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ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. In this article we characterize the range of the attenuated and non-attenuated X-ray
transform of compactly supported symmetric tensor fields in the Euclidean plane. The characteriza-
tion is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

We consider here the problem of the range characterization of (non)-attenuated X-ray transform
of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane.
As the X-ray and Radon transform [35] for planar functions (0-tensors) differ merely by the way
lines are parameterized, the m = 0 case is the classical Radon transform [35], for which the range
characterization has been long established independently by Gelfand and Graev [12], Helgason
[13], and Ludwig [18]. Models in the presence of attenuation have also been considered in the
homogeneous case [17, 1], and in the non-homogeneous case in the breakthrough works [2, 28, 29],
and subsequently [24, 5, 4, 14, 21]. The references here are by no means exhaustive.

The interest in the range characterization problem in the 0-tensors case stems out from their
applications to data enhancement in medical imaging methods such as Single Photon Emission
Computed Tomography or Positron Emission Computed Tomography [23, 11]. The X-ray trans-
form of 1-tensors (Doppler transform [25, 44]) appears in the investigation of velocity distribution
in a flow [6], in ultrasound tomography [45, 42], and also in non-invasive industrial measurements
for reconstructing the velocity of a moving fluid [26, 27]. The X-ray transform of second order
tensors arises as the linearization of the boundary rigidity problem [44]. The case of tensor fields of
rank four describes the perturbation of travel times of compressional waves propagating in slightly
anisotropic elastic media [44, Chapters 6,7]. Thus, due to the various applications the range char-
acterization problem has been a continuing subject of research.

Unlike the scalar case, the X-ray transform of tensor fields has a non-zero kernel, and the null-
space becomes larger as the order of the tensor field increases. For tensors of orderm ≥ 1, it is easy
to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors,
and it is possible to reconstruct uniquely (without additional information of moment ray transforms
[44]) only the solenoidal part of a tensor field. The non-injectivity of the X-ray transform makes
the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1-tensor field can be re-
covered in the regions of positive absorption as shown in [15, 46, 37, 30], without using some
additional data information [43, 8, 19]. It is due to a surprising fact that the two-dimensional at-
tenuated Doppler transform with positive attenuation is injective while the non-attenuated Doppler
transform is not.
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The systematic study of tensor tomography in non-Euclidean spaces originated in [44]. On sim-
ple Riemannian surfaces, the range characterization of the geodesic X-ray of compactly supported
0 and 1-tensors has been established in terms of the scattering relation in [34], and the results were
extended in [3, 10, 16] to symmetric tensors of arbitrary order. Explicit inversion approaches in the
Euclidean case have been proposed in [14, 9, 20]. In the attenuating media, tensor tomography was
solved for the cases m = 0, 1 in [41]. Inversion for the attenuated X-ray transform for solenoidal
tensors of rank two and higher can be found in [32], with a range characterization in [33, 21, 3].

The original characterization in [12, 13, 18] was extended to arbitrary symmetric m-tensors in
[31]; see [9] for a partial survey on the tensor tomography in the Euclidean plane. The connection
between the Euclidean version of the characterization in [34] and the characterization in [12, 13, 18]
was established in [20]. Recently, in [38] the connection between the range characterization result
in [36] and the original range characterization in [12, 13, 18] has been established. Moreover, the
results in [38] from 0-order is extended to symmetric tensors of an arbitrary order in [39] and also
establishes the connection with the generalized moment conditions in [31].

In here we build on the results in [36, 37, 40], and extends them to symmetric tensor fields
of any arbitrary order. In particular, the range characterization therein are given in terms of the
Bukhgeim-Hilbert transform [36] (the Hilbert-like transform associated with A-analytic maps in
the sense of Bukhgeim [7]). The characterization in here can be viewed as an explicit description
of the scattering relation in [32, 33] particularized to the Euclidean setting. The characterization
in both the non-attenuated case (see Theorem 4.1 and Theorem 4.2 below) and in the attenuated
case (see Theorem 5.1 below) are given in terms of the Bukhgeim-Hilbert transform (27). In the
sufficiency part we reconstruct all possible m-tensors yielding identical X-ray data; see (44) and
(62) for the non-attenuated case, and (88) and (89) for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties of
symmetric tensor fields needed here are in Section 2. In Section 3 we briefly recall existing results
on A-analytic maps that are used in the proofs. We provide range characterization of symmetric
m-tensor field f in the non-attenuated case in Section 4, and in the attenuated case in Section 5. In
Section 6 we gave some concluding remarks.

2. PRELIMINARIES

Given an integer m ≥ 0, let Tm(R2) denote the space of all real-valued covariant tensor fields of
rank m:

f(x1, x2) = fi1···im(x1, x2)dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxim , i1, · · · , im ∈ {1, 2},(1)

where ⊗ is the tensor product, fi1···im are the components of tensor field f in the Cartesian basis
(x1, x2), and where by repeating superscripts and subscripts in a monomial a summation from 1 to
2 is meant.

We denote by Sm(R2) the space of symmetric covariant tensor fields of rank m on R2. Let

σ : Tm(R2) → Sm(R2) be the canonical projection defined by (σf)i1···im =
1

m!

∑
π∈Πm

fiπ(1)···iπ(m)
,

where the summation is over the group Πm of all permutations of the set {1, · · · ,m}.
A planar covariant symmetric tensor field of rank m has m + 1 independent component, which

we denote by

f̃k := f1 · · · 1︸ ︷︷ ︸
m−k

2 · · · 2︸ ︷︷ ︸
k

, (k = 0, · · · ,m),(2)
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in connection with this, a symmetric tensor f = (fi1···im , i1, · · · , im = 1, 2) of rank m will be given
by a pseudovector of size m+ 1: f = (f̃0, f̃1, · · · , f̃m−1, f̃m).

We identify the plane R2 by the complex plane C, z1 ≡ z = x1 + ix2, z2 ≡ z̄ = x1 − ix2. We
consider the Cauchy-Riemann operators

∂

∂z1
≡ ∂

∂z
:=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z2
≡ ∂

∂z̄
:=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,(3)

and the inverse relation by
∂

∂x1
=

∂

∂z
+

∂

∂z̄
,

∂

∂x2
= i

∂

∂z
− i

∂

∂z̄
.

Let f = (fi1···im(x1, x2), i1, · · · , im = 1, 2) be real valued symmetric m-tensor field in Cartesian
coordinates (x1, x2), then in complex coordinates (z1, z2) it will have new components (Fi1···im(z, z̄)),
which are formally expressed by the covariant tensor law:

(4)
Fi1···im(z, z̄) =

∂xs1

∂zi1
· · · ∂x

sm

∂zim
fs1···sm(x1, x2), and

fi1···im(x1, x2) =
∂zs1

∂xi1
· · · ∂z

sm

∂xim
Fs1···sm(z, z̄),

where the Jacobian matrix has the form

J :=

(
∂x1

∂z1
∂x1

∂z2
∂x2

∂z1
∂x2

∂z2

)
=

1

2

(
1 1
−i i

)
, and J−1 =

(
∂z1

∂x1
∂z1

∂x2
∂z2

∂x1
∂z2

∂x2

)
=

(
1 i
1 −i

)
.

Adopting the notation in [14], we shall write the transformations (4) as

(5)
f = {fi1···im(x1, x2)} � F = {Fi1···im(z, z̄)}, and

F = {Fi1···im(z, z̄)} � f = {fi1···im(x1, x2)}.

A symmetric tensor F of rank m, obtained from the real symmetric tensor f by passing to com-
plex variables, we also define a pseudovector (F0, F1, · · · , Fm−1, Fm) with components

Fk = F1 · · · 1︸ ︷︷ ︸
m−k

2 · · · 2︸ ︷︷ ︸
k

, k = 0, · · · ,m,(6)

and subject to the conditions

Fk = Fm−k, k = 0, · · · ,m.(7)

Taking into account the tensor law (4), we obtain formulas relating the components of pseudovec-
tors in (2) and pseudovectors in (6):

Fk =
(−i)m−k

2m

m−k∑
q=0

k∑
p=0

(
m− k
q

)(
k

p

)
ik−p+qf̃p+q, k = 0, 1, · · · ,m,(8)

f̃k = ik
m−k∑
q=0

k∑
p=0

(
m− k
q

)(
k

p

)
(−1)k−pFp+q, k = 0, 1, · · · ,m.(9)

In Cartesian coordinates covariant and contravariant components are the same, and thus con-
travariant components of the tensor field f coincide with its corresponding covariant components,
fi1···im = f i1···im . The dot product on Sm(R2) induced by the Euclidean metric is defined by

〈f ,h〉 := fi1···imh
i1···im .(10)
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Note that if f1 � F1 and f2 � F2, then the pointwise inner product of tensors is invariant:

〈f1, f2〉 = 〈F1,F2〉.(11)

For θ = (θ1, θ2) = (cos θ, sin θ) ∈ S1, we denote by θm the tensor product θm := θ ⊗ θ ⊗ · · · ⊗ θ︸ ︷︷ ︸
m

and θm will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for
contravariant components its representation in complex coordinates will look like

θ � Θ, Θk =
∂zk

∂xs
θs, Θ = (Θ1,Θ2) = (eiθ, e−iθ),

and Θm := Θ⊗Θ⊗ · · · ⊗Θ︸ ︷︷ ︸
m

be an m-contravariant tensor, and we also have θm � Θm.

