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Abstract. The long-time behavior of solutions to the initial value problem for

the Korteweg-de Vries equation on the whole line, with general initial condi-
tions has been described uniformly using five different asymptotic forms. Four

of these asymptotic forms were expected: the quiescent behavior (for |x| very
large), a soliton region (in which the solution behaves as a collection of isolated

solitary waves), a self-similar region (in which the solution is described via a

Painlevé transcendent), and a similarity region (where the solution behaves as
a simple trigonometric function of the quantities t and x/t). A fifth asymptotic

form, lying between the self-similar (Painlevé) and the similarity one, has been

described in terms of classical elliptic functions. An integral of elliptic type,
giving an explicit representation of the phase, has appeared in this context.

The same integral has appeared in the table of integrals by Gradshteyn and

Ryzhik. Our goal here is to confirm the validity of this entry.

1. Introduction

The table of integrals created by Gradshteyn and Ryzhik [14] contains a large
variety of entries where the answers are expressed in terms of the complete elliptic
integral

K(k) =

∫ 1

0

dx√
(1− x2)(1− k2x2)

.

The goal of this paper is to present a proof of entry 4.242.4 in [14]:

I(a, b) :=

∫ b

0

lnx dx√
(a2 − x2)(b2 − x2)

(1.1)

=
1

2a

[
K

(
b

a

)
ln(ab)− π

2
K

(√
a2 − b2
a

)]
with 0 < b < a. Note that the right-hand side equals 1

2a

[
K(k) ln(ab)− π

2K(k′)
]
,

with modulus k = b/a and complementary modulus k′ =
√

1− k2.
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2 T. AMDEBERHAN ET AL

Some integrals of this general type have been considered in [3] as part of a series
of papers dedicated to establishing all entries in [14] starting with [23] and currently
at [5]. Entry 4.242.1∫ ∞

0

lnx dx√
(a2 + x2)(b2 + x2)

=
1

2a
K

(√
a2 − b2
a

)
ln(ab)

has been proved in [3]. The crucial point in the proof comes down to the identity

(1.2)

j−1∑
`=0

a`
j − `

= 4aj

j−1∑
`=0

1

2`+ 1
where a` =

(
1
2

)2
`

`!2
.

Two proofs of (1.2) were presented: one involves the manipulation of a balanced 4F3

hypergeometric series and the other is an automatic proof based on the techniques
developed in [24]. It is our aim to proceed in a similar manner to verify (1.1).

Section 3 presents an expression for I(a, b) in terms of the power series

(1.3) F (x) =

∞∑
n=0

(−1)n
(

2n

n

)2

Hnx
n,

where Hn = 1+ 1
2 + 1

3 +· · ·+ 1
n is the harmonic number. The series in (1.3) converges

for |x| < 1
16 , it is not a hypergeometric function and it makes its appearance in

Lemma 3.1. A remarkable fourth order differential equation for F , presented in
Section 6, is then used to supply an automated proof of (1.1).

2. Background on the integral

The Korteweg-de Vries equation (KdV)

ut − 6uux + uxxx = 0

originated in the 19th century as a description of the evolution of long waves in
shallow water such as a canal [4, 15]. Much later (in the late 1960s) an incredible
connection was discovered between this equation and the scattering and inverse
scattering theory of the 1-dimensional Schrödinger operator [13]

L = − d2

dx2
+ u .(2.1)

For potentials u(x) that are rapidly decaying as |x| → ∞, the scattering data for
L consists of (i) a reflection coefficient r(z) describing the energy that is reflected
back when an incoming (quantum) wave with velocity z interacts with the medium
represented by u, and (ii) a finite number of eigenvalues and associated normal-
ization constants (each eigenvalue corresponds to a bound state for the operator
L).

