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Abstract

Let f : [0, 1]d → R be a completely monotone integrand as defined by
Aistleitner and Dick (2015) and let points x0, . . . ,xn−1 ∈ [0, 1]d have a
non-negative local discrepancy (NNLD) everywhere in [0, 1]d. We show
how to use these properties to get a non-asymptotic and computable upper
bound for the integral of f over [0, 1]d. An analogous non-positive local
discrepancy (NPLD) property provides a computable lower bound. It has
been known since Gabai (1967) that the two dimensional Hammersley
points in any base b > 2 have non-negative local discrepancy. Using the
probabilistic notion of associated random variables, we generalize Gabai’s
finding to digital nets in any base b > 2 and any dimension d > 1 when
the generator matrices are permutation matrices. We show that permu-
tation matrices cannot attain the best values of the digital net quality
parameter when d > 3. As a consequence the computable absolutely sure
bounds we provide come with less accurate estimates than the usual dig-
ital net estimates do in high dimensions. We are also able to construct
high dimensional rank one lattice rules that are NNLD. We show that
those lattices do not have good discrepancy properties: any lattice rule
with the NNLD property in dimension d > 2 either fails to be projection
regular or has all its points on the main diagonal.

Keywords: Associated random variables, Digital nets, Rank one lattices

1 Introduction

Quasi-Monte Carlo (QMC) sampling [7, 26] can have much better asymptotic
accuracy than plain Monte Carlo (MC), but it does not come with the usual
statistical error estimates that MC has. Those estimates can be recovered by
randomized QMC (RQMC) [21, 29] based on independent replicates of QMC. In
this paper we consider an alternative approach to uncertainty quantification for
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QMC. For some special sampling points with a non-negative local discrepancy
(NNLD) property described later and a suitably monotone integrand f , we can
compute upper and lower bounds on the integral µ of f over the unit cube in
d dimensions. Methods based on random replication can provide confidence
intervals for µ that attain a desired level such as 95% or 99% asymptotically,
as the number of replicates diverges. The method we consider attains 100%
coverage for finite n.

Unlike the well-known bounds derived via the Koksma-Hlawka inequality
[19], these bounds can be computed by practical algorithms. Convex optimiza-
tion [2] has the notion of a certificate: a computable bound on the minimum
value of the objective function. The methods we present here provide certificates
for multidimensional integration of a completely monotone function.

This improved uncertainty quantification comes at some cost. Our versions
of the method will be more accurate than MC for dimensions d 6 3, as accurate
as MC (apart from logarithmic factors) for d = 4 and less accurate than MC
for d > 5. They also require some special knowledge of the integrand.

The problem is trivial and the solution is well known for d = 1. If f : [0, 1]→
R is nondecreasing then

1

n

n−1∑
i=0

f
( i
n

)
6
∫ 1

0

f(x) dx 6
1

n

n∑
i=1

f
( i
n

)
. (1)

These bracketing inequalities hold even if some of the quantities in them are
±∞. This works because f is nondecreasing, the evaluation points in the left
hand side are ‘biased low’ and those in the right hand side are ‘biased high’.

To get a multivariate version of (1), we generalize the notion of points biased
low to points biased towards the origin in terms of a non-negative local discrep-
ancy (NNLD) property of the points. This property was shown to hold for two
dimensional Hammersley points by Gabai [12] in 1967. We couple the NNLD
property with a multivariate notion of monotonicity called complete monotonic-
ity [1].

This paper is organized as follows. Section 2 gives some notation and then
defines the properties of point sets and functions that we need. Theorem 1 there
establishes the bracketing property we need. Section 3 gives fundamental prop-
erties of NNLD point sets with an emphasis on projection regular point sets.
Only very trivial lattice rules, confined to the diagonal in [0, 1]d, can be both
projection regular and NNLD. Cartesian products preserve the NNLD prop-
erty as well as an analogous non-positive local discrepancy property. Section 4
compares our bounds to those obtainable from the Koksma-Hlawka inequality.
Section 5 shows that digital nets whose generator matrices are permutation
matrices produce NNLD point sets. Section 6 gives a construction of rank one
lattice rules that are NNLD. We conclude with a discussion and some additional
references in Section 7.
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2 Definitions and a bound

Here we define a non-negative local discrepancy (NNLD) property of the points
we use as well as a complete monotonicity criterion for the integrand. We then
establish bounds analogous to (1). First we introduce some notation.

2.1 Notation

For integer b > 1, let Zb = {0, 1, . . . , b − 1}. The set {1, 2, . . . , d} of variable
indices is denoted by [d]. For u ⊆ [d], we use |u| for the cardinality of u
and −u for the complement [d] \ u, especially in subscripts and superscripts.
The singleton {j} may be abbreviated to just j and −{j} to −j. For points
x, z ∈ [0, 1]d and a set u ⊆ [d] = {1, 2, . . . , d} let xu:z−u be the hybrid point
with j’th component xj for j ∈ u and j’th component zj for j 6∈ u.

The points with all coordinates 0 or all coordinates 1 are denoted by 0 and
1 respectively. When it is necessary to specify their dimension we use 0d and
1d. The notation 1{A} is for an indicator variable equal to 1 when A is true
and 0 otherwise.

For integer d > 1 we will use the following precedence notion on [0, 1]d. For
x, z ∈ Rd we say that x 6 z when xj 6 zj holds for all j = 1, . . . , d.

2.2 Non-negative local discrepancy

A QMC rule is given by a list of points x0, . . . ,xn−1 ∈ [0, 1]d and it yields the
estimate

µ̂ =
1

n

n−1∑
i=0

f(xi)

of µ. We refer to these points as a point set, Pn, though in any setting where
some xi are duplicated we actually treat Pn as a multiset, counting multiplicity
of the points. The local discrepancy of Pn at z ∈ [0, 1]d is given by

δ(z) = δ(z;Pn) = V̂OL([0, z))−VOL([0, z))

where VOL is Lebesgue measure and V̂OL is the empirical measure with

V̂OL([0, z)) =
1

n

n−1∑
i=0

1xi∈[0,z).

That is, VOL is U[0, 1]d while V̂OL is U(Pn). The quantityD∗n = supz∈[0,1]d |δ(z)|
is called the star discrepancy of the point set Pn.