Using (11), we get

(12)

〈f ,θm〉 = 〈F,Θm〉 =
m∑
k=0

(
m

k

)
Fk e

iθ(m−k)e−iθk =
m∑
k=0

(
m

k

)
Fke

i(m−2k)θ

=


f0 +

q∑
k=1

(
f−2ke

i(2k)θ + f2ke
−i(2k)θ

)
, (if m = 2q, q ≥ 0),

q∑
k=0

(
f−(2k+1)e

i(2k+1)θ + f2k+1e
−i(2k+1)θ

)
, (if m = 2q + 1, q ≥ 0),

where

f−2k =

(
2q

q − k

)
Fq−k, 0 ≤ k ≤ q, q ≥ 0,

(
q =

m

2
,m even

)
,(13)

f−(2k+1) =

(
2q + 1

q − k

)
Fq−k, 0 ≤ k ≤ q, q ≥ 0,

(
q =

m− 1

2
,m odd

)
,(14)

and fn = f−n and Fn = Fm−n, for 0 ≤ n ≤ m.
Let f be a real valued symmetric m-tensor, with integrable components of compact support in

R2, and a ∈ L1(R2) a real valued function. The attenuated X-ray transform of f is given by

(15) Xaf(x,θ) :=

∫ ∞
−∞
〈f(x+ tθ),θm〉 exp

{
−
∫ ∞
t

a(x+ sθ)ds

}
dt,

where x ∈ R2, θ ∈ S1, and 〈·, ·〉 is the inner product in (10). For the non attenuated case (a ≡ 0),
we use the notation Xf .

In here, we consider the tensor field f be defined on a strongly convex bounded set Ω ⊂ R2 with
vanishing boundary values on Γ; further regularity and the order of vanishing will be specified in
the theorems. In the statements below we use the notations in [44]:

Cµ(Sm; Ω) = {f = (fi1···im) ∈ Sm(Ω) : fi1···im ∈ Cµ(Ω)}

0 < µ < 1, for the space of real valued, symmetric tensor fields of order m with locally Hölder
continuous components. Similarly, L1(Sm; Ω) denotes the tensor fields of order m with integrable
components.

For any (x,θ) ∈ Ω× S1, let τ(x,θ) be length of the chord passing through x in the direction of
θ. Let also consider the incoming (−), respectively outgoing (+) submanifolds of the unit bundle
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restricted to the boundary

Γ± := {(x,θ) ∈ Γ× S1 : ±θ · ν(x) > 0},(16)

and the variety

Γ0 := {(x,θ) ∈ Γ× S1 : θ · ν(x) = 0},(17)

where ν(x) denotes outer normal.
The a-attenuated X-ray transform of f is realized as a function on Γ+ by

Xaf(x,θ) =

∫ 0

−τ(x,θ)

〈f(x+ tθ) ,θm〉 e−
∫ 0
t a(x+sθ)ds dt, (x,θ) ∈ Γ+.(18)

We approach the range characterization via the well-known connection with the transport model
as follows: The boundary value problem

θ · ∇u(x,θ) + a(x)u(x,θ) = 〈f(x),θm〉, (x,θ) ∈ Ω× S1,(19a)

u|Γ− = 0,(19b)

has a unique solution in Ω× S1 and

u|Γ+(x,θ) = Xaf(x,θ), (x,θ) ∈ Γ+.(20)

The range characterization is given in terms of the boundary value

g := u|Γ×S1=
{
Xaf , on Γ+,
0, on Γ− ∪ Γ0.

(21)

3. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later.
For 0 < µ < 1, p = 1, 2, we consider the Banach spaces:

(22)

l1,p∞ (Γ ) :=

{
g = 〈g0, g−1, g−2, ...〉 : ‖g‖l1,p∞ (Γ ) := sup

ξ∈Γ

∞∑
j=0

〈j〉p|g−j(ξ)| <∞

}
,

Cµ(Γ ; l1) :=

g = 〈g0, g−1, g−2, ...〉 : sup
ξ∈Γ
‖g(ξ)‖l1 + sup

ξ,η∈Γ
ξ 6=η

‖g(ξ)− g(η)‖l1
|ξ − η|µ

<∞

 ,

Yµ(Γ ) :=

g : g ∈ l1,2∞ (Γ ) and sup
ξ,η∈Γ
ξ 6=η

∞∑
j=0

〈j〉 |g−j(ξ)− g−j(η)|
|ξ − η|µ

<∞

 ,

where l∞(, l1) is the space of bounded (, respectively summable) sequences, and for brevity, we use
the notation 〈j〉 = (1 + |j|2)1/2. Similarly, we consider Cµ(Ω; l1), and Cµ(Ω; l∞).

A sequence valued map Ω 3 z 7→ v(z) := 〈v0(z), v−1(z), v−2(z), ...〉 in C(Ω; l∞) ∩ C1(Ω; l∞)
is called Lk-analytic (in the sense of Bukhgeim), k = 1, 2, if

(23) ∂v(z) + Lk∂v(z) = 0, z ∈ Ω,

where L is the left shift operator L〈v0, v−1, v−2, · · · 〉 = 〈v−1, v−2, · · · 〉, and L2 = L ◦ L.
Bukhgeim’s original theory in [7] shows that solutions of (23), satisfy a Cauchy-like integral

formula,

v(z) = B[v|Γ ](z), z ∈ Ω,(24)
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where B is the Bukhgeim-Cauchy operator acting on v|Γ . We use the formula in [11], where B is
defined component-wise for n ≥ 0 by
(25)

(Bg)−n(z) :=
1

2πi

∫
Γ

g−n(ζ)

ζ − z
dζ +

1

2πi

∫
Γ

{
dζ

ζ − z
− dζ

ζ − z

} ∞∑
j=1

g−n−j(ζ)

(
ζ − z
ζ − z

)j
, z ∈ Ω.

The following regularity result in [36, Proposition 4.1] is needed.

Proposition 3.1. [36, Proposition 4.1] Let µ > 1/2 and g = 〈g0, g−1, g−2, ...〉 be the sequence
valued map of non-positive Fourier modes of g.

(i) If g ∈ Cµ(Γ ;C1,µ(S1)), then g ∈ l1,1∞ (Γ ) ∩ Cµ(Γ ; l1).
(ii) If g ∈ Cµ(Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), then g ∈ Yµ(Γ ).
(iii) If g ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1), then g ∈ C1,µ(Ω× S1) ∩ Cµ(Ω× S1).

Similar to the analytic maps, the boundary values of L-analytic maps must satisfy some con-
straints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in
[36]. More precisely, the Bukhgeim-Hilbert transformH acting on g,

Γ 3 z 7→ (Hg)(z) = 〈(Hg)0(z), (Hg)−1(z), (Hg)−2(z), ...〉(26)

is defined component-wise for n ≥ 0 by
(27)

(Hg)−n(z) =
1

π

∫
Γ

g−n(ζ)

ζ − z
dζ +

1

π

∫
Γ

{
dζ

ζ − z
− dζ

ζ − z

} ∞∑
j=1

g−n−j(ζ)

(
ζ − z
ζ − z

)j
, z ∈ Γ,

and we refer to [36] for its mapping properties.
Note that the Bukhgeim-Cauchy integral formula in (25) above is restated in terms of L-analytic

maps as opposed to L2-analytic as in [36]. The only change is the index relabeling. In particular,
the index g−n−j will change to g−n−2j therein to account for L2-analytic. Moreover, the same index
relabelling in the Bukhgeim-Hilbert transform formula (27) is made to account for the difference
between L-analytic and L2-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map
to be the boundary value of an Lk-analytic function, k = 1, 2.

Theorem 3.1. Let 0 < µ < 1, and k = 1, 2. Let B be the Bukhgeim-Cauchy operator in (25).
Let g = 〈g0, g−1, g−2, ...〉 ∈ Yµ(Γ ) for µ > 1/2 be defined on the boundary Γ, and let H be the
Bukhgeim-Hilbert transform acting on g as in (27).

(i) If g is the boundary value of an Lk-analytic function, thenHg ∈ Cµ(Γ ; l1) and satisfies

(I + iH)g = 0.(28)

(ii) If g satisfies (28), then there exists an Lk-analytic function v := Bg ∈ C1,µ(Ω; l1)∩Cµ(Ω; l1)∩
C2(Ω; l∞), such that

v|Γ= g.(29)

For the proof of Theorem 3.1 we refer to [36, Theorem 3.2, Corollary 4.1, and Proposition 4.2]
and [37, Proposition 2.3].

Another ingredient, in addition to L2-analytic maps, consists in the one-to-one relation between
solutions u := 〈u0, u−1, u−2, ...〉 satisfying

∂u−n(z) + ∂u−n−2(z) + a(z)u−n−1(z) = 0, z ∈ Ω, n ≥ 0,(30)
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and the L2-analytic map v = 〈v0, v−1, v−2, ...〉 satisfying

∂v−n(z) + ∂v−n−2(z) = 0, z ∈ Ω, n ≥ 0;(31)

via a special function h, see [40, Lemma 4.2] for details. The function h is defined as

h(z,θ) := Da(z,θ)− 1

2
(I − iH)Ra(z · θ⊥,θ⊥),(32)

where θ⊥ is the counter-clockwise rotation of θ by π/2, Ra(s,θ⊥) =

∫ ∞
−∞

a
(
sθ⊥ + tθ

)
dt is the

Radon transform in R2 of the attenuation a, Da(z,θ) =

∫ ∞
0

a(z + tθ)dt is the divergent beam

transform of the attenuation a, and Hh(s) =
1

π

∫ ∞
−∞

h(t)

s− t
dt is the classical Hilbert transform [22],

taken in the first variable and evaluated at s = z·θ⊥. The function h appeared first in [23] and
enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

e−h(z,θ) :=
∞∑
k=0

αk(z)eikθ, eh(z,θ) :=
∞∑
k=0

βk(z)eikθ, (z,θ) ∈ Ω× S1.(33)

Using the Fourier coefficients of e±h, we construct the sequence valued maps

Ω 3 z 7→ α(z) := 〈α0(z), α1(z), ..., 〉, Ω 3 z 7→ β(z) := 〈β0(z), β1(z), ..., 〉
to define the convolution operators e±G acting on some u = 〈u0, u−1, u−2, ...〉 via

e−Gu =
∞∑
k=0

αkL
ku = α ∗ u, and eGu =

∞∑
k=0

βkL
ku = β ∗ u,(34)

where Lk is the k-th composition of left translation. In particular, note that e±G commutes with L.
We refer [40, Lemma 4.1] for the properties of h, and we restate the following result [36, Propo-

sition 5.2] to incorporate the operators e±G notation used in here.

