shaped blocks for methods AS-G1, Approx. C1, D-Patch and Almost C1. The first row of require-
ments represents requirements on degree p and regularity r. If the requirement is not satisfied, the geometry might be
projected onto a space that satisfies the requirement or degree elevation or reduction steps can be performed together
with refinement operations. The second row of requirements entails the requirements on the geometry parameterization.
These diamond-shaped blocks also represent requirements that can be fixed by changing the geometry such that the re-
quirements are satisfied.
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that every method from Section 3 can be applied and compared to the manufactured solu-
tion.

Linear Kirchhoff–Love shell analysis on a surface (Section 4.2) The second example entails
solving the Kirchhoff–Love shell equation on curved domains. The goal of this example
is to demonstrate the performance of the unstructured spline construction for simple shell
problems. Therefore, comparison will be made to single-patch results and penalty coupling
from [51].

Spectral analysis on a planar domain (Section 4.3) In the third example, spectral analysis of
a plate equation is performed. The goal of this example is to assess the spectral properties
of the unstructured spline methods compared to a variational approach and a single patch,
since the spectral properties of highly continuous bases have been demonstrated to be
superior over non-smooth bases [107].

Modal analysis of a complex geometry (Section 4.4) In the fourth example, a modal analysis
is performed on a complex geometry extracted from a quad-mesh. The goal of this example
is to demonstrate the applicability and performance of the unstructured spline methods on
more complicated geometries.

Stress analysis in a curved shell (Section 4.4) Lastly, the fifth example involves the analysis of
stress fields in shells. The goal of this example is to assess the performance of unstructured
spline constructions and a penalty method when it comes to stress reconstruction in shells.
For the Kirchhoff–Love shell, the stresses are obtained by taking gradients of the deformed
geometry, hence of the solution. This means that for C1 bases, stresses are C0. This might
be unfavourable in engineering applications where local stress fields are of importance,
e.g. fatigue analysis.

In all examples except the complex geometry in Section 4.4, the domain decomposition from
Fig. 8 is used to decompose a simple domain into a domain with extraordinary vertices in the
interior. Domains with EVs on the boundary are left out of scope, since the D-patch construction
would change the outer boundaries of the domain, hence the comparison would involve a signif-
icantly different geometry. Since different methods have different constraints on the degree and
regularity of the basis, different combinations of the degree p and regularity r are tested through-
out the benchmark problems. In Table 2 the combinations of p and r and the methods that are
compared for these bases are provided. For the biharmonic problem and the spectral analysis
(Sections 4.1 and 4.3) Nitsche’s method is used for comparison, see [47] for more details. When
solving the Kirchhoff-Live shell equations, the penalty method is used for comparison, see [51]
for more details. All results are obtained using the Geometry + Simulation modules [108, 109]
and will be published in a separate publication.

As discussed in Section 3, the D-patch and Almost-C1 constructions involve a pre-smoothing
of the geometry. In case of mesh convergence results, refinements can be performed in different
ways. On the one hand, the original geometry can be refined and a new construction with a new
geometry approximation can be performed. On the other hand, the geometry resulting from the
construction in the first refinement level can be refined in a nested way, such that the geometry
does not change after the first mesh. In the quantitative comparison, all refinements are performed
in a nested way, unless specified otherwise.
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Figure 8: Multi-patch decomposition of a simple domain into six patches. The domain has two EVs in the interior
(valence 3 and 5) and no boundary EVs.

Table 2: Degree p and regularity r constraints for each considered method from Section 3, see Table 1.

p = 2, r = 1 p = 3, r = 1 p = 3, r = 2

D-patch ⋆ ⋆ ⋆
Almost-C1 ⋆
Approx. C1 ⋆ ⋆
AS-G1 ⋆
Nitsche/Penalty ⋆ ⋆ ⋆
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4.1. Biharmonic equation on a planar domain

The first benchmark entails the biharmonic equation on a planar domain. The purpose of this
example is to assess the convergence properties of the unstructured spline methods described in
Section 3. We mainly follow the structure of [47]. The biharmonic equation is solved on a unit
square Ω = [0, 1]2 with the patch segmentation from Fig. 8. The biharmonic equation is defined
by

∆2φ = f . (1)

In the present example, convergence is analysed with respect to a manufactured solution

φ̃(x1, x2) = (cos(4πx1) − 1)(cos(4πx2) − 1), (2)

such that the right-hand-side function becomes:

f (x1, x2) = 256π4(4 cos(4πx) cos(4πy) − cos(4πx) − cos(4πy)) (3)

Furthermore, on all boundaries of the domain, the manufactured solution and its derivatives are
imposed as Dirichlet and Neumann boundary conditions, respectively:

φ = φ̃(x1, x2)
∂nφ = ∂nφ̃

 on Γ, (4)

where Γ = ∂Ω, n is the unit outward normal vector on Γ. The biharmonic equation from Eq. (1)
with boundary conditions Eq. (4) can be discretized by obtaining the weak formulation, see [47],
inserting Eq. (4) and by defining an approximation of the solution φ as φh. Furthermore, a weak
coupling can be established through Nitsche’s method. For the mathematical details behind the
discretization of the biharmonic equation and optionally adding Nitsche interface coupling terms,
we refer to [9, 47]. For the D-Patch and Almost C1 constructions, the geometry is smoothed upon
construction. The geometry used for evaluation of the weak formulation is constructed by using
an L2-projection of the geometry from the coarsest space which is projected onto the smooth
basis of each refinement level. For the D-Patch, the non-negative smoothness matrix for vertex
smoothing is used. Although this matrix produces non-nested meshes, it provides the highest
rates of convergence. Furthermore, the factor β (cf. [10, sec. 5.1]) is chosen as β = 0.4 as used
by [10], or β = 1.2, and halved in each refinement level.

To evaluate the unstructured spline constructions from Section 3, the numerical approxima-
tion φh is compared to the manufactured solution φ̃ in the L2-, H1- and H2-norms on the multi-
patch segmentation from Fig. 8. The bi-linear segmentation is refined and degree elevated until
the desired degree p and regularity r from Table 2 are obtained. In addition, a Nitsche coupling
of the patches is employed for comparison.

The results for the comparison are presented in Fig. 9. For degree p = 2 and regularity
r = 1 the Almost-C1, D-patch and Nitsche coupling methods are compared. As expected, the
results show consistency between the Almost-C1, D-patch and Nitsche’s method with expected
convergence. The results also show a slight dependency on the factor β for the D-Patch. For
degree p = 3 and regularity r = 1, the Approx. C1, AS-G1, D-patch and Nitsche’s method can be
compared. The results of the Approx. C1 and AS-G1 are exactly the same, since the original ge-
ometry is analysis-suitable and contains only bi-linear patches. Then applying the Approx. C1 to
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Figure 9: Errors for the AS-G1, Approx. C1, D-Patch and Almost-C1 construction for the biharmonic problem on the
domain in Fig. 8. The L2, H1 and H2 errors with respect to the analytical solution are plotted with different line styles in
the top row. Furthermore, all results are plotted against the element size h and the expected convergence rates are given
by the triangles.

an analysis-suitable geometry with regularity p − 2, the approximate gluing data becomes exact,
hence the same as in the AS-G1 construction. The D-patch in this case shows better convergence
of the L2, H1 and H2 errors for β = 1.2 than for β = 0.4. Though, for both choices of β, the
convergence is sub-optimal, as was observed in the work by [89]. Furthermore, the L2-norm in-
creases at the last point of the D-Patch results, due to ill-conditioning of the system of equations.
Lastly, for degree p = 3 and regularity r = 2 the Approx. C1, D-patch and Nitsche’s method are
compared. The observations are as for the p = 3, r = 1 case.

Overall, the results show expected convergence behaviour for all considered spline construc-
tions compared to theoretical results and compared to a Nitsche coupling method. However, the
conditioning of the D-Patch method deteriorates the convergence behaviour of fine meshes.

4.2. Linear Kirchhoff–Love shell analysis on a surface
We solve the linear Kirchhoff–Love shell equations on two geometries to demonstrate the

convergence behaviour of the methods on curved surfaces. To this end, two benchmark examples
are considered. Firstly, a hyperbolic paraboloid surface is constructed with shape, inspired by
[110]:

r(ξ1, ξ2) =
[
ξ1 ξ2 ξ21 − ξ

2
2

]
(5)

The left-side of the hyperbolic paraboloid is clamped (u = 0) and the other sides are free. Fur-
thermore, a distributed load with magnitude 8000t is applied with t the thickness, see Fig. 10.
Secondly, an elliptic paraboloid shaped-domain is modelled, with equation

r(ξ1, ξ2) =
[
ξ1 ξ2 1 − 2

(
ξ21 + ξ

2
2

)]
(6)
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Figure 10: Hyperbolic paraboloid shell geome-
try with coordinates r(ξ1, ξ2) =
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,

ξ1, ξ2 ∈ [−1/2.1/2]. The left-edge of the hyperbolic
paraboloid is clamped, i.e. the displacements and rota-
tions are zero (u = 0 and ∂uz

∂x = 0).
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Figure 11: Elliptic paraboloid shell geometry with
coordinates r(ξ1, ξ2) =

[
ξ1 ξ2 1 − 2

(
ξ21 + ξ

2
2

)]
,

ξ1, ξ2 ∈ [−1/2.1/2]. On the corners of the domain,
the vertical displacements are set to zero uz = 0 and
one corner is fixed in-plane as well. Furthermore, a
point load with magnitude P = 108t is applied in the
middle of the geometry.