The amazing discovery in [13] is that if the potential u in (2.1) evolves according
to the KdV equation, so that now u depends on time u = u(x, t) and as does the
operator L = L(t), this nonlinear evolution has two remarkable properties:

• The eigenvalues of the operator L(t) are constant in time and the associated
normalization constants evolve in a simple manner.
• The reflection coefficient r = r(z, t) evolves explicitly in t:

r(z, t) = r(z, 0)e8iz
3t
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where r(z, 0) = r0(z) is the reflection coefficient corresponding to the initial
potential u(x, 0) = u0(x).

These remarkable properties followed hard upon the heels of the earlier discovery of
Zabusky and Kruskal [26]. Previously these authors had made the observation that
the KdV equation possesses not only the classical solitary wave solution, but also
other special solutions that spread out at long times like a collection of separated
individual solitary waves (both at large negative as well as large positive times),
but interact with each other at intermediate times that seem to defy their inter-
pretation as individual solitary waves. Shortly after Gardner, Green, Kruskal, and
Miura made the connection to the Schrödinger operator, Lax [19] introduced the
framework that bears his name. The pair of operators discovered in [13] represented
the first example of a Lax pair, which brought forth the so-called inverse scattering
method for the analysis of certain special nonlinear partial differential equations.

From these origins there emerged numerous collections of nonlinear partial dif-
ferential equations and associated Lax pairs of operators. Primary amongst these
was the discovery of Zakharov and Shabat [28] that the nonlinear Schrödinger equa-
tion falls into the framework, and the discovery independently by Flaschka [11, 12]
and Manakov [20, 21] that the Toda lattice does, too. In each case, the scattering
data for one of the operators evolves simply in the time variable. The inverse scat-
tering theory was then exploited, or developed, to yield a solution procedure for
these new integrable nonlinear partial differential equations. As it turns out, the
solution procedure is extremely powerful. Using it, researchers discovered remark-
able phenomena in the behavior of these nonlinear equations which turns out to be
ubiquitous even outside the class of integrable equations.

A basic example of this type of discovery is the complete understanding of the
long-time behavior of solutions to these equations from general initial conditions.
This was first established for the nonlinear Schrödinger equation [27]. It was pre-
sumed for some time that the calculations for the KdV equation would be entirely
similar, but a curious technical obstacle to the direct application of the method
reared its head, and led to a new asymptotic phenomenon discovered in the behav-
ior of general solutions of the KdV equation, the so-called collisionless shock region
for the KdV equation [1].

For generic initial conditions, the behavior of the solution of the KdV equation
is described uniformly using five different asymptotic forms each occurring in a
different spatial region. Four of these asymptotic forms were expected: the quiescent
behavior (for |x| very large), a soliton region (in which the solution behaves as a
collection of isolated solitary waves), a self-similar region (in which the solution is
described via a Painlevé transcendent), and a similarity region (where the solution
behaves as a simple trigonometric function of the quantities t and x/t).

The fifth region, it turns out, lies in between the self-similar (Painlevé) and the
similarity one. It emerges because of the surprisingly benign fact that for generic
potentials (i.e., generic initial data for the KdV equation), the reflection coefficient
takes on a specific extreme value at z = 0: r(0) = −1. The reflection coefficient
satisfies |r(z)| ≤ 1, and for all values of z other than 0, this inequality is strict,
but not so at z = 0. In the calculations, |x|, t → ∞ at different rates depending

on which asymptotic region one is studying, and the quantity log
(

1−
∣∣r ( x

12t

)∣∣2)
is a key ingredient in the asymptotic description. The fact that this quantity can
diverge, because r(0) = −1, is the source of the fifth region.
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In this new region, the behavior of the solution is described in terms of a Jacobi
cnoidal function [25]. In explicit form, the asymptotic form of the solution in this
region is

(2.2) u ∼
(
−2x

3t

)(
a(α) + b(α)cn2 (2K(ν)θ + θ0; ν(Z))

)
,

where cn(·; ν) represents the Jacobi elliptic function [25], the quantity α is deter-
mined to depend on a slow variable Z, θ is a fast variable, and K(α) is the complete
elliptic integral of the first kind. The quantity θ0 is a phase which was undetermined
in the original work of Albowitz and Segur.