Definition 1. The point set Pn with points x0, . . . ,xn−1 has non-negative local
discrepancy (NNLD) if

δ(z) > 0 (2)

for all z ∈ [0, 1]d.
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A distribution for x ∈ Rd is positively lower orthant dependent [32] if

Pr(x 6 z) >
d∏
j=1

Pr(xj 6 zj)

for all z ∈ Rd. A sufficient condition for NNLD is that the U(Pn) distribution on
[0, 1]d is positively lower orthant dependent and that the marginal distributions
U{x0,j , . . . , xn−1,j} for each j = 1, . . . , d are stochastically smaller than U[0, 1].
The random variable X is stochastically smaller than the random variable Y if
Pr(X 6 z) > Pr(Y 6 z) for all z ∈ R and in that case we also say that the
distribution of X is stochastically smaller than that of Y . There is a related
notion of positive upper orthant dependence as well as two related notions of
negative orthant dependence, both upper and lower.

In one dimension, the points 0, 1/n, . . . , (n− 1)/n are NNLD. As mentioned
earlier, n = bm Hammersley points in base b > 2 and dimension d = 2 are
NNLD [12]. Those Hammersley points are constructed as follows. For 0 6
i < n write i =

∑m
k=1 ai(k)bk−1 for digits ai(k) ∈ {0, 1, . . . , b − 1} and set

i′ =
∑m
k=1 ai(m − k + 1)bk−1. Then the i’th such Hammersley point is xi =(

i/n, i′/n
)

for i = 0, 1, . . . , n − 1. Some further properties of the Hammersley
points, related to the work of [12], are given by [3].

We will also make use of a complementary property: non-positive local dis-
crepancy.

Definition 2. The point set Pn with points x0, . . . ,xn−1 has non-positive local
discrepancy (NPLD) if

δ(z) 6 0 (3)

for all z ∈ [0, 1]d.

One of our techniques is to take NNLD points xi and reflect them to 1−xi
to get points that oversample rectangular regions near 1. In doing so we will
need to take care of two issues. One is that for d > 2, the complement of a
hyperrectangle [0,a) under this transformation is not another hyperrectangle.
The other is that even for d = 1, the complement of a half open interval [0, a)
is a closed interval [a, 1].

To handle these issues we make two observations below. First, for an n-point
set Pn ⊂ [0, 1]d let us additionally define the local discrepancy with respect to
closed boxes:

δ(z) = δ(z;Pn) = V̂OL([0, z])−VOL([0, z]).

Observation 1. The point set Pn has the NNLD property if and only if

δ(z) > 0 for all z ∈ [0, 1]d. (4)

This is due to the following reasoning: First, we always have δ(z) > δ(z) for all
z ∈ [0, 1]d. Thus the NNLD property of Pn implies (4). For the converse, we
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assume that Pn satisfies (4) and consider two cases. If zj = 0 for some j ∈ [d]
then δ(z) = 0. If instead minj∈[d] zj > 0 then

δ(z) = lim
ε↓0

δ(z − ε1).

Either way, (2) holds, i.e., Pn is NNLD.

Observation 2. The condition

δ(z) 6 0 for all z ∈ [0, 1]d (5)

implies that Pn has the NPLD property, since δ(z) 6 δ(z) for all z ∈ [0, 1]d. As
a partial converse, if Pn ⊂ [0, 1)d ∪ {1}, then the NPLD property also implies
condition (5). Indeed, in that case we have δ(1) = 0 and

δ(z) = lim
ε↓0

δ(z + ε1) 6 0 for all z ∈ [0, 1)d.

Now consider for any z ∈ [0, 1)d and any ∅ 6= u ( [d] the closed anchored box
[0, (zu:1−u)]. Due to Pn ⊂ [0, 1)d ∪ {1}, it contains exactly the same number
of points from Pn as the anchored box [0, (zu:z∗−u)], where z∗ is defined by
z∗j := max({x0,j , . . . , xn−1,j} \ {1}) for j = 1, . . . , d taking z∗j = 0 in case it is
max(∅). Consequently, we have

δ(zu:1−u) 6 δ(zu:z∗−u) 6 0.

Hence for d = 1 we have equivalence of (5) and NPLD for all Pn ⊂ [0, 1].
But if d > 2, then for arbitrary Pn ⊂ [0, 1]d not contained in [0, 1)d ∪ {1} the
NPLD property does not necessarily imply condition (5), as a trivial example
with d = 2, n = 1, Pn = {(1, 1/2)} shows: δ(z) = −VOL([0, z)) 6 0 for all
z ∈ [0, 1]d, but δ((1, 1/2)) = 1− 1/2 = 1/2 > 0.

For d = 1 if the points in P̃n are 1− xi for the points xi of Pn, then

δ(z;Pn) + δ(1− z; P̃n) = 0,

i.e., δ(z;Pn) = −δ(1−z; P̃n) for all z ∈ [0, 1]. Then due to Observations 1 and 2,
reflections of NNLD points are NPLD points and vice versa for d = 1.

In addition to reflection, we consider another useful transformation. Let x̃i
be the base b Hammersley points for i = 0, . . . , n− 1 where n = bm and d = 2.
Then [4] show that

xi = (1/n+ x̃i,1, 1− x̃i,2) (6)

are NPLD.
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2.3 Completely monotone functions

Here we define completely monotone functions, describing them in words before
giving the formal definition. If x 6 z, then a completely monotone function
can increase but not decrease if any xj is replaced by zj . That is f(x−j :zj) −
f(x) > 0 always holds. Next, the size of this difference can only be increasing as
some other component xk is increased to zk, so certain differences of differences
must also be non-negative. This condition must hold for anywhere from 1 to d
applications of differencing. The |u|-fold differences of differences are alternating
sums of the form

∆u(x, z) =
∑
v⊆u

(−1)|u−v|f(x−v:zv).

Note that the coefficient of f(x−u:zu) in ∆u(x, z) is positive.

Definition 3. The function f : [0, 1]d → R is completely monotone if ∆u(x, z) >
0 for all non-empty u and all x, z ∈ [0, 1]d with xu 6 zu.

