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ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. In this article we characterize the range of the attenuated and non-attenuated X -ray
transform of compactly supported symmetric tensor fields in the Euclidean plane. The characteriza-
tion is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

We consider here the problem of the range characterization of (non)-attenuated X -ray transform
of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane.
As the X-ray and Radon transform [35] for planar functions (O-tensors) differ merely by the way
lines are parameterized, the m = 0 case is the classical Radon transform [35], for which the range
characterization has been long established independently by Gelfand and Graev [12], Helgason
[13], and Ludwig [18]. Models in the presence of attenuation have also been considered in the
homogeneous case [17, 1], and in the non-homogeneous case in the breakthrough works [2, 28, 29],
and subsequently [24, 5, 4, 14, 21]. The references here are by no means exhaustive.

The interest in the range characterization problem in the O-tensors case stems out from their
applications to data enhancement in medical imaging methods such as Single Photon Emission
Computed Tomography or Positron Emission Computed Tomography [23, 11]. The X-ray trans-
form of 1-tensors (Doppler transform [25, 44]) appears in the investigation of velocity distribution
in a flow [6], in ultrasound tomography [45, 42], and also in non-invasive industrial measurements
for reconstructing the velocity of a moving fluid [26, 27]. The X-ray transform of second order
tensors arises as the linearization of the boundary rigidity problem [44]. The case of tensor fields of
rank four describes the perturbation of travel times of compressional waves propagating in slightly
anisotropic elastic media [44, Chapters 6,7]. Thus, due to the various applications the range char-
acterization problem has been a continuing subject of research.

Unlike the scalar case, the X-ray transform of tensor fields has a non-zero kernel, and the null-
space becomes larger as the order of the tensor field increases. For tensors of order m > 1, it is easy
to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors,
and it is possible to reconstruct uniquely (without additional information of moment ray transforms
[44]) only the solenoidal part of a tensor field. The non-injectivity of the X-ray transform makes
the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1-tensor field can be re-
covered in the regions of positive absorption as shown in [15, 46, 37, 30], without using some
additional data information [43, 8, 19]. It is due to a surprising fact that the two-dimensional at-
tenuated Doppler transform with positive attenuation is injective while the non-attenuated Doppler
transform is not.
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The systematic study of tensor tomography in non-Euclidean spaces originated in [44]. On sim-
ple Riemannian surfaces, the range characterization of the geodesic X -ray of compactly supported
0 and 1-tensors has been established in terms of the scattering relation in [34], and the results were
extended in [3, 10, 16] to symmetric tensors of arbitrary order. Explicit inversion approaches in the
Euclidean case have been proposed in [14, 9, 20]. In the attenuating media, tensor tomography was
solved for the cases m = 0,1 in [41]. Inversion for the attenuated X -ray transform for solenoidal
tensors of rank two and higher can be found in [32], with a range characterization in [33, 21, 3].

The original characterization in [12, 13, 18] was extended to arbitrary symmetric m-tensors in
[31]; see [9] for a partial survey on the tensor tomography in the Euclidean plane. The connection
between the Euclidean version of the characterization in [34] and the characterization in [12, 13, 18]
was established in [20]. Recently, in [38] the connection between the range characterization result
in [36] and the original range characterization in [12, 13, 18] has been established. Moreover, the
results in [38] from O-order is extended to symmetric tensors of an arbitrary order in [39] and also
establishes the connection with the generalized moment conditions in [31].

In here we build on the results in [36, 37, 40], and extends them to symmetric tensor fields
of any arbitrary order. In particular, the range characterization therein are given in terms of the
Bukhgeim-Hilbert transform [36] (the Hilbert-like transform associated with A-analytic maps in
the sense of Bukhgeim [7]). The characterization in here can be viewed as an explicit description
of the scattering relation in [32, 33] particularized to the Euclidean setting. The characterization
in both the non-attenuated case (see Theorem 4.1 and Theorem 4.2 below) and in the attenuated
case (see Theorem 5.1 below) are given in terms of the Bukhgeim-Hilbert transform (27). In the
sufficiency part we reconstruct all possible m-tensors yielding identical X -ray data; see (44) and
(62) for the non-attenuated case, and (88) and (89) for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties of
symmetric tensor fields needed here are in Section 2. In Section 3 we briefly recall existing results
on A-analytic maps that are used in the proofs. We provide range characterization of symmetric
m-tensor field f in the non-attenuated case in Section 4, and in the attenuated case in Section 5. In
Section 6 we gave some concluding remarks.

2. PRELIMINARIES

Given an integer m > 0, let TW(RQ) denote the space of all real-valued covariant tensor fields of
rank m:

(D f(l'l,.%Q) = fil...im(ilil,l'2)d.17il ® da* Q- ® dximu 1,0 5 lm € {172}7

where ® is the tensor product, f; ..., —are the components of tensor field f in the Cartesian basis
(x', 2%), and where by repeating superscripts and subscripts in a monomial a summation from 1 to
2 is meant.