This work led to foundational questions regarding how to provide a rigorous proof
of the asymptotic formulae in [1] and, more generally, of the long-time analysis of
integrable nonlinear partial differential equations. Such problems remain outside of
the reach of any classical methods. The Riemann-Hilbert machinery, developed by
Deift and Zhou [6, 8, 9, 10] for integrable problems, was used by Deift, Venakides,
and Zhou [7] to analyze the collisionless shock region.

In the scattering and inverse scattering theory applied to the modified KdV
equation in [8], and to the KdV equation in [7], the solution to the KdV equation
was characterized through the solution of a vector-valued Riemann-Hilbert problem.
In order to carry out the long-time analysis of this Riemann-Hilbert problem, and
extract the long-time behavior of the solution to the partial differential equation,
the authors invented explicit transformations relating one Riemann-Hilbert problem
to another, each transformation in turn simplifying the nature of the subsequent
one, until arriving at a final one for which an existence and uniqueness theorem
could be established. Unraveling the sequence of transformations, precise analytical
descriptions of the behavior of the solution to the partial differential equation can
be extracted.

In each different asymptotic region, the sequence of transformations is different,
and tailored to extract from the original Riemann-Hilbert problem the dominant
contributing elements to the eventual asymptotic form of the solution. In fact, for
the first four regions, the sequence of transformations showed that the dominant
contribution comes from a finite number (usually one or two) of isolated points
called stationary phase points in the spectral plane.

However, the Riemann-Hilbert analysis for the new collisionless shock region
presented a leap in complexity. Indeed, the dominant contribution arose from an
evolving (finite) collection of intervals in the spectral plane. Specifically, for (x, t)
in the collisionless shock region, four real endpoints emerged: ±a(x, t), ±b(x, t),
with 0 < a(x, t) < b(x, t) <

√
2, and a2 + b2 = 2. These define intervals (−b,−a)

and (a, b). The authors used the Riemann surface X associated to the function

f(z) = (z + b)
1/2

(z + a)
1/2

(z − a)
1/2

(z − b)1/2 , as a fundamental ingredient in
their analysis. The genus of X is 1 and the Jacobi elliptic function appearing in
(2.2) is constructed using the Abel map and the periods associated to this surface.
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The integral (1.1) appears in [7], when the authors established an explicit rep-
resentation of the phase θ0 (for arbitrary initial conditions):

θ0 = K(α)−
∫ √b/a
1

((
w2 − 1

) (
1− (a/b)2w2

))−1/2
dw

− 1

2πb

∫ a

−a

log
(
2γw2

)
((w2 − a2) (w2 − b2))

1/2
dw.

The explicit determination of the asymptotic form (2.2), including the phase θ0 as
well as the size of the error term, highlights the reach of integrability.

But the occurrence of the integral (1.1) is more than just as a part of the answer.
In order to understand the overlap between the collisionless shock region and its
two neighboring regions, one must study the behavior of the Riemann surface X,
the Jacobi elliptic function, and all internal parameters, in two singular limits: in
one of them the branch point a converges to 0, and in the other one the branch
points a and b merge together. Having an explicit representation of this integral
in terms of well-known special functions assists greatly in matching the asymptotic
form of the KdV solution in the transition regions. There lies the value of (1.1).

3. An analytic representation of the integral I(a, b)

This section presents an analytic expression for the integral I(a, b) in (1.1) in
terms of the function F from (1.3). The change of variables t = x/b yields

I(a, b) =
ln b

a

∫ 1

0

dt√
(1− t2)(1− c2t2)

+
1

a

∫ 1

0

ln t dt√
(1− t2)(1− c2t2)

with c = b/a. Observe that 0 < c < 1. The first integral is K(c) and so

(3.1) I(a, b) =
ln b

a
K(c) +

1

a
J(c),

where

(3.2) J(c) =

∫ 1

0

lnx dx√
(1− x2)(1− c2x2)

.