In [1], Aistleitner and Dick use completely monotone functions to analyze
the total variation of f in the sense of Hardy and Krause, denoted by VHK(f).
See [28] for an account. From Theorem 2 of [1], if VHK(f) < ∞ then we can
write

f(x) = f(0) + f+(x)− f−(x)

where f+ and f− are completely monotone functions with f+(0) = f−(0) = 0.
They call f+−f− the Jordan decomposition of f . The functions f± are uniquely
determined.

If f is right-continuous and VHK(f) <∞ then f(x) = ν([0,x]) for a uniquely
determined signed Borel measure ν, by Theorem 3 of [1]. Let this signed measure
have Jordan decomposition ν = ν+−ν− for ordinary (unsigned) Borel measures
ν±. Then f±(x) = ν±([0,x] \ {0}).

The completely monotone functions that we study take the form

f(x) = f(0) + λ ν([0,x]) (7)

where ν is an arbitrary probability measure on [0, 1]d (or, more precisely, on
the Borel σ-algebra of [0, 1]d) and λ > 0. Note that every right-continuous
completely monotone function f on [0, 1]d can be represented in that way, see,
e.g., [10, II.5.11 Korrespondenzsatz, p. 67].

If ν is absolutely continuous with respect to the Lebesgue measure, then we
may represent f , due to the Radon-Nikodym theorem, as

f(x) = f(0) + λ

∫
[0,x]

g(z) dz (8)

where g is a probability density on [0, 1]d, i.e., a non-negative Lebesgue inte-
grable function on [0, 1]d with integral equal to one.
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2.4 Basic result

Here we present the basic integration bounds. To bracket µ we use up to 2n
function evaluations using n each for the lower and upper limits. For some
constructions it is possible that some function evaluations might be usable in
both limits, reducing the cost of computation. For d = 1 we only need n + 1
evaluations.

Theorem 1. Let f be a completely monotone function of the form (7). Let

Pn = {x0, . . . ,xn−1} ⊂ [0, 1]d, and put P̃n = {1− x0, . . . ,1− xn−1}.

(i) Let P̃n have non-negative local discrepancy. Then

µ = µ̂ =
1

n

n−1∑
i=0

f(xi) >
∫
[0,1]d

f(x) dx. (9)

(ii) Let Pn have non-positive local discrepancy. If additionally either Pn ⊂
[0, 1)d ∪ {1} or ν is absolutely continuous with respect to the Lebesgue
measure, then

µ =
1

n

n−1∑
i=0

f(1− xi) 6
∫
[0,1]d

f(x) dx. (10)

Proof. Without loss of generality take f(0) = 0 and λ = 1. Consequently,
f(x) = ν([0,x]) for all x ∈ [0, 1]d. We obtain

µ =

∫
[0,1]d

ν([0,x]) dx =

∫
[0,1]d

∫
[0,1]d

1z6x dν(z) dx.

Reversing the order of integration,

µ =

∫
[0,1]d

∫
[0,1]d

1z6x dx dν(z) =

∫
[0,1]d

VOL([z,1]) dν(z). (11)

Similarly,

µ̂ =
1

n

n−1∑
i=0

ν([0,xi]) =
1

n

n−1∑
i=0

∫
[0,1]d

1z6xi
dν(z)

from which

µ̂ =

∫
[0,1]d

1

n

n−1∑
i=0

1z6xi
dν(z) =

∫
[0,1]d

V̂OL([z,1]) dν(z). (12)

Combining (11) and (12) the integration error now satisfies

µ̂− µ =

∫
[0,1]d

(
V̂OL([z,1])−VOL([z,1]

)
dν(z)

=

∫
[0,1]d

δ(1− z; P̃n) dν(z), (13)
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where δ(1 − z; P̃n) is the local discrepancy of P̃n with respect to the anchored
closed box [0,1− z]. Recall that ν is a positive measure.

For part (i), let P̃n have the NNLD property. Due to Observation 1 we have

δ(1− z; P̃n) > 0 for all z ∈ [0, 1]d. Hence µ̂ > µ, establishing (9).

For part (ii), let P̃n have the NPLD property. If additionally P̃n ⊂ [0, 1)d ∪
{1}, then Observation 2 ensures that δ(1− z; P̃n) 6 0 for all z ∈ [0, 1]d, estab-
lishing µ̂ 6 µ. If instead ν is absolutely continuous with respect to the Lebesgue
measure, then we can replace δ(1−z; P̃n) in (13) by δ(1−z; P̃n) without chang-
ing the integral. Hence we get again µ̂ 6 µ. In any case, exchanging the roles
of Pn and P̃n establishes (10).

Theorem 1 provides an upper bound for µ when sampling from reflected
NNLD points. This bound will approach µ as n→∞ if those points also satisfy
D∗n → 0 as n → ∞. To get a lower bound we can use reflected NPLD points,
provided that either ν is absolutely continuous or those points all belong to
[0, 1)d ∪ {1}. The NPLD points could be those given by equation (6). We find
in Section 5 that NPLD points are not as simple to construct as NNLD points.

2.5 Example

Here is a simple example to illustrate these bounds. The integrand is known
to be completely monotone because it is a multivariate cumulative distribution
function (CDF). For x ∈ [0, 1]2 we take

f(x) = Pr(X1 6 x1, X2 6 x2) (14)

for X ∼ N (0,Σ) with Σ =
( 1 ρ
ρ 1

)
using ρ = 0.7. Due to (9), we can compute

an upper bound for µ =
∫
[0,1]2

f(x) dx by sampling at points 1 − xi where

xi ∈ [0, 1]2 are the first n = 2m Hammersley points in any base b > 2. We can
compute a lower bound for µ by first transforming Hammersley points via (6)
to get NPLD points xi and then sampling at 1−xi. Note that the point sets in
these bounds are not extensible in that the points for n = bm are not necessarily
reused for n = bm+1.

Figure 1 shows the results for n = 2m and 1 6 m 6 13. Over the given
range, n(µ− µ) increases with n while n(µ− µ)/ log(n) decreases with n. The

computed upper and lower bounds for n = 213 show that

0.5618735 6 µ 6 0.5619890.