Proposition 3.2. [36, Proposition 5.2] Let a ∈ C1,µ(Ω), µ > 1/2. Then α, ∂α,β, ∂β ∈ l1,1∞ (Ω),
and the operators

(i) e±G : Cµ(Ω; l∞)→ Cµ(Ω; l∞); (ii) e±G : Cµ(Ω; l1)→ Cµ(Ω; l1); (iii) e±G : Yµ(Γ )→ Yµ(Γ ).

Lemma 3.1. [37, Lemma 4.2] Let a ∈ C1,µ(Ω), µ > 1/2, and e±G be operators as defined in (34).
(i) If u ∈ C1(Ω, l1) solves ∂u + L2∂u + aLu = 0, then v = e−Gu ∈ C1(Ω, l1) solves ∂v +

L2∂v = 0.
(ii) Conversely, if v ∈ C1(Ω, l1) solves ∂v + L2∂v = 0, then u = eGv ∈ C1(Ω, l1) solves

∂u + L2∂u + aLu = 0.

4. m-TENSOR - NON-ATTENUATED CASE

In the non-attenuated a ≡ 0 case, using (12) the transport equation (19a) becomes

θ · ∇u =


f0 +

m
2∑

k=1

f−2ke
i(2k)θ + f2ke

−i(2k)θ, (if m is even),

m−1
2∑

k=0

f−(2k+1)e
i(2k+1)θ + f2k+1e

−i(2k+1)θ, (if m is odd),

(35)
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where f ′ns are defined as in (13) and (14), and fn = f−n, for 0 ≤ n ≤ m. Note that f0 is real-valued
while other modes are complex conjugates.

For z = x1 + ix2 ∈ Ω, the advection operator θ · ∇ in complex notation becomes e−iθ∂ + eiθ∂,
where θ = (cos θ, sin θ), and ∂, ∂ are the Cauchy-Riemann operators in (3).

If
∑
n∈Z

un(z)einθ is the Fourier series expansion in the angular variable θ of a solution u of (35),

then by identifying the Fourier coefficients of the same order, (35) reduces to the system for even
order m-tensor:

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = f2n(z), 0 ≤ n ≤ m

2
, m even,(36)

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = 0, n ≥ m

2
+ 1,(37)

∂u−2n(z) + ∂u−(2n+2)(z) = 0, n ≥ 0,(38)

and for odd order m-tensor we have:

∂u−2n(z) + ∂u−(2n+2)(z) = f2n+1(z), 0 ≤ n ≤ m− 1

2
, m odd,(39)

∂u−2n(z) + ∂u−(2n+2)(z) = 0, n ≥ m+ 1

2
,(40)

∂u−(2n−1)(z) + ∂u−(2n+1)(z) = 0, n ≥ 0.(41)

Recall that the boundary value u|Γ×S1 := g as in (21), with g = Xf on Γ+ and g = 0 on Γ− ∪Γ0.
The range characterization is given in terms of the Fourier modes of g in the angular variables:

g(ζ,θ) =
∞∑

n=−∞

gn(ζ)einθ, for ζ ∈ Γ. Since the data g is also real valued, its modes satisfies

g−n(ζ) = gn(ζ), for n ≥ 0, ζ ∈ Γ.(42)

From the non-positive Fourier modes, we built the sequences

geven := 〈g0, g−2, g−4, ...〉, and godd := 〈g−1, g−3, g−5, ...〉.(43)

4.1. Even order m-tensor. In this subsection, we establish necessary and sufficient conditions for
a sufficiently smooth function on Γ × S1 to be the non-attenuated X-ray data of some sufficiently
smooth real valued symmetric tensor field f of even order m = 2q, q ≥ 0.

We characterize next the non-attenuated X-ray data g in terms of the Bukhgeim-Hilbert Trans-
form H in (27). We will construct the solution u of the transport equation (35) in the m-even case,
whose boundary value matches the boundary data g, and also construct the right hand side of the
(35). The construction of solution u is in terms of its Fourier modes in the angular variable. We first
construct the non-positive Fourier modes and then the positive Fourier modes are constructed by
conjugation. For even m = 2q, q ≥ 1, apart from q many Fourier modes u−1, u−3, · · ·u−(2q−1), all
non-positive Fourier modes are defined by Bukhgeim-Cauchy integral formula (25) using boundary
data. Other than having the boundary value u−(2j−1)

∣∣
Γ

= g−(2j−1), 1 ≤ j ≤ q, q ≥ 1, the q many
Fourier modes u−(2j−1), 1 ≤ j ≤ q, q ≥ 1, are unconstrained. They are chosen arbitrarily from the
class Ψeven

g of functions of cardinality q = m
2

with prescribed restriction on the boundary Γ defined:

Ψeven
g :=

{(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈
(
C1,µ(Ω;C)

)q
, 2µ > 1 :

ψ−(2j−1)

∣∣
Γ

= g−(2j−1), 1 ≤ j ≤ q, q ≥ 1

}
.(44)
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Remark 4.1. Any arbitrary C1,µ(Ω) functions such that its restriction on the boundary matches
with the respective Fourier mode of data will suffice in (44). Note for the 0-tensor case, there is no
class, and the characterization of the X-ray data g is in terms of the Fourier modes g.

Theorem 4.1 (Range characterization for even order tensors). (i) Let f ∈ C1,µ
0 (Sm; Ω), µ > 1/2,

be a real-valued symmetric tensor field of even order m = 2q, q ≥ 0, and

g = Xf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then geven,godd ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) satisfy

[I + iH]geven = 0, and [I + iH]L
m
2 godd = 0,(45)

where geven,godd are sequences in (43), andH is the Bukhgeim-Hilbert operator in (27).
(ii) Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. For q = 0, if

the corresponding sequences geven,godd ∈ Yµ(Γ ) satisfies (45), then there is a unique real valued
symmetric 0-tensor f such that g|Γ+= Xf . Moreover, for q ≥ 1, if geven,godd ∈ Yµ(Γ ) satisfies
(45), and for each element

(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψeven

g , then there is a unique real valued
symmetric m-tensors fΨ ∈ Cµ(Sm; Ω) such that g|Γ+= XfΨ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C

1,µ
0 (Ω)

are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields g ∈
C1,µ(Γ × S1). Moreover, g is the boundary value on Γ × S1 of a solution u ∈ C1,µ(Ω× S1) of the
transport equation (35) in the m-even case. By Proposition 3.1 (i), geven,godd ∈ l1,1∞ (Γ)∩Cµ(Γ; l1).

If u solves (35), then its Fourier modes satisfy (36) - (38). Since the negative even Fourier modes
u2n for n ≤ 0, satisfies the system (38), then the sequence ueven := 〈u0, u−2, u−4, · · · 〉 is L-analytic
in Ω and the necessity part in Theorem 3.1 yields the first condition in (45).

The equation (37) for negative odd Fourier modes starting from negative 2q + 1 mode, yield that
the sequence 〈u−(2q+1), u−(2q+3), ...〉 is L-analytic in Ω and the necessity part in Theorem 3.1 gives
the last condition in (45).

(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the
corresponding sequences geven,godd satisfy (45). By Proposition (3.1), geven,godd ∈ Yµ(Γ ).

Let m = 2q, q ≥ 0, be an even integer. To prove the sufficiency we will construct a real valued
symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such that
u|Γ×S1= g and u solves (35) in Ω. The construction of such u is in terms of its Fourier modes in
the angular variable and it is done in several steps.

Step 1: The construction of even modes u2n for n ∈ Z.
Apply the Bukhgeim-Cauchy Integral operator (25) to construct the negative even Fourier modes:

〈u0(z), u−2(z), u−4(z), ...〉 := Bgeven(z), z ∈ Ω.(46)

By Theorem 3.1, the sequence 〈u0, u−2, ...〉 ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1) is L-analytic in Ω, thus

∂u−2n + ∂u−2n−2 = 0,(47)

are satisfied for all n ≥ 0. Moreover, the hypothesis (45) and the sufficiency part of Theorem 3.1
yields that they extend continuously to Γ and u−2n|Γ = g−2n, for all n ≥ 0.

Construct the positive even Fourier modes by conjugation: u2n := u−2n, for all n ≥ 1.
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By conjugating (47) we note that the positive even Fourier modes also satisfy

∂u2n+2 + ∂u2n = 0, n ≥ 0.

Moreover, by reality of g in (42) they extend continuously to Γ and

u2n|Γ = u−2n|Γ = g−2n = g2n, n ≥ 1.

Thus, as a summary from above equations, we have shown that the even modes u2n satisfy

(48) ∂u2n + ∂u2n−2 = 0, and u2n

∣∣
Γ

= g2n, for all n ∈ Z.