For this shape, a point load with magnitude 108t is applied in the middle of the domain. The
corners of the domain are only fixed in vertical z direction to allow sliding in the xy-plane. One
corner is fixed in all directions to create a well-posed problem. For both hyperbolic paraboloid
(Fig. 10) and elliptic paraboloid (Fig. 11) the multi-patch segmentation from Fig. 8 is used. In
both cases, the shells are modelled with a thickness of t = 0.01 [mm] and with a Saint-Venant
Kirchhoff material with Young’s modulus E = 200 [GPa] and Poisson’s ratio ν = 0.3 [-]. The
refinement procedure as described in Section 4.1 is used for the D-Patch and Almost-C1 con-
structions.

The results of both analyses are given in Figs. 12 and 13. Here, different unstructured spline
constructions are tested on patch-bases with different degrees and regularities, as reported in Ta-
ble 2. For each combination of degree p and regularity r, the energy norm Wh

int =
1
2 u⊤h Khuh is

plotted against the number of degrees of freedom, with uh the discrete displacement vector and
Kh the discrete linear stiffness matrix. From the results in Figs. 12 and 13, a few observations can
be made. Firstly, the Approx. C1 and AS-G1 methods show slow convergence on the hyperbolic
paraboloid geometry, while the convergence on the elliptic paraboloid geometry is similar to the
single-patch convergence. The slow convergence for the hyperbolic paraboloid shell is also ob-
served in [8]. Since the results of the same constructions on the elliptic paraboloid geometries do
not show slower convergence, the slow convergence is hypothetically introduced by the double
curvature with different signs of the shell. Secondly, the D-Patch and Approx. C1 show compa-
rable convergence to the penalty method on both geometries, which is slightly slower than the
convergence of the single-patch results. This is explained by the fact that the degrees of freedom
are more optimally allocated for the single-patch parameterization. Lastly, the results obtained
by the penalty method for different penalty parameters α show convergence with a rate similar to
the D-Patch and Almost-C1 methods for penalty parameters α ∈ {1, 10}. For α = 100 the penalty
method is still converging to the same solution, but convergence initiates after a few refinement
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Figure 12: Bending energy norm Wh
int =

1
2 u⊤h Khuh for the hyperboloid geometry from Fig. 10 with a patch segmentation

as in Fig. 8. The results are presented for different combinations of the degree p and regularity r for all unstructured spline
constructions. In addition, the results for a penalty method with parameter α ∈ {1, 10, 100} are provided for comparison.

steps.

4.3. Spectral analysis on a planar domain

In this example, the spectral properties of the unstructured spline constructions on a multi-
patch domain are considered. From [4] it is known that isogeometric analysis has the advan-
tage over C0 Finite Element Analysis with respect to spectra for eigenvalue problems. Smooth
isogeometric discretization provide converging spectra with spline degree p, whereas the spec-
tra obtained by C0 FEA diverge with p and typically have optical branches. Similarly, when
patches with C0 continuity are considered, optical branches are introduced and the accuracy of
the spectral approximation decreases [111]. In this benchmark problem, we compare the basis
constructions from Table 2 on Fig. 8 on their spectral properties. For Nitsche’s method, we use
different values for the coupling parameter to assess its influence on the spectrum.

For the problem at hand, we consider a unit-square domain with parametric lay-out from
Fig. 8 for simplicity. We consider modal analysis using the plate equation. The stiffness operator
of the free vibration plate equation is similar to the biharmonic equation from Eq. (1), and the
inertia is included on the right-hand-side:

D∆2w = −ρt
∂2w
∂τ2 (7)

Assuming that w(x, y, τ) is harmonic, i.e. w(x, y, τ) = ŵ(x, y) exp{iωτ} with ω a frequency, the
equation simplifies to

D∆2ŵ = ω2 ∂
2ŵ
∂τ2 . (8)

Here, D = Et3/(12(1 − ν2)) is the flexural rigidity of the plate with E = 105 [Pa] the Young’s
modulus of the plate, t = 10−2 [m] the thickness and ν = 0.2 [-] the Poisson’s ratio. Furthermore,

24



102 104 106
0

2,000

4,000

6,000

#DoFs

W
h in

t

p = 2, r = 1

102 104 106

#DoFs

p = 3, r = 1

102 104 106

#DoFs

p = 3, r = 2

Single-Patch Penalty α = 1 Penalty α = 10 Penalty α = 100
D-Patch Approx. C1 AS-G1 Almost-C1

Figure 13: Bending energy norm Wh
int =

1
2 u⊤h Khuh for the paraboloid geometry from Fig. 11 with a patch segmentation as

in Fig. 8. The results are presented for different combinations of the degree p and regularity r for all unstructured spline
constructions. In addition, the results for a penalty method with parameter α ∈ {1, 10, 100} are provided for comparison.