This function is so smooth and the dimension is so small that comparable accu-
racy could be attained by standard low dimensional integration methods with
many fewer function evaluations. However, these computations took approx-
imately five seconds in R on a MacBook Air M2 laptop, using the mvtnorm

package [13, 14] to compute f . A more efficient integration could save only
about five seconds and it would not come with guaranteed bounds.
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Figure 1: The top panel shows upper and lower bounds for µ =
∫
[0,1]2

f(x) dx

using transformations of the Hammersley points and n = 2m for 1 6 m 6 13.
The bottom panel plots the difference between those upper and lower bounds
versus n, on a logarithmic scale.

3 More about NNLD points

Here we collect some observations about properties that any n > 1 NNLD
points in [0, 1]d must necessarily have. Then we use those properties to describe
constraints that the NNLD property imposes on customary QMC constructions
(lattices and digital nets). Finally we show that the NNLD and NPLD properties
are preserved by tensor products.

The first and most obvious property of NNLD points is that 0 must be one

of those points or else there is a box B = [0,a) with 0 = V̂OL(B) < VOL(B)
so that δ(a) < 0. Next it must be true that all n points belong to [0, 1− 1/n]d.
Suppose to the contrary that xi1 > 1− 1/n for some 0 6 i < n. Then for some

9



ε > 0 there exists B = [0, 1− 1/n+ ε)× [0, 1]d−1 with V̂OL(B) 6 (n− 1)/n <
VOL(B) so that xi are not NNLD. The same argument applies if xij > 1− 1/n
for any i and any j.

Trivial constructions of NNLD points have xi = (i/n)1 ∈ [0, 1]d for 0 6 i <
n. We observe that these points as well as the Hammersley points for d = 2
have variables that are positively correlated. We will use a general positive
dependence property in Sections 5 and 6 to construct more NNLD point sets.
The NPLD construction in (6) creates a negative lower orthant dependence
property for the components of xi ∈ [0, 1]2.

Many of the constructions Pn we consider are projection regular by which
we mean that the projections of Pn onto each single coordinate are equal to the
full set {0, 1/n, 2/n, . . . , (n− 1)/n}. Projection regularity is usually considered
advantageous in QMC, as it guarantees a certain structure and even distribu-
tion of the integration node set, and simplifies the derivation of error bounds.
However, combined with the NNLD property, it imposes a constraint on the
point set that we will use to rule out certain constructions.

Proposition 1. Let Pn be a point set with n points in [0, 1)d that is projection
regular. If Pn has the NNLD property, then Pn must contain the point

x∗ =

(
n− 1

n
,
n− 1

n
, . . . ,

n− 1

n

)
.

Proof. Suppose that Pn is projection regular and does not contain x∗. Then
there must exist at least one two dimensional projection Qn of Pn which does
not contain the point y∗ := (n−1n , n−1n ). Without loss of generality, assume that
Qn is the projection of Pn onto the first and second coordinates.

This implies, due to projection regularity, that at least two points of Qn do
not lie in the box [0,y∗). Thus,

δ(y∗) = V̂OL([0,y∗))−VOL([0,y∗)) 6
n− 2

n
− (n− 1)2

n2
= − 1

n2
.

Therefore, Pn has negative local discrepancy for the box [0,y∗)× [0, 1)d−2.

Proposition 1 has some consequences for well known QMC points. We
will consider digital nets and integration lattices. The most widely used and
studied integration lattices are rank one lattices. Given a generating vector
g = (g1, . . . , gd) ∈ Nd and a sample size n > 1, a rank one lattice uses points

xi =
(g1i
n
,
g2i

n
, . . . ,

gdi

n

)
mod 1

for 0 6 i < n where the modulus operation above takes the fractional part
of its argument. These n points form a group under addition modulo 1. More
general integration lattices having ranks between 1 and d can also be constructed
[6, 26, 33]. Lattice rules with ranks larger than 1 are seldom used. They also
have the group structure.
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Corollary 1. For fixed d, n > 1 there is only one projection regular lattice point
set in [0, 1)d that consists of n points and has the NNLD property, namely the
lattice point set {

0,
1

n
1,

2

n
1, . . . ,

n− 1

n
1

}
,

whose points all lie on the main diagonal of the d-dimensional unit cube [0, 1)d.

Proof. Let Pn be a projection regular lattice point set, consisting of n points
in [0, 1)d, that has NNLD. Due to Proposition 1, Pn has to contain the point
x∗ = n−1

n 1. Due to the additive group structure of Pn, we have

kx∗ mod 1 =
n− k
n

1 ∈ Pn for k = 0, 1, . . . , n− 1.

The set above has n distinct points, so they must be all of Pn.

From Corollary 1 we see, in particular, that the only projection regular rank
one lattices that are NNLD are trivial, and equivalent to taking all gj = 1.
If we also consider lattices that are not projection regular, then we can find
constructions that are NNLD and do not only consist of points on the main
diagonal of the unit cube [0, 1)d. See Theorem 3.

Now we look at (t,m, d)-nets [7, 26]. The most widely used (t,m, d)-nets are
those of Sobol’ in base b = 2. Sobol’ points require one to choose parameters
known as direction numbers, with those of [20] being especially prominent. By
considering the point x∗ = 1(1 − 1/n), we often find that such Sobol’ points
cannot be NNLD. The first and third components of xi ∈ [0, 1]d for d > 3 are
projection regular but, for 2 6 m 6 20 they fail to contain (1 − 1/n, 1 − 1/n).
Therefore the projection of the Sobol’ points onto those two dimensions fails to
be NNLD and hence the d dimensional point set is not NNLD either.

Like lattice point sets, digital (t,m, d)-nets in base b > 2 have a group struc-
ture; this time it is based on the digitwise addition modulo b, which is performed
in each component separately. Using this group structure and Proposition 1,
we obtain a corollary with a similar flavor to Corollary 1, although with less
dramatic consequences.

Corollary 2. Let d,m > 1 and b > 2. Let

αb,m =

m∑
ν=1

b−ν =
1− b−m

b− 1
.

On the one hand, any digital (t,m, d)-net in base b > 2 that is projection regular
and has the NNLD property contains the cyclic subgroup

{0, αb,m1, 2αb,m1, . . . , (b− 1)αb,m1},

which consists of b points on the main diagonal.