Step 2: The construction of odd modes u2n−1 for |n| ≥ q, q ≥ 0.
Apply the Bukhgeim-Cauchy Integral operator (25) to construct the other odd negative modes:

〈u−(2q+1)(z), u−(2q+3)(z), · · · 〉 := BLqgodd(z), z ∈ Ω.(49)

By Theorem 3.1, the sequence 〈u−(2q+1), u−(2q+3), ..., 〉 ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1), is L-analytic
in Ω, thus the equations

∂u−(2n+1) + ∂u−(2n+3) = 0,(50)

are satisfied for all n ≥ q, q ≥ 0. Moreover, the hypothesis (45) : [I + iH]L
m
2 godd = 0, and the

sufficiency part of Theorem 3.1 yields that they extend continuously to Γ and

u−(2n+1)|Γ = g−(2n+1), ∀n ≥ q, q ≥ 0.(51)

Construct the positive odd Fourier modes by conjugation: u2n+1 := u−(2n+1), for all n ≥ q, q ≥ 0.
By conjugating (50) we note that the positive odd Fourier modes also satisfy

∂u2n+3 + ∂u2n+1 = 0, ∀n ≥ q, q ≥ 0.(52)

Moreover, by (42) they extend continuously to Γ and

u2n+1|Γ = u−(2n+1)|Γ = g−(2n+1) = g2n+1, n ≥ q, q ≥ 0.(53)

Step 3: The construction of the 0- tensor field f . In the case of the 0-tensor, f = f0 is uniquely
determined from the odd mode u−1 in (49), by

f0 := 2Re ∂u−1, (for q = 0 case).(54)

We consider next the case q ≥ 1 of tensors of order 2 or higher. In this case the construction of
the tensor field fΨ is in terms of the Fourier mode u−(2q+1) in (49) and the class Ψeven

g in (44).
Step 4: The construction of odd modes u±(2n−1), for 1 ≤ n ≤ q, q ≥ 1.
For

(
ψ−1, ψ−3, · · · , ψ−(2q−1)

)
∈ Ψeven

g arbitrary, define the modes u±1, u±3, ..., u±(2q−1) in Ω by

(55) u−(2n−1) := ψ−(2n−1) and u2n−1 := ψ−(2n−1), 1 ≤ n ≤ q, q ≥ 1.

By the definition of the class Ψeven
g in (44), and the reality of g in (42), we have

(56) u−(2n−1)|Γ = g−(2n−1), and u2n−1|Γ= g−(2n−1) = g2n−1, 1 ≤ n ≤ q, q ≥ 1.

Step 5: The construction of the tensor field fΨ whose X-ray data is g.
For q ≥ 1, we define f2q by using ψ−(2q−1) from the non-uniqueness class (44), and Fourier mode

u−(2q+1) from the Bukhgeim-Cauchy formula (49). Then, define {f2n : 0 ≤ n ≤ q−1} solely from
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the information in the non-uniqueness class. Finally, define {f−2n : 1 ≤ n ≤ q} by conjugation.

(57)

f2q := ∂ψ−(2q−1) + ∂u−(2q+1), q ≥ 1,

f2n := ∂ψ−(2n−1) + ∂ψ−(2n+1), 1 ≤ n ≤ q − 1, q ≥ 2,

f0 := 2Re ∂ψ−1, q ≥ 1, and

f−2n := f2n, 1 ≤ n ≤ q, q ≥ 1,

By construction, f2n ∈ Cµ(Ω), for −q ≤ n ≤ q, as ψ−1, · · · , ψ−2q+1 ∈ C1,µ(Ω). We use these
Fourier modes f0, f±2, f±4, · · · , f±2q for q ≥ 1, and equations (13), (7) and (9) to construct the
pseudovectors 〈f̃0, f̃1, · · · , f̃m〉, and thus the m-tensor field fΨ ∈ Cµ(Sm; Ω).

In order to show g|Γ+= XfΨ for q ≥ 1, with fΨ being constructed as in (57), we define the real
valued function u via its Fourier modes for q ≥ 1,

u(z,θ) =

∞∑
n=−∞

u2ne
i2nθ +

∑
|n|≥q

u2n+1e
i(2n+1)θ +

q∑
n=1

ψ−(2n−1)e
−i(2n−1)θ +

q∑
n=1

ψ−(2n−1)e
i(2n−1)θ.(58)

Since g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii)-(iii), to conclude that
u defined in (58) belongs to C1,µ(Ω×S1)∩Cµ(Ω×S1). Using (48), (51), (53), (56), and definition
of
(
ψ−1, · · · , ψ−(2q−1)

)
∈ Ψeven

g for q ≥ 1, the u(·,θ) in (58) extends to the boundary,

u(·,θ)|Γ= g(·,θ).

Since u ∈ C1,µ(Ω × S1) ∩ Cµ(Ω × S1), then the term by term differentiation in (58) is now
justified, and u satisfy (35):

θ · ∇u = ∂ ψ−1 + ∂ψ−1 +

q−1∑
n=1

(∂ψ−(2n−1) + ∂ψ−(2n+1))e
−i(2n)θ +

q−1∑
n=1

(∂ ψ−(2n+1) + ∂ψ−(2n−1))e
i(2n)θ

+ e−i(2q)θ(∂ψ−(2q−1) + ∂u−(2q+1)) + ei(2q)θ(∂ψ−(2q−1) + ∂ u−(2q+1))

=

q∑
n=−q

f2n(z)e−i(2n)θ = 〈f ,θ2q〉,

where we use (48), (50), (52), (55), and the second equality uses the definition of f2k’s in (57). �

4.2. Odd order m-tensor. In this subsection we establish necessary and sufficient conditions for
a sufficiently smooth function on Γ × S1 to be the non-attenuated X-ray data of some sufficiently
smooth real valued symmetric tensor field f of odd order m = 2r + 1, r ≥ 0.

In the m-tensor case, the even and odd Fourier modes of u plays a different role, unlike the even
m-tensor case in the previous section. To emphasize this difference we separate the non-positive
even modes ueven := 〈u0, u−2, u−4...〉, and negative odd modes uodd := 〈u−1, u−3, ...〉, and note that
if 〈u0(z), u−1(z), u−2(z), ...〉 is L2-analytic, then ueven,uodd are L-analytic.

Let us consider the sequence {u2k−1}k≥1 ⊂ C(Ω; l∞) ∩ C1(Ω; l∞) given by

u2k−1 := 〈u2k−1, u2k−3, ...., u1, u−1, u−3, u−5, ...〉, k ≥ 1,(59)

obtained by augmenting the sequence of negative odd indices 〈u−1, u−3, u−5, ...〉 by k many terms
in the order u2k−1, u2k−3, ...., u1.

One of the ingredients in our characterization of the odd m-tensor is the following simple prop-
erty of L-analytic maps, shown in [36, Lemma 2.6].



12 DAVID OMOGBHE AND KAMRAN SADIQ

Lemma 4.1. [36, Lemma 2.6] Let {u2k−1}k≥1 be the sequence of L-analytic maps defined in (59).
Assume that u2k−1|Γ= u−(2k−1)|Γ , for all k ≥ 1. Then, for each k ≥ 1,

u2k−1(z) = u−(2k−1)(z), z ∈ Ω.(60)

Similar to the even m-tensor case, the range characterization of data g will be given in terms of
its Fourier modes.From the non-positive even modes, we build the sequences geven,godd as in (43).

For each k ≥ 1, we use the odd modes {g−1, g−3, g−5, ...} to build the sequence

g2k−1 := 〈g2k−1, g2k−3, ...., g1, g−1, g−3, g−5, ...〉(61)

by augmenting the negative odd indices by k-many terms in the order g2k−1, g2k−3, ...., g1.
Similar to the evenm-tensor case before, we will construct the solution u of the transport equation

(35) in the m-odd case, whose boundary value matches the boundary data g, and also construct the
right hand side of the (35). The construction of solution u is in terms of its Fourier modes in
the angular variable. Except for non-positive modes u0, u−2, · · · , u−2r, all non-positive modes are
defined by Bukhgeim-Cauchy integral formula in (25) using boundary data. Other than having the
restrictions u−2j

∣∣
Γ

= g−2j, 0 ≤ j ≤ r, r ≥ 0, on the boundary, the r + 1 many Fourier modes
u−2j, 0 ≤ j ≤ r, r ≥ 0, are unconstrained. They are chosen arbitrarily from the class of functions

Ψodd
g :=

{
(ψ0, ψ−2, · · · , ψ−2r) ∈ C1,µ(Ω;R)×

(
C1,µ(Ω;C)

)r
: 2µ > 1 :

ψ−2j

∣∣
Γ

= g−2j, 0 ≤ j ≤ r, r ≥ 0

}
.(62)

Remark 4.2. Any arbitrary C1,µ(Ω) functions such that its restriction on the boundary matches
with the respective Fourier mode of data will suffice in (62). In the 1-tensor case (m = 1), only
Fourier mode u0 be an arbitrary function in C1(Ω) ∩ C(Ω) with u0|Γ = g0. The arbitrariness of
u0 characterizes the non-uniqueness (up to the gradient field of a function which vanishes at the
boundary) in the reconstruction of a vector field from its Doppler data.

Theorem 4.2 (Range characterization for odd tensors.). Let f ∈ C1,µ
0 (Sm; Ω), µ > 1/2, be a real-

valued symmetric tensor field of odd order m = 2r + 1, r ≥ 0, and

g = Xf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then geven,g2k−1 ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) for k ≥ 1, and satisfy

[I + iH]L
m+1

2 geven = 0, and [I + iH]g2k−1 = 0, ∀k ≥ 1,(63)

where geven is the sequence in (43), g2k−1 for k ≥ 1 is the sequence in (61), andH is the Bukhgeim-
Hilbert operator in (27).