ρ = 105 [kg] is the material density. Equation (8) is a generalized eigenvalue problem with
eigenpairs (ωi, vi) where ωi is the ith eigenfrequency and vi the ith mode shape. The mode shape
for a simply supported unit plate with n × m half-waves is given by

vnm(x, y) = sin (nπx) sin (mπy) (9)

with corresponding eigenfrequency

ωnm = (n2 + m2)π2

√
D
ρt
. (10)

In addition, the numerical solution to Eq. (8) is obtained by solving the following generalized
eigenvalue problem

D
∫
Ω

∆w∆φ dΩ = ω2ρt
∫
Ω

uφ dΩ (11)

With φ a test function, see Section 4.1. In further representation of the solutions, we employ the
index i such that ωi < ωi+1 and we use the subscript h for numerically obtained solutions.

Figure 14 presents the spectra for different degrees, regularities and for different methods.
Here, the vertical axis represents the ratio of the numerically obtained eigenfrequency over the
analytical eigenfrequency with index i, thus ωh,i/ωi. The horizontal axis represents the fraction
of the eigenfrequency index i over the total number of eigenmodes. The total number of eigen-
modes is equal to the number of degrees of freedom in the system. The results are presented for
the degrees and regularities as in Table 2.

Firstly, the p = 2, r = 1 plot shows that Nitsche’s method oscillates for all considered values
of the penalty parameter. Furthermore, in the part where it is not oscillating, the ratio ωi.h/ωi is
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Figure 14: Eigenvalue spectra for the biharmonic eigenvalue problem on the domain from Fig. 8. The horizontal axes
depict the eigenvalue index i over the total number of eigenvalues N. The vertical axes represent the numerical eigenvalue
ωi,h over the analytical eigenvalue ωi, both with index i. The results are plotted for different combinations of the degree
p and regularity r of the basis. The results for a Nitsche method are given for different penalty parameters α.

higher than for the D-patch and Almost-C1 method. Additionally, the D-patch and Almost-C1

methods show a significant difference with respect to the single patch result, which can be ac-
counted to the non-Cartesian multi-patch segmentation of Fig. 8 and the fact that the analytical
mode shapes are Cartesian. For the p = 3, r = 1 and p = 3, r = 2 bases similar conclusions
can be drawn. Although for the p = 3, r = 1 case the Approx. C1 method seems worse than the
D-patch method, the opposite is true for p = 3, r = 2. Hence, it can be concluded that no method
outperforms another, but that all unstructured spline constructions perform better than Nitsche’s
method.

26



4.4. Modal analysis of a complex geometry
The next example for the quantitative analysis in this paper involves the modal analysis on a

larger-scale complex geometry, depicted in Fig. 15a. The geometry is represented as a mesh con-
sisting of 15895 vertices, 31086 edges and 62172 faces. This geometry is converted to bi-linear
patches using the procedure discussed in Fig. 4 in Section 3. The interface and boundary curves
of the patches are given in Fig. 15b and the final multi-patch object is given in Fig. 15c. The latter
has 3 EVs of valence 3, 10 EVs of valence 5 and 16 bEVs. Moreover, the material parameters
specified for a steel material. That is, the density of the material is ρ = 7850 ·10−6 [tonnes/mm3],
the shell thickness is t = 10 [mm], the Young’s modulus is E = 210 ·103 [MPa] and the Poisson’s
ratio is ν = 0.3 [−]. All the sides of the geometry are kept free, meaning that the modal analysis
results will consist of six modes with zero eigenfrequencies: the rigid body modes. In the sequel,
we list the results for deformation modes only.

After the creation of the linear multi-patch object, h-, p- and k-refinement steps can be per-
formed to construct a multi-basis corresponding to the patch lay-out on which unstructured
splines can be constructed. For the Almost-C1 and D-Patch constructions, the bases are con-
structed by refining and elevating the initial linear basis up to the desired degree and regularity,
after which the the Almost-C1 and D-Patch basis and geometry are computed. An Almost-C1

geometry is provided in Fig. 15c. For the Approx. C1 and AS-G1 methods, the construction of
a basis from an arbitrary geometry obtained from the procedure mentioned above is not always
possible. As can be seen in Fig. 7, the Approx. C1 requires a geometry that is G2 continuous
to find approximations of the gluing data. The AS-G1 construction requires an analysis-suitable
geometry, which can be constructed following [83]. With the geometry from Fig. 15c, which
is at most C1, the construction of the Approx. C1 fails due to the G2 condition. A remedy for
this would be to construct a geometry with geometric continuity G2 using the fitting algorithm
from [112]. Furthermore, an AS-G1 construction for the geometry in Fig. 15c has not been con-
structed because the algorithm for the construction of an analysis-suitable parameterization [83]
is not demonstrated on large scale. Furthermore, penalty methods have been used in the context
of modal analysis on a 27 patch composite wind-turbine blade in [51], where the variation of the
element size of interface elements seems rather small. In the present paper, an attempt was made
to apply the penalty method on the geometry in Fig. 15c, but unidentifiable vibration modes were
obtained, possibly because of the large variation of element lengths across the interfaces of the
domain, challenging the determination of a suitable penalty parameter α.