On the other hand, any (t,m, d)-net in base b > 2 has at most bt+d
m−t

d e

points on the main diagonal.
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Proof. Let n = bm, and let Pn be a projection regular digital (t,m, d)-net,
consisting of n points in [0, 1)d, that has NNLD. Due to Proposition 1, Pn has
to contain the point x∗ = n−1

n 1 = (b−1)αb,m1. Using the specific commutative
group addition of Pn, we see that adding up x∗ k times yields

kx∗ = (b− k)αb,m1 ∈ Pn

for k = 0, 1, . . . , b− 1.
Now let Pn be an arbitrary (t,m, d)-net in base b. Put k := dm−td e. We may

partition the half-open unit cube [0, 1)d into bm−t half-open axis-parallel boxes
(of the same shape and of volume bt−m) with side length b−k and, possibly, side
length b1−k. Due to the net property, each of these boxes contains exactly bt

points of Pn, and at most bk of the boxes have a non-trivial intersection with
the main diagonal.

The next result shows that Cartesian products of finitely many NNLD (or
NPLD) point sets are also NNLD (respectively NPLD).

Lemma 1. For positive integers d1, d2, n1 and n2, let x0, . . . ,xn1−1 ∈ [0, 1]d1

and x̃0, . . . , x̃n2−1 ∈ [0, 1]d2 be NNLD point sets. Let z0, . . . ,zN−1 ∈ [0, 1]d1+d2

for N = n1n2 be the Cartesian product of those two point sets. Then z0, . . . ,zN−1
are NNLD points. If both xi and x̃i are NPLD then zi are also NPLD.

Proof. For any z ∈ [0, 1]d1+d2 define x = z[d1] and x̃ = z−[d1]. Let VOL1, VOL2

and VOL denote Lebesgue measure on [0, 1]d1 , [0, 1]d2 and [0, 1]d for d = d1+d2,

respectively. Let V̂OL1, V̂OL2 and V̂OL be empirical measures for xi, x̃i and
zi respectively. If xi and x̃i are NNLD then

V̂OL([0d, z)) = V̂OL1([0d1 ,x))V̂OL2([0d2 , x̃))

> VOL1([0d1 ,x))VOL2([0d2 , x̃))

= VOL([0d, z)).

Therefore δ(z) > 0 and zi are NNLD. The same argument, with the inequalities
reversed, applies to the NPLD case.

4 Comparison to Koksma-Hlawka bounds

The Koksma-Hlawka inequality is

|µ̂− µ| 6 D∗nVHK(f) (15)

where D∗n denotes again the star discrepancy and VHK(f) is the total variation
of f in the sense of Hardy and Krause. We can be sure that

µ̂−D∗nVHK(f) 6 µ 6 µ̂+D∗nVHK(f)

but the endpoints of this interval are in general far harder to compute than µ
is. One difficulty is that VHK(f) is a sum of 2d − 1 Vitali variations (see [28])
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that in general are harder to compute than f itself is. However when f̃ , defined
by f̃(x) = f(1 − x) for every x, is completely monotone then it is useful to
work with an alternative definition of total variation VHK0 (see [1]). For this
definition, VHK0(f̃) = VHK(f), and VHK0(f̃) = f̃(1) − f̃(0) = f(0) − f(1),
see [1].

With an expression for total variation we still need a value or a bound for
D∗n. The computation of D∗n is expensive, but in some instances it might be
worth doing, and for a given set of points we could pre-compute D∗n. It is
possible to compute D∗n exactly at cost O(nd/2+1) for fixed d as n → ∞, see
[8]. The cost to compute D∗n is exponential in the dimension d. If n = d → ∞
together then computation of D∗n is NP-complete, see [16, 15]. Nevertheless,
there are algorithms known that provide either upper and lower bounds for D∗n
in moderate dimension, see [34], or lower bounds for D∗n even in high dimensions,
see [17]. For these and other facts about computing D∗n, cf. [9].

Then, if we have computed a value ε > D∗n(Pn) we then get an interval

µ̂± ε(f(0)− f(1))

that is sure to contain µ, when f(1 − x) is completely monotone, whether or
not Pn is NNLD.

5 Digital net constructions

The NNLD points of [3, 12] are two dimensional Hammersley points which are a
special kind of digital nets [7] in which the generator matrices are permutation
matrices. In this section we show that digital nets constructed with permutation
matrices can be used to get NNLD points with n = bm points for any integer
base b > 2 in any dimension d > 1. This generalizes the result of [3, 12] which
holds for d = 2. We obtain this generalization by a probabilistic argument using
the notion of associated random variables from reliability theory [11]. We also
show that there is a limit to how good digital nets can be when their generator
matrices are permutation matrices.

5.1 Permutation digital nets

Here we describe how permutation digital nets are constructed. We won’t need
the more general definition of digital nets until we study them more closely in
Section 5.3.

For a dimension d > 1, an integer base b > 2 and an integer m > 1 we
choose d matrices C(j) ∈ Zm×mb . For n = bm and indices i = 0, 1, . . . , n − 1,

write i =
∑m
k=1 ai,kb

k−1 for ai,k ∈ Zb and put ~i = (ai,1, . . . , ai,k)T. Now let

~xij = C(j)~i mod b

have components ~xij(k) ∈ Zb. Then xi has j’th component

xij =

m∑
k=1

~xij(k)b−k ∈ [0, 1).

13



Here we use arithmetic modulo b to define the digital nets. It is customary to
only use arithmetic modulo b when b is a prime number and to use a gener-
alization based on finite fields when b = pr for a prime number p and some
power r > 2. Our proofs of NNLD properties exploit a monotonicity of integers
modulo b whether or not b is a prime.

As an illustration, the first 16 Hammersley points in base b > 2 for d = 2
are constructed this way with

C(1) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and C(2) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (16)

Hammersley points for d = 2 and general m > 1 are constructed similarly, with
C(1) = Im and C(2) a ‘reversed’ identity matrix as in (16). The Hammersley
points for d > 3 are constructed using different bases for different components
[18].