(ii) Let g ∈ Cµ (Γ ;C1,µ(S1))∩C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. If the correspond-
ing sequence geven,g2k−1 ∈ Yµ(Γ ) for k ≥ 1, satisfies (63), and for each element (ψ0, · · · , ψ−2r) ∈
Ψodd
g , then there is a unique real valued symmetric m-tensor fΨ ∈ Cµ(Sm; Ω) such that g|Γ+= Xfψ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω),
Xf ∈ C1,µ(Γ+), and, thus, the solution u to the transport equation (35) is inC1,µ(Ω×S1). Moreover,
its boundary value g = u|Γ×S1∈ C1,µ(Γ × S1).

By Proposition 3.1 (i), geven,g2k−1 ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) for all k ≥ 1.
If u solves (35) then its Fourier modes satisfy (39) - (41). Since the negative even Fourier modes

u−2n for n ≥ m+1
2

, satisfies the system (40), then the sequence 〈u−(m+1), u−(m+3), · · · 〉 is L-analytic
in Ω and the necessity part in Theorem 3.1 yields the first condition in (63).
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The system (41) yield that the sequence u1 := 〈u1, u−1, u−3 · · · 〉 is L-analytic in Ω with the
boundary value satisfying u2k−1|Γ= g2k−1, for all k ≤ 1. By Theorem 3.1 necessity part, the
sequence g1 = 〈g1, g−1, g−3, ...〉 must satisfy [I + iH]g1 = 0.

Recall that u is real valued so that its Fourier modes occur in conjugates un = u−n for all n ≥ 0.
Consider now the equation (41) for n = 1 and take its conjugate to yield

∂u3 + ∂u1 = 0.(64)

The above equation (64) together with (41) yield that the sequence u3 := 〈u3, u1, u−1, u−3 · · · 〉 is
L-analytic in Ω with the boundary value satisfying u2k−1|Γ= g2k−1 for all k ≤ 2. By the necessity
part in Theorem 3.1, it must be that g3 = 〈g3, g1, g−1, g−3, ...〉 satisfies [I + iH]g3 = 0.

Inductively, the argument above holds for any odd index 2k − 1 to yield that the sequence

Ω 3 z 7→ u2k−1(z) := 〈u2k−1(z), u2k−3(z), ..., u1(z), u−1(z), u−3(z) · · · 〉

is L-analytic in Ω. Then, again by the necessity part in Theorem 3.1, its boundary value u2k−1|Γ=
g2k−1 must satisfy the last condition in (63).

(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the
corresponding sequences geven,godd satisfies (45). By Proposition (3.1), geven,godd ∈ Yµ(Γ ).

Let m = 2r + 1, r ≥ 0, be an odd integer. To prove the sufficiency we will construct a real
valued symmetric m-tensor f in Ω and a real valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such
that u|Γ×S1= g and u solves (35) in Ω. The construction of such u is in terms of its Fourier modes
in the angular variable and it is done in several steps.

Step 1: The construction of even modes u2n for |n| ≥ 2r + 1, r ≥ 0.
Apply the Bukhgeim-Cauchy integral formula (25) to construct the negative even Fourier modes:

〈u−2(r+1), u−2(r+2), ...〉 := BLr+1geven.(65)

By Theorem 3.1, the sequence 〈u−2(r+1), u−2(r+2), ...〉 ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1)is L-analytic in Ω:

∂u−2n + ∂u−(2n+2) = 0,(66)

are satisfied for all n ≥ r + 1, r ≥ 0. Moreover, the hypothesis (63) and the sufficiency part of
Theorem 3.1 yields that they extend continuously to Γ and

u−2n|Γ = g−2n, n ≥ r + 1, r ≥ 0.(67)

Construct the positive even Fourier modes by conjugation: u2n := u−2n, for all n ≥ r+1, r ≥ 0.
By conjugating (66) we note that the positive even Fourier modes also satisfy

∂u2n+2 + ∂u2n = 0, n ≥ r + 1, r ≥ 0.(68)

Moreover, by reality of g in (42), they extend continuously to Γ and

u2n|Γ = u−2n|Γ = g−2n = g2n, n ≥ r + 1, r ≥ 0.(69)

Step 2: The construction of even modes u2n, for |n| ≤ 2r, r ≥ 0.
For (ψ0, ψ−2, · · · , ψ−2r) ∈ Ψodd

g arbitrary, define the modes u0, u±2, u±4, ..., u±2r in Ω by

(70) u−2n := ψ−2n, and u2n := ψ−2n, 0 ≤ n ≤ r.

By the definition of the class (62), and reality of g in (42), we have

u2n|Γ= g−2n = g2n, 0 ≤ n ≤ r.(71)

Step 3: The construction of negative modes u2n−1 for n ∈ Z.
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Use the Bukhgeim-Cauchy Integral formula (25) to construct the negative odd Fourier modes:

〈u−1(z), u−3(z), ...〉 := Bgodd(z), z ∈ Ω.(72)

By Theorem 3.1, the sequence 〈u−1, u−3...〉 ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1) is L-analytic in Ω, thus

∂u−2n−1 + ∂u−2n−3 = 0,(73)

are satisfied for all n ≥ 0.
Note that Lg1 = godd. By hypothesis (63), [I + iH]g1 = 0. Since H commutes with the left

translation L, then

0 = L[I + iH]g1 = [I + iH]Lg1 = [I + iH]godd.

By applying Theorem 3.1 sufficiency part, we have that each u2n−1 extends continuously to Γ:

u−2n−1|Γ = g−2n−1, n ≥ 1.

If we were to define the positive odd index modes by conjugating the negative ones (as we did
for the non-attenuated even tensor case) it would not be clear why the equation (41) for n = 0:

∂u1 + ∂u−1 = 0,

should hold. To solve this problem we will define the positive odd modes by using the Bukhgeim-
Cauchy integral formula (25) inductively.

Let u1 = 〈u1, u
1
−1, u

1
−3, · · · 〉 be the L-analytic map defined by

u1 := Bg1.(74)

The hypothesis (63) for k = 1: [I + iH]g1 = 0, allows us to apply the sufficiency part of Theorem
3.1 to yield that u1 extends continuously to Γ and has boundary value g1 on Γ . However, Lu1 =
uodd is also L-analytic with the same boundary value godd as uodd. By the uniqueness of L-analytic
maps with the given boundary value we must have the equality

〈u1
−1, u

1
−3, · · · 〉 = 〈u−1, u−3, · · · 〉.

In other words the formula (74) constructs only one new function u1 and recovers the previously
defined negative odd functions u−1, u−3, .... In particular u1 = 〈u1, u−1, u−3, · · · 〉 is L-analytic,
and the equation ∂u1 + ∂u−1 = 0 holds in Ω. We stress here that, at this stage, we do not know that
u1 is the complex conjugate of u−1.

Inductively, for k ≥ 1, the formula

u2k−1 = 〈u2k−1, u
2k−1
2k−3, ..., u

2k−1
1 , u2k−1

−1 , · · · 〉 := Bg2k−1(75)

defines a sequence {u2k−1}k≥1 of L-analytic maps with u2k−1|Γ= g2k−1. By the uniqueness of
L-analytic maps with the given boundary value, a similar reasoning as above shows

Lu2k−1 = u2k−3, ∀k ≥ 2.

In particular, for all k ≥ 1, the sequence u2k−1 = 〈u2k−1, u2k−3, ..., u1, u−1, · · · 〉 is L-analytic.
Note that the sequence {u2k−1}k≥1 constructed above satisfies the hypotheses of the Lemma 4.1,
and therefore for each k ≥ 1,

u2k−1(z) = u−(2k−1)(z), z ∈ Ω.(76)

We stress here that the identities (76) need the hypothesis (63) for all k ≥ 1, cannot be inferred
directly from the Bukhgeim-Cauchy integral formula (25) for finitely many k’s.
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We have shown that

(77) ∂u2n−1 + ∂u2n−3 = 0, and u2n−1|Γ = g2n−1, ∀n ∈ Z.

Step 4: The construction of the tensor field fψ whose X-ray data is g.
For r ≥ 0, we define first f2r+1 by using ψ−2r from the non-uniqueness class in (62), and mode

u−(2r+2) from (65). Then, next define {f2n+1 : 0 ≤ n ≤ r − 1} solely from the information in the
non-uniqueness class. Finally, define {f−(2n+1) : 0 ≤ n ≤ r} by conjugation:

(78)

f2r+1 := ∂ψ−2r + ∂u−(r+2), r ≥ 0,

f2n+1 := ∂ψ−2n + ∂ψ−(2n+2), 0 ≤ n ≤ r − 1, r ≥ 1, and

f−(2n+1) := f2n+1, 0 ≤ n ≤ r, r ≥ 0.

By construction, f±(2n+1) ∈ Cµ(Ω), for 0 ≤ n ≤ r, as ψ0, ψ−2, · · · , ψ−2r ∈ C1,µ(Ω). We use
these Fourier modes f±1, f±3, · · · , f±m for m = 2r + 1, r ≥ 0, and equations (14), (7) and (9) to
construct the pseudovectors 〈f̃0, f̃1, · · · , f̃m〉, and thus the m-tensor field fΨ ∈ Cµ(Sm; Ω).

In order to show g|Γ+= XfΨ with fΨ being constructed from pseudovectors via Fourier modes as
in (78) from class Ψodd

g , we define the real valued function u via its Fourier modes

(79) u(z,θ) :=

∞∑
n=−∞

u2n−1(z)e
i(2n−1)θ +

∑
|n|≥r+1

u2n(z)e
i2nθ +

r∑
n=0

ψ−2n(z)e
−i2nθ +

r∑
n=0

ψ−2n(z)e
i2nθ.