Table 3 presents the eigenfrequencies for the first four deformation modes of the car side
panel for the D-Patch and the Almost-C1 constructions with degree p = 2 and regularity r = 1
for the Almost-C1 construction and with (p, r) = (2, 1), (p, r) = (3, 1) and (p, r) = (3, 2) for
the D-Patch. Figure 16 provides the corresponding mode shapes on the D-Patch geometry with
p = 3, r = 2 and the mode shapes have been qualitatively matched to construct Table 3. From
these results, it can be observed that the Almost-C1 and D-Patch methods provide eigenfrequen-
cies in the same range and that the eigenfrequencies are mostly converging in the second digit.
Moreover, the eigenfrequencies of the D-Patch and Almost-C1 methods for coarse meshes and
p = 2, r = 1 already provide reasonable estimates compared to higher degrees and refinements.
On the other hand, the results obtained using an ABAQUS S4R element show convergence in the
second digit, and slightly lower frequencies than the IGA results, possibly because the FEM uses
a different geometry approximation. Overall, it can be concluded from this benchmark prob-
lem that the Almost-C1 and D-Patch are more robust for industrial geometries compared to the
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(a) Original quad mesh with 15895 vertices, 31086 edges and 62172 faces.

(b) Interface (green) and boundary (red) curves.

(c) Final multi-patch segmentation with 307 patches.

Figure 15: Geometry of the side panel of a car. The original mesh (a) is traced with the procedure from Fig. 4, yielding a
set of boundary and interface curves (b). From these curves, the multi-patch segmentation (c) for isogeometric analysis
is constructed following Fig. 4c.
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Table 3: Eigenfrequencies of the Almost-C1 and D-Patch constructions for the car geometry in Fig. 15. The results of an
ABAQUS FEA simulation using the S4R element are provided as a reference. The mode-shapes are plotted in Fig. 16.

Method # DoFs Mode 1 Mode 2 Mode 3 Mode 4

Almost-C1, p = 2, r = 1

13,731 15.740 25.567 43.829 56.654
49,758 15.762 25.564 43.429 56.778
189,654 15.776 25.552 43.269 56.785
740,814 15.774 25.531 43.177 56.746

D-Patch, p = 2, r = 1
49,437 15.785 25.607 43.641 56.902
189,333 15.780 25.561 43.323 56.807
740,493 15.775 25.533 43.191 56.748

D-Patch, p = 3, r = 1 136,839 15.749 25.593 43.348 56.786
630,459 15.760 25.581 43.231 56.801

D-Patch, p = 3, r = 2 71,760 15.771 25.539 43.224 56.744
226,524 15.755 25.582 43.235 56.807

ABAQUS S4R
10mm 126,966 15.303 24.881 42.629 54.887
5mm 440,076 15.224 24.780 42.516 54.627
2.5mm 1,653,030 15.119 24.640 42.338 54.277

Approx. C1 and AS-G1 methods. Furthermore, these methods are parameter-free, making them
robust also with respect to penalty methods.

4.5. Stress analysis in a curved shell

An interesting application for smooth unstructured spline construction is for the use of thin
shell analysis for engineering applications. Not only displacements (Section 4.2) or vibrations
(Section 4.4) are of interest, but also stress evaluations, for example for fatigue analysis. In
the last example, we demonstrate the performance of all methods in Table 2 on the evaluation
of stresses in a curved Kirchhoff–Love shell. Since the Kirchhoff–Love shell formulation is
displacement-based, the displacements are C1 continuous across patch interfaces for C1 con-
structions. The stresses, however, are based on the gradients of the displacements, hence their
continuity theoretically is C0 for a perfect C1 coupling. In this example, we elaborate on the Von
Mises membrane stress field resulting from the 6-patch elliptic paraboloid from Fig. 13. The
stress fields are plotted for bases with degree and regularity from Table 2 and additionally for a
basis with p = 4, r = 2. Note that the regularity r of these bases is the regularity in the patch
interior.