5.2 Associated random variables

The settings with d = 1 or with n = 1 are trivial so we work with d > 2 and
n > 1. The key ingredient in constructing a short proof of the NNLD property
is the notion of associated random variables [11] that originated in reliability
theory.

Definition 4. Random variables T1, . . . , Tm are associated if, for T = (T1, . . . , Tm)
we have Cov(g1(T ), g2(T )) > 0 for all pairs of functions g1, g2 : Rm → R that are
nondecreasing in each argument individually and for which E(g1(T )), E(g2(T ))
and E(g1(T )g2(T )) all exist.

The next theorem uses points that are a digital net with permutation matrix
generators, followed by shifting every component of each point to the right by
a distance 1/n. It shows that they oversample sets of the form (z,1].

Theorem 2. For integers m > 1, b > 2 and d > 2, let π1, . . . , πd be permuta-
tions of {1, . . . ,m}, not necessarily distinct. For n = bm and i = 0, . . . , n − 1
and k = 1, . . . ,m define ai(k) ∈ Zb via i =

∑m
k=1 ai(k)bk−1. If xi ∈ (0, 1]d has

components

xij =
1

n
+

m∑
k=1

b−kai(πj(k)), j = 1, . . . , d (17)

then for any z ∈ [0, 1]d

1

n

n−1∑
i=0

d∏
j=1

1{xij > 1− zj} >
d∏
j=1

zj . (18)
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Proof. We define a random index i ∼ U{0, 1, . . . , n−1} which then implies that
for each index j the digits ai(πj(k)) ∼ U(Zb) independently for k = 1, . . . ,m.
For each j = 1, . . . , d we have xij ∼ U{1/n, 2/n, . . . , 1}. Therefore for any
zj ∈ [0, 1], Pr(xij > 1− zj) > zj .

Let Tj be the value of the random variable xij where i is random and j is
not. Letting γj be the inverse of the permutation πj , we may write

Tj = xij =
1

n
+

m∑
k=1

b−γj(k)ai(k).

Independent random variables ai(k) are associated by Theorem 2.1 of [11]. Then
T1, . . . , Td are associated by result P4 of [11] because they are nondecreasing
functions of ai(1), . . . , ai(m).

For d = 2, let g1(T ) = 1{xi1 > 1 − z1} and g2(T ) = 1{xi2 > 1 − z2}.
These are nondecreasing functions of associated random variables and so by the
definition of associated random variables

Pr(xi1 > 1− z1, xi2 > 1− z2) > Pr(xi1 > 1− z1) Pr(xi2 > 1− z2).

Next, for 2 < r 6 d let g1(T ) =
∏r−1
j=1 1{xij > 1 − zj} and g2(T ) = 1{xir >

1− zr}. Using induction we conclude that with our random i,

Pr(xij > 1− zj , j = 1, . . . , d) >
d∏
j=1

Pr(xij > 1− zj) >
d∏
j=1

zj

which is equivalent to (18).

Corollary 3. For integer b > 2 and dimension d > 2 let x̃0, . . . , x̃n−1 ∈ [0, 1]d

be points of a digital net constructed in base b using permutation matrices as
generators. Then the points x0, . . . ,xn−1 ∈ [0, 1]d with xij = 1 − (1/n + x̃ij)
are NNLD.

Proof. Pick z ∈ [0, 1]d. Now 1{xij < zj} = 1{x̃ij + 1/n > 1− zj} and so

V̂OL([0, z)) =
1

n

n−1∑
i=0

d∏
j=1

1{xij < zj} =
1

n

n−1∑
i=0

d∏
j=1

1{x̃ij + 1/n > 1− zj} >
d∏
j=1

zj

by Theorem 2.

For d = 2 it was possible to turn an NNLD point set into an NPLD point
set in (6) which includes a reflection xi,2 = 1 − x̃i,2. If we were to reflect two
or more components of an NNLD point set, then those components would take
on a positive upper orthant dependence, which does not generally provide the
negative lower orthant dependence we want for NPLD points. For projection
regular NNLD points the reflection of s > 2 components will contain 1s/n and
there will be a box B = [0s,1s(1/n+ ε)) with δ(B) = 1/n− (1/n+ ε)s > 0 for
small enough ε > 0.
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5.3 Quality of permutation digital nets

It is clear on elementary grounds that a permutation digital net with two iden-
tical permutations among π1, . . . , πd would be very bad. The resulting points
would satisfy xij = xij′ for 0 6 i < n and some 1 6 j < j′ 6 d. Here we show
that our restriction to permutation digital nets rules out the best digital nets
when d > 3. We begin with the definitions of these nets.

Definition 5. For integers d > 1, b > 2, and vectors k,a ∈ Nd with aj ∈ Zbkj

for j = 1, . . . , d the Cartesian product

E(k,a) =

d∏
j=1

[ aj
bkj

,
aj + 1

bkj

)
is an elementary interval in base b.

Definition 6. For integers b > 2, d > 1 and 0 6 t 6 m, the n points
x0, . . . ,xn−1 are a (t,m, d)-net in base b if

V̂OL(E(k,a)) = VOL(E(k,a))

holds for all elementary intervals in base b for which
∑d
j=1 kj 6 m− t.

Digital nets are (t,m, d)-nets. Other things being equal, smaller values of
t denote better equidistribution of the points xi which translates into a lower
bound on D∗n and hence a smaller upper bound in the Koksma-Hlawka inequal-
ity. From Theorem 4.10 of [26]

D∗n = O
(bt log(n)d−1

n

)
+O

( log(n)d−2

n

)
(19)

where the implied constants depend only on d and b. The powers of log(n) are
not negligible but they are also not seen in examples of integration errors [30].

The quality parameter of a permutation digital net can be very bad. For
d = 2, taking the Hammersley construction yields t = 0 which is the best
possible value. Here we show that for d > 3, the best available values of t are
far from optimal.

The following definition and result are based on [24, Sect. 2.3].