Lemma 3.1. The integral J(c) in (3.2) is given by

J(c) = − ln 2K(c)− π

4
√

1− c2
F

(
c2

16(1− c2)

)
.

Proof. The change of variables s = t2 yields

J(c) =
1

4

∫ 1

0

ln s ds√
s(1− s)(1− c2s)

.

To evaluate J(c) consider the function

A(c, r) =

∫ 1

0

srs−1/2(1− c2s)−1/2(1− s)−1/2 ds

and observe that

J(c) =
1

4

d

dr
A(c, r)

∣∣∣
r=0

.
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The integral representation ([14, 9.111]) of the hypergeometric function

2F1

(
α β

γ

∣∣∣∣z) =
1

B(β, γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−α dt

implies

A(c, r) = B

(
r +

1

2
,

1

2

)
2F1

( 1
2 r + 1

2

r + 1

∣∣∣∣ c2) .
The relation (see [14, 9.131.1])

2F1

(
α β

γ

∣∣∣∣z) = (1− z)−α2F1

(
α γ − β

γ

∣∣∣∣ z

z − 1

)
yields

A(c, r) = (1− c2)−1/2B

(
r +

1

2
,

1

2

)
2F1

( 1
2

1
2

r + 1

∣∣∣∣ c2

c2 − 1

)
.

Write A(c, r) = (1− c2)−1/2A1(r)C1(c, r) where

A1(r) = B
(
r + 1

2 ,
1
2

)
and C1(c, r) = 2F1

( 1
2

1
2

r + 1

∣∣∣∣ c2

c2 − 1

)
,

so that

J(c) =
1

4

d

dr
A(c, r)

∣∣∣
r=0

=
1

4
√

1− c2
[A1(0)C ′1(c, 0) +A′1(0)C1(c, 0)] ,

where C ′1 is the derivative with respect to r. Each of these four terms are evaluated
individually.

First term: A1(0). The beta function is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

so that

A1(0) =
Γ(r + 1

2 )Γ( 1
2 )

Γ(r + 1)

∣∣∣
r=0

= π.

Second term: C1(c, 0). The value is given by

C1(c, 0) = 2F1

( 1
2

1
2

1

∣∣∣∣ c2

c2 − 1

)
.

On the other hand, this hypergeometric value corresponds to the complete elliptic
integral (see [14, 8.113.1])

K(k) =
π

2
2F1

( 1
2

1
2

1

∣∣∣∣k2)
so that

C1(c, 0) =
2

π
K

(√
c2

c2 − 1

)
.

Observe that c2 = b2/a2 < 1, therefore the argument of K above is purely
imaginary. The transformation rule (of the imaginary modulus) reads

(3.3) K(it) =
1√

1 + t2
K

(
t√

1 + t2

)
.
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(see [22, Page 82]), which gives

C1(c, 0) =
2

π

√
1− c2 K(c).

Third term: A′1(0). The function A1(r) is given by

A1(r) = B(r + 1
2 ,

1
2 ) = Γ(1

2 )
Γ(r + 1

2 )

Γ(r + 1)
.

Differentiation at r = 0 yields

A′1(0) =
Γ( 1

2 )

Γ2(1)

[
Γ′( 1

2 )Γ(1)− Γ′(1)Γ( 1
2 )
]
.

The digamma function ψ, defined by Γ′(x) = ψ(x)Γ(x), shows that

A′1(0) =
Γ( 1

2 )

Γ2(1)

[
Γ( 1

2 )ψ( 1
2 )Γ(1)− Γ(1)ψ(1)Γ( 1

2 )
]
,

and the special values Γ(1) = 1, Γ( 1
2 ) =

√
π, ψ(1) = −γ, ψ( 1

2 ) = −γ − 2 ln 2
appearing in [14, 8.338.1, 8.338.2, 8.366.1 and 8.366.2] generate

A′1(0) = −2π ln 2.