In Fig. 16, the stress fields for the elliptic paraboloid example from Fig. 13 are provided.
From these results, it can immediately be seen that the stress field for a single patch parameter-
ization with basis p = 2, r = 1 exposes the elements of the basis because of the C0 continuity
across elements. Similar effects are seen for the D-patch, Almost-C1 and the penalty method.
Increasing the degree of the basis while keeping the regularity the same results in a p = 3, r = 1
basis. The element continuity is still C0 for the stresses, but the higher continuity of the basis
within the element results in a slightly improved stress field, as can be seen from the single patch,
the D-patch and penalty methods. The Approx. C1 and AS-G1 methods in addition show a better
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 16: Out-of-plane deformations of the first four vibration modes of the side of the car from Fig. 15. The results on
the left represent the results obtained by the D-Patch construction and the results on the right represent results obtained
using ABAQUS (10mm). The mode shapes are all deformation modes warped by the deformation vector and plotted
over the undeformed (transparent) geometry.
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stress field around the EVs compared to the D-patch with only small wiggles in the inner contour.
Increasing the smoothness by going to p = 3, r = 2 shows that the Approx. C1 method predicts
the stress field very well over the whole domain but with the wiggles in the inner contour, and
that the D-patch suffers from the singularity at the EVs. Lastly, the p = 4, r = 2 plots show that
the wiggles in the inner contour are eliminated for the Approx. C1 and the AS-G1 methods and
that the artifacts of the D-patch around the EV are still there but to a lesser extent. Finally, the
results of the penalty method in Fig. 17 show it is able to provide an accurate representation of
the stress fields. As seen from Fig. 13, penalty factors α = 1 and α = 10 provide good conver-
gence in the bending energy norm. Indeed, the stress fields for the fixed 64 × 64 element meshes
in Fig. 17 confirm that for these penalty factors the stress fields accurately represent the single
patch stress fields, despite small artifacts around the EVs for α = 1. For a higher penalty factor
of α = 100, the stress fields following from the penalty method are not guaranteed to be accurate,
showing the downside of this method.

Overall, the stress analysis for multiple combinations and regularities shows that the Almost-
C1 method is generally unfavourable since it is only applicable for p = 2, r = 1 hence C0 stress
fields, suffering from a lack of continuity over the whole domain. This also makes the D-patch as
applicable as the Approx. C1 method in terms of degree and regularity combinations. Comparing
the D-patch with the Approx. C1 and the AS-G1 methods, it is shown that the D-patch suffers
from the singularity in the EVs when reconstructing stresses, whereas the other two methods are
able to recover the stress fields without problems. Moreover, this example has also shown the
advantage of smooth unstructured spline constructions for stress analyses, since their continuity
across (almost) all of the domain is ensured, contrary to the penalty method. Lastly, this example
shows the advantage of IGA in general over lower-order methods like FEA, since the higher-
degree bases (e.g. p = 4, r = 2) provides smooth stress fields compared to lower-degree bases
(p = 2, r = 1).

4.6. Conclusions

In this section a quantitative comparison of the AS-G1, the Approx. C1, the D-Patch and the
Almost-C1 constructions is provided. The methods have been assessed on different aspects: i)
convergence of the biharmonic equation (Section 4.1); ii) convergence of the linear Kirchhoff–
Love shell (Section 4.2); iii) eigenvalue spectrum approximation (Section 4.3); iv) application
to a large-scale complex geometry (Section 4.4) and; v) the reconstruction of stress fields (Sec-
tion 4.5). From these analyses, the following conclusions can be drawn:

• All methods converge in a theoretical setting to the same solution for the biharmonic equa-
tion (Sections 4.1 and 4.2). However, the convergence behaviour of the D-Patch method
is sub-optimal and affected by conditioning issues for large meshes. Furthermore, the Ap-
prox. C1 and AS-G1 methods give worse convergence compared to other methods for the
hyperbolic paraboloid shell but good convergence rates for the elliptic paraboloid shell
example.

• From a spectral analysis on the biharmonic equation Section 4.3 it can be concluded that
there is no best unstructured spline construction. Depending on the degree and regularity,
small difference in the eigenvalue spectra are observed between the methods. Comparing
with Nitsche’s method, however, it is concluded that the unstructured spline constructions
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Figure 17: Von Mises membrane stress fields for the single patch, unstructured splines and penalty-coupled multi-
patch paraboloid from Section 4.2 and Fig. 13 with 64 × 64 elements per patch. The results are provided for different
combinations of degree p and regularity r. The color bar represents the stress and the contours are plotted for stress levels
σV M ∈ {105, 106, 107} [MPa].
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considered in this paper perform consistently better. This is also confirmed by the applied
modal analysis on the car geometry Section 4.4, where penalty method fails to find accurate
eigenfrequencies, possibly because of an unsuitable penalty parameter.