Construction 1 (Digital Construction of (t,m, d)-Nets). For prime b, and
C(1), . . . , C(d) ∈ (Fb)m×m, let C = {C(1), . . . , C(d)}. For h ∈ Fmb define p(h) ∈
[0, 1)d componentwise by its b-adic digit expansion

p(h)j = δ
(j)
1 (h)b−1 + δ

(j)
2 (h)b−2 + · · ·+ δ(j)m (h)b−m ∈ [0, 1), j = 1, . . . , d,

where δ(j)(h) = (δ
(j)
1 (h), . . . , δ

(j)
m (h)) is simply the vector C(j)h ∈ Fmb . We define

the point set

P (C) = (p(h))h∈Fm
b
. (20)
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Clearly, |P (C)| = bm.
To assess the quality of P (C), we define the quality criterion ρ(C): For

m = (m1,m2, . . . ,md) ∈ {0, 1, . . . ,m}d with |m| =
∑d
j=1mj let

C(m) =


C(1)(1:m1, ·)
C(2)(1:m2, ·)

...
C(d)(1:md, ·)

 ∈ F|m|×db

where C(j)(1:mj , ·) ∈ Fmj×d
b represents the first mj rows of C(j). Now ρ(C) is

the maximum number ρ ∈ {0, 1, . . . ,m} such that for all m ∈ {0, 1, . . . ,m}d
with |m| = ρ we have rank(C(m)) = ρ.

Proposition 2. Let b,m, C, and P (C) be as in Construction 1. Then P (C) is
a (t,m, d)-net for t = m− ρ(C).

Observation 3. The proposition shows that the best possible t-value t(C) of
P (C) is at most m− ρ(C). But similar arguments as in the corresponding proof
of [24, Proposition 2.7] show that actually

t(C) = m− ρ(C).

Proposition 3. Let V := {v1, . . . , vm} be a set of linearly independent vectors

in Fmb . Let m = `d + r, where ` ∈ N0 and 0 6 r < d. If the rows C
(j)
k ,

k = 1, . . . ,m, of the matrices C(j), j = 1, . . . , d, are all contained in V , then
ρ(C) 6 2bm/dc+ 1. Therefore, the smallest t-value t(C) of P (C) satisfies

t(C) > (d− 2)bm/dc+ r − 1.

Proof. Consider the m row vectors

C
(1)
1 , C

(2)
1 , . . . , C

(d)
1 , C

(1)
2 , C

(2)
2 , . . . , C

(d)
2 , . . . , C

(1)
`+1, C

(2)
`+1, . . . , C

(r)
`+1.

Case 1 : Two of these row vectors are equal. Assume these rows are C
(j)
k and

C
(j′)
k′ . If j = j′, then we consider the matrix C := C(m) with mj = max{k, k′}

and mν = 0 for all ν 6= j. Obviously, rank(C) 6 max{k, k′}−1. Hence it follows
that ρ(C) 6 max{k, k′}− 1 6 dm/de− 1. If j 6= j′, then we consider the matrix
C := C(m) with mj = k, mj′ = k′, and mν = 0 for all ν /∈ {j, j′}. Obviously,
rank(C) 6 k + k′ − 1. Hence it follows that ρ(C) 6 k + k′ − 1 6 2dm/de − 1.

Case 2 : All of these row vectors are different. Consider C
(d)
`+1. Then there

exist 1 6 j < d and 1 6 h 6 `+1 or j = d and 1 6 h 6 ` such that C
(d)
`+1 = C

(j)
h .

Now we argue similarly as in case 1: If j = d, then it is easy to see that
ρ(C) 6 ` = bm/dc. If j 6= j′, then ρ(C) 6 h+ ` 6 2`+ 1 6 2bm/dc+ 1.

In any case, we have shown that ρ(C) 6 2bm/dc+ 1.
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Corollary 4. Let m = `d+ r, where ` ∈ N and 0 6 r < d. If C(1), . . . , C(d) ∈
Fm×mb are all permutation matrices, then the smallest t-value t(C) of P (C) sat-
isfies

t(C) > (d− 2)bm/dc+ r − 1.

Proof. This follows directly from Proposition 3, since the rows of the matrices
C(1), . . . , C(d) are all in {e1, . . . , em}, where ei denotes the i-th standard unit
vector of Fmb .

Let us represent the permutation matrix where row k has a one in column
π(k) as simply the column vector with entries π(k). Then we can represent our
permutation nets with an m×d matrix Π with j’th column πj . For example the
Hammersley points with generator matrices Im and reversed Im are represented
this way by

Π =


1 m
2 m− 1
...

...
m 1

 . (21)

For d = 3 we want Π ∈ {1, . . . ,m}m×3 with the largest possible value of

ρ = min
{
k + k′ | Πk,j = Πk′,j′ , 1 6 j < j′ 6 3

}
− 1.

Then we get quality parameter t = m − ρ. If we simply adjoin a third column
to Π in (21) the best ρ we can get is m/2 if m is even and (m + 1)/2 if m is
odd. These lead to t > m/2 if m is even and t > (m− 1)/2 if m is odd, which is
much worse than the bound in Corollary 4. For t = m/2 the first term in (19)
is O(bm/2 log(n)2/n) = O(log(n)2/

√
n) because b = n1/m.

If m = 3`, then we can choose the first ` rows of Π to be
1 2 3
4 5 6
...

...
...

3`− 2 3`− 1 3`

 .

Let us label these first ` rows of Π by r1, r2, . . . , r` ∈ N3. Now, for r = (a, b, c)
let r′ = (b, c, a) and r′′ = (c, a, b) be one and two rotations of the elements of r
to the left with wraparound. By taking the rows of Π in this order

r1, r2, . . . , r`, r′`, r
′
`−1, . . . , r

′
1, r′′` , r

′′
`−1, . . . , r

′′
1

we get ρ = 2` and hence t = m/3. This is very close to the bound bm/dc+0−1 =
m/3− 1 from Corollary 4. We prefer the ordering

r1, r2, . . . , r`, r′`, r
′′
` , r′`−1, r

′′
`−1, r′`−2, r

′′
`−2, . . . r′2, r

′′
2 , r′1, r

′′
1
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because while it attains the same value of t it has fewer pairs of columns for
which k + k′ = 2` + 1. With t = m/3 for d = 3 the first term in (19) is
O(bt log(n)2/n) = O(n−2/3 log(n)2).