Fourth term: C ′1(c, 0). Start with

C1(c, r) = 2F1

( 1
2

1
2

r + 1

∣∣∣∣ c2

c2 − 1

)
and since 0 < c2 = b2/a2 < 1, it is convenient to introduce the parameter

t =
c2

1− c2
,

so that t > 0 and

C1(c, r) = 2F1

( 1
2

1
2

r + 1

∣∣∣∣−t) =

∞∑
`=0

(−1)`
(
1
2

)2
`

(r + 1)`

t`

`!
.

The only term that needs to be differentiated is the Pochhammer symbol (r + 1)`.
To accomplish this, proceed in the manner

d

dr

1

(r + 1)`
= − 1

(r + 1)2`

d

dr
(r + 1)`,

and then expanding (r + 1)` = (r + 1)(r + 2) · · · (r + `) leads to

d

dr
(r + 1)` = (r + 1)`

∑̀
j=1

1

r + j
.

Evaluating at r = 0 results in

d

dr

1

(r + 1)`

∣∣∣
r=0

= − 1

(r + 1)`

∑̀
j=1

1

r + j

∣∣∣
r=0

= − 1

`!
H`

where H` is the harmonic number H` = 1+ 1
2 + · · ·+ 1

` . The fourth term becomes

C ′1(c, 0) = −
∞∑
`=0

(−1)`
(

2`

`

)2(
c2

16(1− c2)

)`
H`,
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using the identity

(3.4)

( 1
2

n

)
=

(−1)n−1

22n(2n− 1)

(
2n

n

)
to simplify the result. The proof is complete. �

The integral I(a, b) is now expressed in terms of the function F defined in (1.3).

Theorem 3.2. Preserving the notations from Lemma 3.1, we have

I(a, b) =
1

a
ln

(
b

2

)
K

(
b

a

)
− π

4
√
a2 − b2

F

(
b2

16(a2 − b2)

)
.

4. An analytic proof of the main identity

The previous section has given an expression for

I(a, b) =

∫ b

0

lnx dx√
(a2 − x2)(b2 − x2)

in terms of the function F defined in (1.3). This section delivers a direct analytic
proof of the main identity displayed in (1.1).

Theorem 4.1. The following identity holds:

(4.1) I(a, b) =
1

2a

[
K

(
b

a

)
ln(ab)− π

2
K

(√
a2 − b2
a

)]
.

Proof. The evaluation (4.1) has been reduced, in (3.1), to

I(a, b) =
ln b

a
K(c) +

1

a
J(c),

with c = b/a and where, after an elementary change of variables,

(4.2) J(c) =
1

4

∫ 1

0

ln s ds√
s(1− s)(1− c2s)

.

So, the proof in this section amounts to a direct computation of J(c).
Start by transforming the interval of integration to a half-line of the new variable

x, defined via s = 3/(3x+ c2 + 1). Then (4.2) becomes

J(c) = −1

2

∫ ∞
1
3 (2−c

2)

log(x+ 1
3 (c2 + 1)) dx√

4(x+ c2+1
3 )(x+ c2−2

3 )(x+ 1−2c2
3 )

(4.3)

= −1

2

∫ ∞
1
3 (2−c

2)

log(x+ 1
2 (c2 + 1)) dx√

4x3 − g2x− g3
,

with

g2 = 4
3 (c4 − c2 + 1) and g3 = 4

27 (1 + c2)(1− 2c2)(2− c2).

The discriminant of the cubic is g32 − 27g23 = 16c4(c+ 1)2(c− 1)2 6= 0 for 0 < c < 1.
The roots of the cubic are real and are given by

e1 = 1
3 (2− c2) > e2 = 1

3 (2c2 − 1) > e3 = − 1
3 (c2 + 1).