• From the applied modal analysis on a complex geometry, it can also be concluded that
the Almost-C1 and D-Patch constructions are more straight-forward to apply to a complex
geometry extracted from a mesh. This is due to the fact that the Approx. C1 and AS-
G1 constructions require, respectively, a G2 geometry and an analysis-suitable geometry,
which are both not trivial to construct from an originally C0-continuous mesh. Instead, the
D-Patch and Almost-C1 constructions require a C1 geometry, which is easier to construct
in general.

• From the stress fields presented in Section 4.5 following from the analysis in Section 4.2, it
can be concluded that the AS-G1 and Approx. C1 methods provide excellent stress fields.
The D-Patch also provides good stress fields, but inaccuracies are found around the EVs,
possibly because of the singularity close to the EV. The Almost-C1 method is considered
inaccurate for stress analysis because of a lack of higher-degree generalizations. Lastly,
comparison with penalty methods shows that the unstructured spline constructions gener-
ally provide a robust parameter-free approach for coupling, whereas the penalty method
requires careful selection of the penalty parameter.

Overall, our finding suggest that the Almost-C1 and D-Patch are generally easier to construct,
but for certain problems they have limited accuracy. On the other hand, the AS-G1 or Approx. C1

discretisations require more pre-processing efforts, but provide optimal convergence, hence ac-
curacy. This, however, depends on the input geometry: generic quad-meshes might require more
pre-processing efforts than C1-matching parameterisations. Lastly, the results provided in this
section have shown that strong coupling methods have certain advantages over weak methods,
and therefore provide an interesting alternative.

5. Conclusions and future work

In this paper, we provide a qualitative and quantitative comparison of unstructured spline
constructions for smooth multi-patches in isogeometric analysis. The general advantage of un-
structured spline constructions over trimming or variational coupling methods is that they are
parameter-free, do not require specialized solvers and are typically once constructed in a shape
optimization workflow. The goal of this paper is to compare the analysis-suitable G1 (AS-G1)
the approximate C1 (Approx. C1), the degenerate patches (D-Patch) and the Almost-C1 construc-
tions with respect to qualitative aspects (i.e. constraints for application) and quantitative aspects
(i.e. numerical performance).

From the qualitative analysis, it follows that each method requires a different set of con-
straints to be satisfied before the constructions can be applied, see Fig. 7 and Table 1. Although
most constraints can theoretically be satisfied, they are important to keep in mind when apply-
ing these methods. Degree and regularity constraints can be satisfied by knot insertion routines
or re-fitting, which are relatively straight-forward. The constraint on analysis-suitability for the
AS-G1 and the constraint on G2 continuity for the Approx. C1 method require dedicated repa-
rameterization routines, such as the one presented by [83]. The fact that D-Patches are restricted
to geometries without boundary extraordinary vertices requires redefinition of the quadrilateral
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mesh. Lastly, the fact that the Almost-C1 method is only defined for bi-quadratic bases (p = 2),
restricting inter-element continuity to C1 through the whole domain. Depending on the applica-
tion and the availability of existing routines in software, different unstructured spline construc-
tions are favourable.

From the quantitative analysis, some conclusions can be drawn on the considered unstruc-
tured spline constructions and between unstructured spline constructions compared to variational
methods such as Nitsche’s method or a penalty method. From the analysis, it is in general ob-
served that depending on the problem type, the different methods have their advantages and
disadvantages. Firstly, simple biharmonic equations (see Section 4.1) and linear shells (see Sec-
tion 4.2) provide good results for all methods. However, the AS-G1 and Approx. C1 meth-
ods showed slow convergence for the double-curved shell and the D-patch suffers from ill-
conditioning for fine meshes. The Almost-C1 provides good results in general, however it is
only applicable on bi-quadratic splines. Secondly, all methods show superiority over a Nitsche’s
method for the computation of an eigenvalue spectrum for plate vibrations (see Section 4.3) and
no significant differences between the unstructured spline constructions are noted. Thirdly, the
D-Patch and Almost-C1 show straight-forward applicability on the problem of a complex geom-
etry (see Section 4.4) compared to the pre-processing efforts that are required for the Approx. C1

and AS-G1 methods. For the penalty method, no suitable penalty parameter was found, and
probably optimal penalty parameters should be chosen per interface rather than globally. Lastly,
the AS-G1 and Approx. C1 methods provide superior results for stress reconstruction, where the
D-Patch suffers around the EVs due to its singular parameterization and the Almost-C1 method
provides bad results due to a lack of higher degrees.

In conclusion, both comparisons provide a good overview of the applicability of the methods
with respect to the requirements needed to construct them, on the notions of nestedness and in
general on the performance of the methods. Overall, it can be concluded from both analyses
that among the compared methods, there is no general best construction. More precisely, the
quantitative analysis shows that different methods perform differently in different applications,
given that they can be constructed. Furthermore, with the backgrounds and properties provided
in the qualitative analysis section, we hope that the present paper provides valuable insights for
application of the considered methods to multi-patch problems.