Since g ∈ Cµ (Γ ;C1,µ(S1))∩C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii) and (iii), to conclude that
u defined in (79) belongs to C1,µ(Ω× S1) ∩ Cµ(Ω× S1).

Using (67), (69), (71), (77), and element (ψ0, ψ−2, · · · , ψ−2r) ∈ Ψodd
g , the u(·,θ) in (79) extends

to the boundary u(·,θ)|Γ= g(·,θ).
Since u ∈ C1,µ(Ω × S1) ∩ Cµ(Ω × S1), then the term by term differentiation in (79) is now

justified, satisfying the transport equation (35):

θ · ∇u = 2Re
{

(∂ψ−2r + ∂u−(2r+2))e
i(2r+1)θ

}
+ 2Re

{
r−1∑
n=0

(∂ψ−2n + ∂ψ−(2n+2))e
i(2n+1)θ

}

=
r∑

n=0

(
f2n+1e

−i(2n+1)θ + f−(2n+1)e
i(2n+1)θ

)
= 〈f ,θ2r+1〉,

where we use (66), (68), (77), and the second equality uses the definition of f2k+1’s in (78).
�

5. m-TENSOR - ATTENUATED CASE

Let a ∈ C2,µ(Ω), µ > 1/2, with min
Ω
a > 0. In this case, the transport equation (19a) becomes

θ · ∇u+ au =


f0 +

m
2∑

k=1

f−2ke
i(2k)θ + f2ke

−i(2k)θ, (if m is even),

m−1
2∑

k=0

f−(2k+1)e
i(2k+1)θ + f2k+1e

−i(2k+1)θ, (if m is odd),

(80)

where f ′ns are defined as in (13) and (14), and fn = f−n, for 0 ≤ n ≤ m.



16 DAVID OMOGBHE AND KAMRAN SADIQ

If
∑
n∈Z

un(z)einθ is the Fourier series expansion in the angular variable θ of a solution u of (80),

then by identifying the Fourier coefficients of the same order, (80) reduces to the system for even
order m-tensor:

∂u−(2n−1)(z) + ∂u−(2n+1)(z) + au−2n(z) = f2n(z), 0 ≤ n ≤ m

2
, m even,(81)

∂u−2n(z) + ∂u−(2n+2)(z) + au−2n−1(z) = 0, 0 ≤ n ≤ m

2
− 1,(82)

∂u−n(z) + ∂u−(n+2)(z) + au−(n+1)(z) = 0, n ≥ m,(83)

and for odd order m-tensor we have:

∂u−(2n−1)(z) + ∂u−(2n+1)(z) + au−2n(z) = 0, 0 ≤ n ≤ m− 1

2
, m odd,(84)

∂u−2n(z) + ∂u−(2n+2)(z) + au−(2n+1)(z) = f2n+1(z), 0 ≤ n ≤ m− 1

2
,(85)

∂u−n(z) + ∂u−(n+2)(z) + au−(n+1)(z) = 0, n ≥ m.(86)

Given the data g for attenuated X-ray transform for even or odd order tensor field, we expand the

data g in terms of its Fourier modes in the angular variables: g(ζ,θ) =
∞∑

n=−∞

gn(ζ)einθ, for ζ ∈ Γ .

Since the data g is also real valued, its Fourier modes will satisfy g−n = gn, for n ≥ 0. From the
negative modes, we built the sequence g := 〈g0, g−1, g−2, ...〉. From the special function h defined
in (32) and the data g, we built the sequence

gh := e−Gg := 〈γ0, γ−1, γ−2, ...〉,(87)

where e−G as defined in (34).
Next we characterize the attenuatedX-ray data g in terms of its Fourier modes g0, g−1, · · · g−(m−1),

and the Fourier modes

Lmgh := Lme−Gg := 〈γ−m, γ−(m+1), γ−(m+2), ...〉.

Similar to the non-attenuated case as before, we construct simultaneously the right hand side
of the transport equation (80) together with the solution u via its Fourier modes. In both cases,
apart from modes u0, u−1, u−2, · · ·u−(m−1), all Fourier modes are constructed uniquely from the
data Lmgh. For even m ≥ 2, the modes u0, u−2, u−4, · · ·u−(m−2) will be chosen arbitrarily from
the class Ψeven

a,g of cardinality m
2

with prescribed boundary value and gradient on Γ defined as

Ψeven
a,g :=

{(
ψ0, ψ−2, · · · , ψ−(m−2)

)
∈ C2(Ω;R)×

(
C2(Ω;C))

)m
2
−1

:

ψ−2j

∣∣
Γ

= g−2j, 0 ≤ j ≤ m

2
− 1, m ≥ 2,

∂ψ−(m−2)

∣∣
Γ

= −∂(eGBe−Gg)−m
∣∣
Γ
− a
∣∣
Γ
g−(m−1), m ≥ 2,

∂ψ−2j

∣∣
Γ

= −∂ψ−(2j+2)

∣∣
Γ
− a
∣∣
Γ
g−(2j+1), 0 ≤ j ≤ m

2
− 2, m ≥ 4

}
,(88)
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and for odd m ≥ 1, the modes u−1, u−3, · · · , u−(m−2) will be chosen arbitrarily from the class Ψodd
a,g

of cardinality m−1
2

with prescribed boundary value and gradient on Γ defined as

(89)

Ψodd
a,g :=

{(
ψ−1, ψ−3, · · · , ψ−(m−2)

)
∈
(
C2(Ω;C)

)m−1
2 :

ψ−(2j−1)

∣∣
Γ

= g−(2j−1), 1 ≤ j ≤ m− 1

2
, m ≥ 3,

∂ψ−(m−2)

∣∣
Γ

= −∂(eGBe−Gg)−m
∣∣
Γ
− a
∣∣
Γ
g−(m−1), m ≥ 3,

∂ψ−(2j−1)

∣∣
Γ

= −∂ψ−(2j+1)

∣∣
Γ
− a
∣∣
Γ
g−2j, 1 ≤ j ≤ m− 3

2
, m ≥ 5,

2
(
Re ∂ψ−1

∣∣
Γ

)
= −a|Γ g0

}
,

where B be the Bukhgeim-Cauchy operator in (25), and the operators e±G as defined in (34).

Theorem 5.1 (Range characterization). Let a ∈ C2,µ(Ω), µ > 1/2 with min
Ω
a > 0, and Z 3 m ≥ 0.

(i) Let f ∈ C1,µ
0 (Sm; Ω) be a real-valued m-order symmetric tensor field, and

g = Xaf on Γ+ and g = 0 on Γ− ∪ Γ0.

Then gh ∈ l1,1∞ (Γ) ∩ Cµ(Γ; l1) satisfy

[I + iH]Lmgh = 0,(90)

where gh is sequence in (87) and H is the Bukhgeim-Hilbert operator in (27). Additionally, in
m = 1 case, for each ζ ∈ Γ , the zero-th Fourier mode g0 of g satisfy

(91) g0(ζ) = lim
Ω3z→ζ∈Γ

−2Re ∂(eGBgh)−1(z)

a(z)
, for m = 1,

where B be the Bukhgeim-Cauchy operator in (25), and the operators e±G as defined in (34).
(ii) Let g ∈ Cµ (Γ ;C1,µ(S1))∩C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. Form = 0, if the

corresponding sequences gh ∈ Yµ(Γ ) satisfies (90), then there is a unique real valued symmetric
0-tensor f such that g|Γ+= Xaf . Moreover, for m = 1, if the corresponding sequences gh ∈ Yµ(Γ )
satisfies (90), and g0 satisfies (91), then there exists a unique real valued vector field (1-tensor) f ∈
C(Sm; Ω) such that g|Γ+= Xaf . Furthermore, form ≥ 2, if gh ∈ Yµ(Γ ) satisfies (90), and for each
element

(
ψ0, ψ−2, · · · , ψ−(m−2)

)
∈ Ψeven

a,g for even m-tensor, and
(
ψ−1, ψ−3, · · · , ψ−(m−2)

)
∈ Ψodd

a,g

for m-odd tensor, then there is a unique real valued symmetric m-tensor fΨ ∈ C(Sm; Ω) such that
g|Γ+= XafΨ.

Proof. (i) Necessity: Let f = (fi1···im) ∈ C1,µ
0 (Sm; Ω). Since all components fi1···im ∈ C1,µ

0 (Ω)
are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields g ∈
C1,µ(Γ × S1). Moreover, g is the boundary value on Γ × S1 of a solution u ∈ C1,µ(Ω× S1) of the
transport equation (80). By Proposition 3.1(i) and Proposition 3.2, gh = e−Gg ∈ l1,1∞ (Γ)∩Cµ(Γ; l1).

If u solves (80) then its Fourier modes satisfies (81) - (83) for even m-tensors, and (85)- (86) for
odd m-tensors.

In either of the even m-tensor case or the odd m-tensor case, (from (83) or (86)), the sequence
Lmu := 〈u−m, u−m−1, u−m−2, · · · 〉 satisfies

∂Lmu + L2∂Lmu + aLm+1u = 0.
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Let v := e−GLmu, then by Lemma 3.1, and the fact that the operators e±G commute with the left
translation, [e±G, L] = 0, the sequence v = Lme−Gu solves ∂v + L2∂v = 0, i.e v is L2 analytic,
with boundary value Lmgh. The necessity part in Theorem 3.1 yields (90).