Consider the curve E defined by the equation

y2 = 4x3 − g2x− g3.
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It is well-known that (the projectivation of) E is a torus C/(Z2ω1⊕Z2ω2), with an
associated Weierstrass ℘-function satisfying

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

The parameters ω1, ω2 being the half-periods for ℘(z), satisfy

℘(ω1) = e1, ℘(ω2) = e3 and ℘(ω3) = e2,

with ω3 = 1
2 (ω1 +ω2). The periods can be written, using P (x) = 4x3− g2x− g3, as

ω1

2
=

∫ e1

∞

dt√
P (t)

and
ω2

2
=

∫ e2

e1

dt√
P (t)

so that ω1 is real and ω2 is purely imaginary. See [25] for details.
The integral in (4.3) now becomes

J(c) = −1

2

∫ ∞
e1

log(x− e3) dx√
4(x− e1)(x− e2)(x− e3)

.

Substitute x = ℘(z) with ℘′(z) = −
√

4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) (the neg-
ative sign is due to the fact that since ℘ is real and decreasing in the interval of
integration). Since ℘ is an even function, it follows that

(4.4) J(c) = −1

2

∫ ω1

0

log(℘(z)− ℘(ω2)) dz = −1

4

∫ ω1

−ω1

log(℘(z)− ℘(ω2)) dz.

At this point, introduce the Weierstrass zeta-function ζ(z; g2, g3) ([25, page 467])
defined by

d

dz
ζ(z; g2, g3) = −℘(z; g2, g3)

and the normalization lim
z→0

[ζ(z; g2, g3)− 1/z] = 0. The Weierstrass sigma-function

([25, page 469]) is then defined by

d

dz
log σ(z; g2, g3) = ζ(z; g2, g3)

with the corresponding normalization lim
z→0

σ(z)

z
= 1. The parameters g2 and g3 are

suppressed and we simply write ζ(z) and σ(z). The function σ is odd, quasi-periodic
[25, page 470] and satisfies the relations

(4.5) σ(z + 2ωj) = −e2ηj(z+ωj)σ(z),

with ηj = ζ(ωj).
Now use the identity [25, page 473]

(4.6) ℘(u)− ℘(v) = −σ(u+ v)σ(u− v)

σ2(u)σ2(v)
,

to write

℘(z)− ℘(ω2) = −σ(z + ω2)σ(z − ω2)

σ2(z)σ2(ω2)
=
σ2(z + ω2)e−2η2z

σ2(z)σ2(ω2)
,

and convert (4.4) into

J(c) = −1

2

∫ ω1

−ω1

log(σ(z + ω2)) dz +
1

2

∫ ω1

−ω1

log(σ(z)) dz + ω1 log(σ(ω2)),
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since the integral arising from e2η2z vanishes. Define

L(τ) :=

∫ ω1

−ω1

log σ(z + τ) dz

to write

(4.7) J(c) = ω1 log σ(ω2)− 1
2 [L(ω2)− L(0)] .

The evaluation of L(τ) begins with

d3

dτ3
L(τ) = −

∫
℘′(z + τ) dz = −℘(τ + ω1) + ℘(τ − ω1) = 0

since 2ω1 is a period of ℘. It follows that

L(τ) = C0τ
2 + C1τ + C2,

for some constants C0, C1, C2.
The value C0 comes from J ′′(τ) = ζ(τ + ω1) − ζ(τ − ω1) being constant. Now

L′′(τ) ≡ L′′(0) = 2ζ(ω1), since ζ is an odd function. This gives C0 = ζ(ω1) = η1.
The computation of C1 = L′(0) uses the branch cut and gives

C1 = lim
τ→0

(log σ(τ + ω1)− log σ(τ − ω1))

= lim
τ→0

(log σ(τ + ω1)− log [−σ(−τ + ω1)])

= −πi,

since σ is odd. Thus L(τ) = η1τ
2−πiτ+C2. Legendre’s identity η1ω2−η2ω1 = 1

2πi
[25, page 469] and (4.7) yield

(4.8) J(c) = ω1 log σ(ω2)− 1
2η2ω1ω2 + 1

4πiω2.