Using the same method for d = 4 and m = 4` we can get ρ = 2` = m/2, im-
plying that t = m/2, and yielding a rate of O(bt log(n)3/n) = O(n−1/2 log(n)3).
This result for d = 4 matches the rate for plain MC apart from the power of
log(n). So the 100% error bounds available from NNLD sampling come with a
logarithmic accuracy penalty in comparison to plain MC.

A second choice for d = 4 is to use a Cartesian product of two Hammersley
point sets with

√
n points each. The error of such a Cartesian product would

ordinarily be the same as that of the individual Hammersley rules in two dimen-
sions with their reduced sample sizes. That is O(n−1/2 log(n)) which is then a
better logarithmic factor than the 4 dimensional permutation nets attain.

For d = 3 we could also use a Cartesian product of Hammersley points with
n = b2 points and a one dimensional grid {0, 1/n, . . . , 1− 1/n}. This then uses
N = n2 points and we expect an error of O(log(n)/n) = O(log(N)/N1/2) which
is a worse rate than we can get with the permutation net in [0, 1]3.

5.4 Other generator matrices

Permutation matrices are not the only generator matrices that can produce
points with the NNLD property. For digital nets in base 2, we know from
Proposition 1 that if C(1) = Im then we must have C(j)1m = 1m mod 2. This
in turn implies that every row of C(j) must have an odd number of 1s in it. A
numerical search shows there are 221 choice of nonsingular C(2) when m = 4
and C(1) = I4. Below are some examples:

C(2) =


1 0 0 0
1 1 0 1
0 1 1 1
1 1 1 0

 or


0 1 0 0
1 0 0 0
1 0 1 1
1 1 1 0

 or


0 0 1 0
1 0 0 0
1 1 0 1
0 1 0 0

 .

Nevertheless, it is hard to find an example where non-permutation matrices
perform better than permutation matrices with respect to the t-value. When
d = 3, one can verify, either by lengthy reasoning or brute-force enumeration,
that NNLD digital nets constructed by non-permutation matrices cannot attain
a better t-value than those constructed by permutation matrices for m 6 7 and
b = 2.

6 Non-trivial Rank 1 lattices that are NNLD

Here we consider special cases of rank-1 lattice rules that are suboptimal in
terms of discrepancy, but produce NNLD points. While they can be defined in
any dimension d > 2 it is only for dimension 1 that they are projection regular.
Therefore the conclusions from Proposition 1 and Corollary 1 do not hold for
them when d > 1.
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Theorem 3. For integers m > d and b > 2 and 0 6 i < n = bm, let

xi =
( i
n
,
ib

n
, . . . ,

ibj−1

n
, . . . ,

ibd−1

n

)
mod 1.

Then points x0, . . . ,xn−1 are NNLD.

Before proving this theorem we note that these points are quite poor for
integration; however, the structure of the points can be useful for showing good
integration bounds in suitably weighted spaces, see [5]. There are only bd−j+1

unique values of xij . Further, when |j − j′| is small the points (xij , xij′) lie

within at most b|j−j
′| lines in [0, 1)2 and have a large discrepancy.

Proof. We write i =
∑m
k=1 ai(k)bk−1 and then

nxij = bj−1
m∑
k=1

ai(k)bk−1 mod bm =

m+1−j∑
k=1

ai(k)bj+k−2.

For i ∼ U{0, 1, . . . , n − 1} the digits ai(1), . . . , ai(m) are independent U(Zb)
random variables. Hence they are associated random variables which makes
nxi1, . . . , nxid and hence xi1, . . . , xid into associated random variables. Finally,
xij has the uniform distribution on {0, 1/nj , 2/nj , . . . , 1 − 1/nj} where nj =
n/bj−1. This distribution is stochastically smaller than U[0, 1] and so xi are
NNLD.

The values xij for 0 6 i < bm in these lattices take nj = bd−j+1 distinct
values `/nj for 0 6 ` < nj with each of those values appearing n/nj times.
As such they constitute a left endpoint integration rule on nj points and so for
nonperiodic smooth integrands we anticipate an error rate of O(n−1j ). For this

to be better than plain MC we require nj >
√
n or j 6 m/2. While a better

rate is available for periodic integrands, those cannot be completely monotone
unless they are constant.

7 Discussion and further references

We find that it is possible to get computable bounds on some integrals by using
points with a suitable bias property (non-negative local discrepancy (NNLD))
on integrands with a suitable monotonicity property (complete monotonicity).
The method of associated random variables is useful for showing that a given
point set is NNLD.

There are several generalizations of multivariate monotonicity in [25]. They
include the complete monotonicity discussed here as well as the more commonly
considered monotonicity in each of the d inputs one at a time. The complexity
of integrating coordinate-wise monotone functions has been studied by [27, 31].
Scrambled (t,m, d)-nets have been shown to be negatively orthant dependent if
and only if t = 0 [35]. Similarly, it was shown in [36] that randomly shifted and

20



jittered (RSJ) rank-1 lattices based on a random generator are also negatively
orthant dependent and that, in some sense, one cannot achieve this result by
employing less randomness. Using the NLOD property of the distribution of
these RQMC points, it follows from [23] that for functions which are monotone
in each variable scrambled nets and RSJ rank-1 lattices cannot increase variance
over plain Monte Carlo in any dimension d.

While complete monotonicity is a very special property, its applicability can
be widened by the method of control variates. If h(·) is completely monotone
with known integral θ, we will in some settings be able to find λ+ > 0 for which
f + λ+h is a completely monotone function of x. Then by Theorem 1 we can
compute an upper bound B+ > µ + λ+θ and conclude that µ 6 B+ − λ+θ.
Similarly a lower bound can be found by choosing λ− such that λ−h − f is a
completely monotone function of x, using Theorem 1 to get an upper bound
λ−θ − µ 6 B− and then concluding that µ > λ−θ − B−. Details on how to
choose h and find λ± are beyond the scope of this article.

The customary way to quantify uncertainty in QMC is to use RQMC repli-
cates with statistically derived asymptotic confidence intervals. For a recent
thorough empirical evaluation of RQMC, see [22], who found the usual con-
fidence intervals based on the central limit theorem to be even more reliable
than sophisticated bootstrap methods. Here we have found an alternative com-
putable non-asymptotic approach with 100% coverage, but so far it does not
give very good accuracy for high dimensions.
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