Additionally, in the m = 1 case, the Fourier modes u0, u−1, u1 of u solve (84) for n = 0. Since
a > 0 in Ω, we have

u0(z) =
−2Re ∂u−1(z)

a(z)
, z ∈ Ω.(92)

Since the left hand side of (92) is continuous all the way to the boundary, so is the right hand side.
Moreover, the limit below exists and in the m = 1 case, we have

g0(z0) = lim
Ω3z→z0∈Γ

u0(z) = lim
Ω3z→z0∈Γ

−2Re ∂u−1(z)

a(z)
,

thus (91) holds. This proves part (i) of the theorem.
(ii) Sufficiency: Let g ∈ Cµ (Γ ;C1,µ(S1))∩C(Γ ;C2,µ(S1)) be real valued with g|Γ−∪Γ0= 0. Let

the corresponding sequence gh as in (87) satisfying (90). By Proposition 3.1(ii) and Proposition
3.2(iii), we have gh ∈ Yµ(Γ ).

To prove the sufficiency we will construct a real valued symmetric m-tensor f in Ω and a real
valued function u ∈ C1(Ω × S1) ∩ C(Ω × S1) such that u|Γ×S1= g and u solves (80) in Ω. The
construction of such u is in terms of its Fourier modes in the angular variable and it is done in
several steps. We first construct modes u−n for |n| ≥ m from data gh in either of the m-even case
or the m-odd case.

Step 1: The construction of modes u−n for |n| ≥ m.
Use the Bukhgeim-Cauchy Integral formula (25) to define the L2-analytic maps

v(z) = 〈v0(z), v−1(z), v−2(z), ...〉 := BLmgh(z), z ∈ Ω.

By Theorem 3.1 (ii),

v ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1) ∩ C2(Ω; l∞).(93)

Moreover, since gh satisfy the hypothesis (90), by Theorem 3.1 sufficiency part, we have

v|Γ= Lmgh = Lme−Gg.(94)

Define the sequence valued map

Ω 3 z 7→ Lmu(z) = 〈u−m(z), u−m−1(z), · · · 〉 := eGv(z),(95)

where the operator eG as defined in (34). Since convolution preserves l1, by Proposition 3.2,
Lmu ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1). Moreover, since v ∈ C2(Ω; l∞) as in (93), we also conclude
from convolution that Lmu ∈ C2(Ω; l∞). Thus,

Lmu ∈ C1,µ(Ω; l1) ∩ Cµ(Ω; l1) ∩ C2(Ω; l∞).(96)

As v is L2 analytic, by Lemma 3.1, Lmu satisfies ∂Lmu + L2∂Lmu + aLm+1u = 0, which in
component form:

∂u−n + ∂u−n−2 + au−n−1 = 0, n ≥ m.(97)

Moreover, the restriction to the boundary satisfy

Lmu|Γ= eGv|Γ= eGLme−Gg = Lmg,(98)

where the second equality follows from (94) and in the last equality we use the fact that the operators
e±G commute with the left translation, [e±G, L] = 0.
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Construct the positive Fourier modes by conjugation: un := u−n, for all n ≥ m. Moreover using
(98), the boundary value un|Γ for each n ≥ m, satisfy

un|Γ= u−n|Γ= g−n = gn, n ≥ m.(99)

By conjugating (97) we note that the positive Fourier modes also satisfy

∂un+2 + ∂un + aun+1 = 0, n ≥ m.(100)

Step 2: The construction of the 0-tensor field f .
In the case of the 0-tensor, all the modes in (95) is constructed from the data. Using the modes

u0, u−1 ∈ C2(Ω) from (95), the real valued 0-tensor f = f0 ∈ C(Ω;R) is uniquely determined by

f := 2Re ∂u−1 + au0.(101)

Step 3: The construction of the 1-tensor field f .
In the 1-tensor case, all the modes except u0 are constructed in (95). Using (84) for n = 0, and

a > 0 in Ω, we can define u0 via the mode u−1 from (95) by

u0(z) := −2Re ∂u−1(z)

a(z)
, z ∈ Ω.(102)

From (91), u0 defined above extends continuously to the boundary Γ and u0

∣∣
Γ

= g0. Moreover,
since u−1 ∈ C2(Ω) from (96) and a ∈ C2(Ω) we get u0 ∈ C1(Ω).

Using modes u−1, u−2 from (95) and u0 from (102), the real valued 1-tensor (vector field) f ∈
C(Ω;R2) is uniquely determined by

f = 〈2Re f1, 2 Im f1〉, where f1 := ∂u0 + ∂u−2 + au−1.(103)

Remark 5.1. In the attenuated case, both the 0-tensor and the 1-tensor are uniquely recovered,
and there is no class.

For m-tensor with m ≥ 2, we next consider separately the m-even and m-odd cases. Using the
first step, where modes u−n for |n| ≥ m are already constructed from the data gh in either of the
m-even case or the m-odd case, we construct the remaining modes un for |n| ≤ m − 1 separately
first in the m-even case (m = 2q, q ≥ 1) and then in the m-odd case (m = 2r + 1, r ≥ 1).

Step 4: In the m even case, the construction of modes un for |n| ≤ m− 1.

Given
(
ψ0, ψ−2, · · · , ψ−2(q−1)

)
∈ Ψeven

a,g arbitrary, define the modes u0, u±2, ..., u±(2(q−1)) in Ω by

(104) u−2j := ψ−2j, and u2j := ψ−2j, 0 ≤ j ≤ q − 1, q ≥ 1.

Using the mode u−2q from (95) and ψ−2(q−1), define the modes u±(2q−1) by

(105) u−(2q−1) := −
∂ψ−2(q−1) + ∂u−2q

a
, and u2q−1 := u−(2q−1), for all q ≥ 1.

As ψ0 ∈ C2(Ω;R) and ψ−(2j+2) ∈ C2(Ω;C), for 0 ≤ j ≤ q − 2, q ≥ 2, define modes

u−(2j+1) := −
∂ψ−2j + ∂ψ−(2j+2)

a
, and u2j+1 := u−(2j+1), for all 0 ≤ j ≤ q − 2, q ≥ 2.

By the construction in the above equations, we have

(106)

u−2j ∈ C2(Ω; l∞), for 0 ≤ j ≤ q − 1, q ≥ 1,

u−(2j+1) ∈ C1(Ω; l∞), for 0 ≤ j ≤ q − 1, q ≥ 1, and

∂u−2j + ∂u−(2j+2) + au−(2j+1) = 0, for 0 ≤ j ≤ q − 1, q ≥ 1,
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are satisfied. Moreover, by conjugating the last equation in (106) yields

(107) ∂u2j + ∂u(2j+2) + au(2j+1) = 0, for 0 ≤ j ≤ q − 1, q ≥ 1.

By the definition of the class (88), and reality of g, we have

(108) u−2j|Γ = g−2j, and u2j|Γ= g−2j = g2j, 0 ≤ j ≤ q − 1, q ≥ 1.

We check next that the boundary value of u−(2j+1) is g−(2j+1) for 0 ≤ j ≤ q − 2, q ≥ 2:

(109) u−(2j+1)

∣∣
Γ

= −
∂ψ−2j + ∂ψ−(2j+2)

a

∣∣∣∣∣
Γ

= g−(2j+1),

where the last equality uses the condition in class (88). Similar calculation to (109) for mode
u−(2q−1) yields u−(2q−1)

∣∣
Γ

= g−(2q−1). Thus, from the above equations, we have

(110) un
∣∣
Γ

= gn, ∀ |n| ≤ m− 1.

Step 5: The construction of even m-tensor fΨ whose attenuated X-ray data is g.

We define first f2q by using ψ−(m−2) from the non-uniqueness class, and modes u−m, u−m−1 ∈
C2(Ω; l∞) from (95). Then, next define f2q−2 by using ψ−2(q−1), ψ−2(q−2) from the non-uniqueness
class Ψeven

a,g , and Fourier mode u−2q from (95). Then, define {f2n : 0 ≤ n ≤ q − 2} solely from the
information in the non-uniqueness class. Finally, define {f−2n : 1 ≤ n ≤ q} by conjugation.
(111)

f2q := −∂

(
∂ψ−2(q−1) + ∂u−2q

a

)
+ ∂u−(2q+1) + au−2q, q ≥ 1,

f2q−2 := −∂

(
∂ψ−2(q−2) + ∂ψ−2(q−1)

a

)
− ∂

(
∂ψ−2(q−1) + ∂u−2q

a

)
+ aψ−2(q−1), q ≥ 2,

f2n := −∂

(
∂ψ−2(n−1) + ∂ψ−2n

a

)
− ∂

(
∂ψ−2n + ∂ψ−2(n+1)

a

)
+ aψ−2n, 1 ≤ n ≤ q − 2, q ≥ 3,

f0 :=


−2Re ∂

(
∂ψ0 + ∂u−2

a

)
+ aψ0, q = 1,

−2Re ∂

(
∂ψ0 + ∂ψ−2

a

)
+ aψ0, q ≥ 2,

f−2n := f2n, 1 ≤ n ≤ q, q ≥ 1,

By construction, f2n ∈ C(Ω), for 0 ≤ n ≤ q, q ≥ 1, as ψ−2n ∈ C2(Ω; l∞), for 0 ≤ n ≤ q − 1,
from (88). Note that f2n satisfy (81). We use these Fourier modes 〈f0, f±2, · · · , f±m〉 and equations
(13), (7) and (9) to construct 〈f̃0, f̃1, · · · , f̃m〉, and thus even m-tensor field fΨ ∈ C(Sm; Ω).