In addition, the comparisons in the present paper provide directions for the improvements of
the considered methods. For the AS-G1 and Approx. C1 methods, restrictions on geometry and
parameterization are a bottleneck in the industrial applications of these methods. Only for bi-
linear multi-patch geometries, their application is straight-forward. Therefore, it is recommended
to expand the applicability of these methods by developing dedicated geometric pre-processing
routines. For the D-Patch construction, the limitation of the construction of the basis near ν > 3
boundary EVs calls for the development of routines to eliminate these EVs in quadrilateral multi-
patches, as discussed in the qualitative comparison. Furthermore, the example of the bi-harmonic
equation has shown that the D-Patch can suffer from ill-conditioned system, hence development
of pre-conditioners for D-Patch constructions is advised. Lastly, although the Almost-C1 resolves
the downsides of the D-Patch construction, its restriction on the degree of the spline-space is a
major disadvantage when plotting stress fields in shell analysis. Therefore, for the Almost-C1

construction it is recommended to explore expansion to higher degrees.
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[20] J. Parvizian, A. Düster, E. Rank, Finite cell method, Computational Mechanics 41 (1) (2007) 121–133. doi:

10.1007/s00466-007-0173-y.
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[41] M. Ruess, D. Schillinger, A. I. Özcan, E. Rank, Weak coupling for isogeometric analysis of non-matching and
trimmed multi-patch geometries, Computer Methods in Applied Mechanics and Engineering 269 (2014) 46–71.
doi:10.1016/J.CMA.2013.10.009.

[42] D. Schillinger, I. Harari, M.-C. Hsu, D. Kamensky, S. K. F. Stoter, Y. Yu, Y. Zhao, The non-symmetric Nitsche
method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements,
Computer Methods in Applied Mechanics and Engineering 309 (2016) 625–652. doi:10.1016/j.cma.2016.
06.026.

[43] Q. Hu, F. Chouly, P. Hu, G. Cheng, S. P. Bordas, Skew-symmetric Nitsche’s formulation in isogeometric analy-
sis: Dirichlet and symmetry conditions, patch coupling and frictionless contact, Computer Methods in Applied
Mechanics and Engineering 341 (2018) 188–220. arXiv:1711.10253, doi:10.1016/J.CMA.2018.05.024.

[44] Y. Guo, M. Ruess, Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures,
Computer Methods in Applied Mechanics and Engineering 284 (2015) 881–905. doi:10.1016/J.CMA.2014.
11.014.

[45] J. Benzaken, J. A. Evans, S. F. McCormick, R. Tamstorf, Nitsche’s method for linear Kirchhoff–Love shells:
Formulation, error analysis, and verification, Computer Methods in Applied Mechanics and Engineering 374.
doi:10.1016/J.CMA.2020.113544.

[46] X. Du, G. Zhao, W. Wang, H. Fang, Nitsche’s method for non-conforming multipatch coupling in hyperelastic iso-
geometric analysis, Computational Mechanics 65 (3) (2020) 687–710. doi:10.1007/s00466-019-01789-x.

[47] P. Weinmüller, T. Takacs, An approximate C1 multi-patch space for isogeometric analysis with a comparison
to Nitsche’s method, Computer Methods in Applied Mechanics and Engineering 401 (2022) 115592. doi:10.

1016/j.cma.2022.115592.
[48] R. Bouclier, J. C. Passieux, A Nitsche-based non-intrusive coupling strategy for global/local isogeometric

structural analysis, Computer Methods in Applied Mechanics and Engineering 340 (2018) 253–277. doi:

10.1016/j.cma.2018.05.022.
[49] T. X. Duong, F. Roohbakhshan, R. A. Sauer, A new rotation-free isogeometric thin shell formulation and a corre-

sponding continuity constraint for patch boundaries, Computer Methods in Applied Mechanics and Engineering
316 (2017) 43–83. doi:10.1016/j.cma.2016.04.008.

[50] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, K. U. Bletzinger, Analysis in computer aided de-
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[69] A. Apostolatos, K.-U. Bletzinger, R. Wüchner, Weak imposition of constraints for structural membranes in tran-
sient geometrically nonlinear isogeometric analysis on multipatch surfaces, Computer Methods in Applied Me-
chanics and Engineering 350 (2019) 938–994. doi:10.1016/J.CMA.2019.01.023.

[70] C. Hesch, U. Khristenko, R. Krause, A. Popp, A. Seitz, W. Wall, B. Wohlmuth, Frontiers in Mortar Methods
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