The next step requires an identity for the σ-function:

Lemma 4.2. The Weierstrass σ-function satisfies

(4.9) σ2(ω1 + ω2) = e2η2ω1σ2(ω1)σ2(ω2).

Proof. Observe that (4.7) reveals

1 = e1 − e3 = ℘(ω1)− ℘(ω2) = e−2η2ω1
σ2(ω1 + ω2)

σ2(ω1)σ2(ω2)
,

and this verifies the identity in (4.9). �

The next result generates an expression for log σ(ω2).

Lemma 4.3. The identity

c2 = ℘(ω3)− ℘(ω2) =
e2η2ω2

σ4(ω2)
,

holds. Therefore log σ(ω2) = 1
2η2ω2 − 1

2 log c.

Proof. Use (4.6) combined with (4.5) to produce

c2 = e2 − e3 = ℘(ω3)− ℘(ω2) = −σ(ω1 + 2ω2)σ(ω1)

σ2(ω3)σ2(ω2)
=

σ2(ω1)e2η2ω3

σ2(ω3)σ2(ω2)
,

and the result follows from (4.9). �
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Lemma 4.2, lemma 4.3, equation (4.8) and the expressions for the half-periods
[22, page 114]

ω1 =
√
e1 − e3 K(c) and ω2 = i

√
e1 − e3 K(

√
1− c2)

and the fact that e1 − e3 = 1, readily show that

(4.10) J(c) = −π
4
K(
√

1− c2)− 1

2
K(c) log c.

Replacing (4.10) back in (3.1) completes the proof. �

The computation of I(a, b) presented above and Theorem 3.2 yield an expression
for F in terms of complete elliptic integrals.

Corollary 4.4. The function F defined in (1.3) is given by

F (x) =
1

π
√

1 + 16x

[
ln

(
x

1 + 16x

)
K

(√
16x

1 + 16x

)
+ πK

(
1√

1 + 16x

)]
.

5. A new expression for the function F

The function F , defined in (1.3), appeared in the first computation of I(a, b)
given in Theorem 3.2. This section presents a different approach to this function
and establishes a connection with the integral J(c) defined in (3.2).

Lemma 5.1. Let Bn be a sequence and define An by An = 42n(2n− 1)Bn. Then

(5.1)

∞∑
n=0

(−1)nBn

(
2n

n

)2

Hn =
2

π

∫ 1

0

log(1− y2)√
1− y2

( ∞∑
n=0

An

( 1
2

n

)
y2n

)
dy

− 2 log 2

∞∑
n=0

(−1)nBn

(
2n

n

)2

;

where Hn are the harmonic numbers.

Proof. Use the value∫ 1

0

y2n log(1− y2)√
1− y2

dy = − π

22n+1

(
2n

n

)
[Hn + 2 log 2] ,

to compute the integral in (5.1), and (3.4) to simplify the result. �

The expression for F is established next.

Theorem 5.2. The function F defined in (1.3) is given by

(5.2) F (x) = − 4

π
√

1 + 16x

[
J

(
16x

1 + 16x

)
+ log 2K

(√
16x

1 + 16x

)]
.

Proof. Let Bn = xn in Lemma 5.1 and use the classical series
∞∑
n=0

(
2n

n

)
un = (1− 4u)−1/2 and

∞∑
n=0

(
2n

n

)2

un =
2

π
K(
√

16u)

to obtain

(5.3) F (x) = − 2

π

∫ 1

0

log(1− y2) dy√
1− y2

√
1 + 16xy2

− 4 log 2

π

1√
1 + 16x

K

(√
16x

1 + 16x

)
,
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using the transformation (3.3) for the complete elliptic integral. The change of
variables u = 1− y2 converts (5.3) into (5.2) and produces the result. �

6. An automatic proof the last identity for F

In this final section we show how the holonomic summation techniques [18] can
be employed to prove the closed-form evaluation of F (x) stated in Corollary 4.4,
restated here for the convenience of the reader:

Theorem 6.1. The function F in (1.3) is given by

F (x) =
1

π
√

1 + 16x

[
ln

(
x

1 + 16x

)
K

(√
16x

1 + 16x

)
+ πK

(
1√

1 + 16x

)]
.(6.1)

Proof. Let fn(x) denote the expression inside the sum, i.e.,

fn(x) = (−1)n
(

2n

n

)2

Hnx
n.