In order to show g|Γ+= XafΨ with fΨ being constructed from pseudovectors via Fourier modes
as in (111) from class Ψeven

a,g , we define the real valued function u via its Fourier modes
(112)

u(z,θ) :=
∑
|n|≥2q

un(z)einθ + 2Re

(
−
∂ψ−2(q−1) + ∂u−2q

a

)
e−i(2q−1)θ

+ 2Re

{
q−1∑
n=0

ψ−2n(z)e−i(2n)θ

}
+ 2Re

{
q−2∑
n=0

(
−
∂ψ−2j + ∂ψ−(2j+2)

a

)
e−i(2n+1)θ

}
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and check that it has the boundary value g on Γ and satisfies the transport equation (80).
Since g ∈ Cµ (Γ ;C1,µ(S1)) ∩ C(Γ ;C2,µ(S1)), we use Proposition 3.1 (ii) and (iii), to conclude

that u defined in (112) belongs to C1,µ(Ω × S1) ∩ Cµ(Ω × S1). In particular u(·,θ) for θ =
(cos θ, sin θ) extends to the boundary and it satisfies

u(·,θ)|Γ =
∑
|n|≥2q

un
∣∣
Γ
einθ +

∑
|n|≤2q−1

un
∣∣
Γ
einθ =

∑
|n|≥2q

gne
inθ +

∑
|n|≤2q−1

gne
inθ = g(·,θ),

where in the second equality above we use (94), (99) and (110).
Since u ∈ C1,µ(Ω × S1) ∩ Cµ(Ω × S1), then using (97), (100), (105), (106), (107), and the

definition of f2n for −q ≤ n ≤ q, q ≥ 1 in (111), the real valued u defined in (112) satisfies the
transport equation (80) in the m-even case.

We consider next the m-odd tensor case of order m = 2r + 1, r ≥ 1, Using the first step, where
modes u−n for |n| ≥ m are already constructed from the data gh, we construct the remaining modes
un for |n| ≤ m− 1 in the m-odd case.

Step 6: In the m odd case, the construction of modes un for |n| ≤ m− 1.

Given
(
ψ−1, ψ−3, · · · , ψ−(m−2)

)
∈ Ψodd

a,g arbitrary, firstly define the odd modes

(113) u−(2n−1) := ψ−(2n−1), and u2n−1 := ψ−(2n−1), 1 ≤ n ≤ r, r ≥ 1.

Secondly, by using ψ−1, ψ−(m−2) and the mode u−m from (95), we define the modes

u0 := −2Re ∂ψ−1

a
, u−2r := −

∂ψ−(2r−1) + ∂u−(2r+1)

a
, and u2r := u−2r for r ≥ 1.(114)

Lastly, by using ψ−(2n−1) ∈ C2(Ω;C), for 1 ≤ n ≤ r − 1, r ≥ 2, we define the even modes

u−2n := −
∂ψ−(2n−1) + ∂ψ−(2n+1)

a
, and u2n := u−2n, for 1 ≤ n ≤ r−1, r ≥ 2. By the construction

in the above equations, we have

(115)

u−(2n−1) ∈ C2(Ω; l∞), for 1 ≤ n ≤ r, r ≥ 1,

u−2n ∈ C1(Ω; l∞), for 0 ≤ n ≤ r, r ≥ 1, and

∂u−(2n−1) + ∂u−(2n+1) + au−2n = 0, for 0 ≤ n ≤ r, r ≥ 1,

is satisfied. Moreover, by conjugating the last equation in (115), we have the Fourier modes satisfy

∂u−(2n−1) + ∂u−(2n+1) + au−2n = 0, for |n| ≤ r, r ≥ 1.(116)

By the class (89), and reality of g, we have the boundary value of u−(2n−1) in (113) satisfy

(117) u−(2n−1)|Γ = g−(2n−1), and u2n−1|Γ= g−(2n−1) = g2n−1, 1 ≤ n ≤ r, r ≥ 1.

We check next that the boundary value of u−2n is g−2n for 1 ≤ n ≤ r − 1, r ≥ 2:

(118) u−2n

∣∣
Γ

= −
∂ψ−(2n−1) + ∂ψ−(2n+1)

a

∣∣∣∣∣
Γ

= g−2n,

where the last equality uses the condition in class (89). Similar calculation to (118) for modes u0

and u−2r in (114), yields u0

∣∣
Γ

= g0, and u−2r

∣∣
Γ

= g−2r, for r ≥ 1. Thus, we have

(119) un
∣∣
Γ

= gn, ∀ |n| ≤ m− 1.

Step 7: The construction of odd m-tensor fΨ whose attenuated X-ray data is g.
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We first define f2r+1 by using ψ−(2r−1) from the non-uniqueness class, and the Fourier modes
u−m, u−(m+1) in (95). Next, define f2r−1 by using ψ−(m−2), ψ−(m−4) from the non-uniqueness class,
and Fourier mode u−m in (95). Then, define {f2n+1 : 0 ≤ n ≤ r − 2} solely from the information
in the non-uniqueness class. Finally, define {f−(2n+1) : 0 ≤ n ≤ r} by conjugation.
(120)

f2r+1 := −∂

(
∂ψ−(2r−1) + ∂u−(2r+1)

a

)
+ ∂u−(2r+2) + au−(2r+1), r ≥ 1,

f2r−1 := −∂

(
∂ψ−(2r−3) + ∂ψ−(2r−1)

a

)
− ∂

(
∂ψ−(2r−1) + ∂u−(2r+1)

a

)
+ aψ−(2r−1), r ≥ 2,

f2n+1 := −∂

(
∂ψ−(2n−1) + ∂ψ−(2n+1)

a

)
− ∂

(
∂ψ−(2n+1) + ∂ψ−(2n+3)

a

)
+ aψ−(2n+1), 1 ≤ n ≤ r − 2,

f1 :=


−2∂

(
Re ∂ψ−1

a

)
− ∂

(
∂ψ−1 + ∂u−3

a

)
+ aψ−1, r = 1,

−2∂

(
Re ∂ψ−1

a

)
− ∂

(
∂ψ−1 + ∂ψ−3

a

)
+ aψ−1, r ≥ 2,

f−(2n+1) := f2n+1, 0 ≤ n ≤ r, r ≥ 1.

By construction, f2n+1 ∈ C(Ω) for 0 ≤ n ≤ r, r ≥ 1, as u−(2r+1) ∈ C2(Ω; l∞) from (96),
and ψ−(2n−1) ∈ C2(Ω; l∞), for 1 ≤ n ≤ r − 1, r ≥ 1, from (89). We use these m + 1
Fourier modes 〈f±1, f±3, · · · , f±m〉, and equations (14), (7) and (9) to construct the pseudovec-
tors 〈f̃0, f̃1, · · · , f̃m〉, and thus the odd m-tensor field fΨ ∈ C(Sm; Ω).

Define the real valued function u via its Fourier modes

(121)

u(z,θ) :=
∑

|n|≥2r+1

un(z)einθ + 2Re

{
r∑

n=1

ψ−(2n−1)(z)e−i(2n−1)θ

}
+
−2Re ∂ψ−1(z)

a

+ 2Re

(
−
∂ψ−(2r−1)(z) + ∂u−(2r+1)(z)

a

)
e−i(2r)θ + 2Re

{
r−1∑
n=1

u−2ne
−i(2nθ)

}
.

Using (116) and (119), and definition of
(
ψ−1, ψ−3, · · · , ψ−(2r−1)

)
∈ Ψodd

a,g for r ≥ 1, then u(·,θ)
in (121) extends to the boundary, and its boundary value satisfy u(·,θ)|Γ= g(·,θ).

Moreover, by using (115), (116) and the definition of f2n−1 for |n| ≤ r, r ≥ 1 in (120), the real
valued u defined in (121) satisfies the transport equation (80) in the m-odd case.

�

6. CONCLUSION

In conclusion, we characterize theX-ray data g in both the non-attenuated case (Theorem 4.1 and
Theorem 4.2) and the attenuated case (Theorem 5.1) for arbitrary m-tensor in terms of its Fourier
modes g = 〈g0, g−1, g−2, . . . 〉 in the spatial variable and the Bukhgeim-Hilbert transform (27). In
the necessity, while the non-attenuated case separates the even modes geven = 〈g0, g−2, . . . 〉 and
the odd modes godd = 〈g−1, g−3, . . . 〉 (see Table 1), the attenuated case mixes all the even and
odd Fourier modes: gh = e−Gg (see (90) and Table 2). In the sufficiency part, in both cases we
showed that reconstruction of the m-tensor field for m ≥ 2 is possible upto a non-uniqueness class
of functions that extends continuously to the boundary with prescribed boundary values. Moreover,
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the 1-tensor is uniquely recovered in the attenuated case, and in the non-attenuated case, the 1-
tensor is recovered upto an arbitrary function (see Remark 4.2). Furthermore, the 0-tensor field is
uniquely recovered (see also Remark 4.1 and Remark 5.1) in both cases.

TABLE 1. Range Characterization in the non-attenuated case

Data g = 〈g0, g−1, g−2, g−3, . . . 〉 Theorem 4.1, m-even Theorem 4.2, m-odd
geven = 〈g0, g−2, g−4, . . . 〉 [I + iH]geven = 0 [I + iH]L

m+1
2 geven = 0

godd = 〈g−1, g−3, g−5, . . . 〉 [I + iH]L
m
2 godd = 0

g2k−1 = 〈g2k−1, . . . , g−1, g−3, . . . 〉, k ≥ 1 [I + iH]g2k−1 = 0

TABLE 2. Range Characterization in the attenuated case

Data g = 〈g0, g−1, g−2, g−3, . . . 〉 Theorem 5.1, m-tensor
gh = e−Gg = 〈γ0, γ−1, γ−2, ...〉 [I + iH]Lmgh = 0
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