Note that fn(x) is not hypergeometric in n, due to the presence of harmonic num-
bers Hn, and therefore the original Almkvist–Zeilberger algorithm [2] is not appli-
cable. Instead it requires the corresponding generalization to arbitrary holonomic
functions, as implemented in the HolonomicFunctions package [16], which delivers
the following telescopic relation:

(6.2) x2(16x+ 1)2f (4)n (x) + 5x(32x+ 1)(16x+ 1)f (3)n (x)

+ 4(1568x2 + 98x+ 1)f ′′n (x) + 108(32x+ 1)f ′n(x) + 144fn(x)

= gn(x)− gn+1(x),

where f
(i)
n denotes the ith-derivative and

gn(x) =
n

x2

((
(n− 1)n2 + 4(2n+ 1)3x

)
fn(x) + n(n+ 1)3fn+1(x)

)
.

The correctness of (6.2) can be established by routine calculations: divide both

sides by
(
2n+1
n+1

)2
(−x)n and observe that it reduces to

(n+ 2)Hn+2 − (2n+ 3)Hn+1 + (n+ 1)Hn = 0,

which is indeed a valid relation for harmonic numbers. This can be established by
writing the sums for the harmonic numbers and splitting in the manner

(6.3) Hn+2 = Hn +
1

n+ 1
+

1

n+ 2
and Hn+1 = Hn +

1

n+ 1
.

Summing the right-hand side of (6.2) over n = 0, 1, . . . gives, for |x| < 1
16 ,

g0(x)− lim
n→∞

gn(x) = 0,

while summing the left-hand side of (6.2) yields the desired fourth-order differential
equation for F (x):

(6.4) x2(16x+ 1)2F (4)(x) + 5x(32x+ 1)(16x+ 1)F (3)(x)

+ 4(1568x2 + 98x+ 1)F ′′(x) + 108(32x+ 1)F ′(x) + 144F (x) = 0.
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To derive a differential equation for the right-hand side of (6.1), one transforms
the standard differential equation for the complete elliptic integral (see [22, page
68]):

x(x2 − 1)K′′(x) + (3x2 − 1)K′(x) + xK(x) = 0

into
x(16x+ 1)2y′′(x) + (16x+ 1)2y′(x)− 4y(x) = 0,

which is satisfied by both

y(x) = K

(√
16x

1 + 16x

)
and y(x) = K

(
1√

1 + 16x

)
.

Combining it with the differential equation

x(16x+ 1)2y′′(x) + (48x+ 1)(16x+ 1)y′(x) + 8(24x+ 1)y(x) = 0,

satisfied by

y(x) =
1√

1 + 16x
ln

(
x

1 + 16x

)
,

yields exactly the same differential equation as in (6.4). These kinds of closure
properties are executed algorithmically and automatically by the Annihilator com-
mand in [17].

Since both sides of (6.1) satisfy the same fourth-order ODE, it suffices to compare
four initial values to establish equality. Using the Taylor series

K(x) = π
(1

2
+

1

8
x2 +

9

128
x4 + . . .

)
one computes the series expansion

−4x+ 54x2 − 2200

3
x3 +

30625

3
x4 + . . .

for the right-hand side of (6.1). Truncating the sum on the left-hand side produces
exactly the same coefficients, thereby completing the proof. �

Replacing (6.1) in Theorem 3.2 gives a proof of the original identity (1.1). The
same procedure applies to I(a, b) directly, at least in principle. The result is a
system of PDEs in a and b, but it turns out that comparing the initial values is
more delicate.
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