We denote by S™(R?) the space of symmetric covariant tensor fields of rank m on R?. Let

1
o : T™(R?) — S™(R?) be the canonical projection defined by (of);,..; = p Z iy inmy
el
where the summation is over the group II,,, of all permutations of the set {1,--- ,m}.
A planar covariant symmetric tensor field of rank m has m + 1 independent component, which
we denote by

(2) fr=f1...12...0, (k=0,--- m),
—_—

m—k k
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in connection with this, a symmetric tensor f = (f;,..;,., 1, ,im = 1, 2) of rank m will be given
by a pseudovector of size m + 1: f = (fo, fl, e ,fm_l, fm)

We identify the plane R? by the complex plane C, 2! = z = 2! +i2?, 2
consider the Cauchy-Riemann operators

2=z =27x'—iz% We

3) o 0 10 .0 o 0 1/ 0 L 0
—=—1=-|=-i= —=—1=-|=—=+i=
0z' 0z 2\0x' 9x2) 022 0z 2 \9x'  0x2)’
ag 0 0 0 0
and the inverse relation by Ersialicm + 5 92 i& — i%'
Letf = (fi,..i,, (z',2%), i1, -+ ,im = 1,2) be real valued symmetric m-tensor field in Cartesian

coordinates (2!, z?), then in complex coordinates (2!, z?) it will have new components (F},..;, (2, 2)),
which are formally expressed by the covariant tensor law:

S S
Jx*t  Ox*m 1

Er"im (Z, 2) = Dt s 8z—imf81m8m($ ,I2>, and
) 0z oz°m
fil"'im (xl? 12) = aa,:l'l e ax—imFsl"'S'rrz(Z? 2)’

where the Jacobian matrix has the form

Ozl Ozl 1 020 0z i
J = (g;; g;z) = (_1 1) , and J'= (ggé gg) = G _1) :
91 o2/ 2\ pra !
Adopting the notation in [14], we shall write the transformations (4) as
f = {fil"'im (xl? l‘2>} — F = {Ellm (Z’ 2)}7 and
F = {Fil.‘.im(z, 2)} — f= {fhlm (1’1, .732)}

A symmetric tensor F of rank m, obtained from the real symmetric tensor f by passing to com-

(&)

plex variables, we also define a pseudovector (Fy, Iy, - - , F,,_1, F},,) with components
(6) Fr=F1...19...9, k=0,---,m,
m—k k

and subject to the conditions

(N Fp=Fpg, k=0,---,m.

Taking into account the tensor law (4), we obtain formulas relating the components of pseudovec-
tors in (2) and pseudovectors in (6):

_\m—k m—k k —k k B
(8) Fk:%ZZ(mQ )( )ik_p+qu+q7 k:Oa]-) , M,

g=0 p=0 p
~ m—k k m— k k
©) fo=1">" < ) ( )(—1>’“pr+q, k=0,1,--,m.
q=0 p=0 1 p

In Cartesian coordinates covariant and contravariant components are the same, and thus con-
travariant components of the tensor field f coincide with its corresponding covariant components,
firin, = f27'm . The dot product on S™(R?) induced by the Euclidean metric is defined by

(10) (£, h) ;= fi,.; hm
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Note that if f; — F; and f; — F,, then the pointwise inner product of tensors is invariant:
(1) <f1,f2> = <F1,F2>-
For @ = (0',0%) = (cos®,sinf) € S', we denote by 8™ the tensor product 0™ :=0 @ 0 ®---® 6

m
and 0™ will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for

contravariant components its representation in complex coordinates will look like
B 0zF
o O
and ©" := O ® © ® - - - ® O be an m-contravariant tensor, and we also have 0" — O™,

00, ©OF 0°,  ©=(0',02) = (),

Using (11), we get

<f’ 0m> _ <F, @m> _ Z (ZL) o elf(m—k) —ifk _ Z (7]:?’) eri(mf%)e
k=0

k=0
q
(12) fot D (Fane® 4 fore”R7) (if m = 2¢, q > 0),
_ k=1
= q
Z (f—(2k+1)€i(2k+1)9 + f2k+1€_i(2k+1)9) , (ifm=2¢+1, ¢=>0),
k=0
where
2
(13) f—Qk: ( qk) Fq—ka ngéqquov (q:%ﬂ/neven)a
q —
2q+1 m—1
(14) ff(2k+1) = (qq_ k) quka 0 < k < q, q > 07 (q = T?mOdd> )

and f, = f_,and F,, = F,,_,,, for 0 < n < m.
Let f be a real valued symmetric m-tensor, with integrable components of compact support in
R?, and a € L'(R?) a real valued function. The attenuated X -ray transform of f is given by

(f(x+t0),0™) exp {— /too a(z + 50)(13} dt,

o0

(15) X.f(x,0) ::/
where € R?, 0 € S', and (-, -) is the inner product in (10). For the non attenuated case (a = 0),
we use the notation Xf.

In here, we consider the tensor field f be defined on a strongly convex bounded set 2 C R? with
vanishing boundary values on I'; further regularity and the order of vanishing will be specified in
the theorems. In the statements below we use the notations in [44]:

CHS™ ) ={f = (fi-in.) €S™(Q) : firoi, € CH(D)}

0 < p < 1, for the space of real valued, symmetric tensor fields of order m with locally Holder
continuous components. Similarly, L*(S™; ) denotes the tensor fields of order m with integrable
components.

For any (z,0) € Q x S!, let 7(z, ) be length of the chord passing through z in the direction of
0. Let also consider the incoming (—), respectively outgoing (+) submanifolds of the unit bundle
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restricted to the boundary

(16) Iy :={(2,0) €l xS":40-v(x) >0},
and the variety
(17) [y :={(x,0) €T xS": 0 v(z)=0},

where v(z) denotes outer normal.
The a-attenuated X -ray transform of f is realized as a function on I, by
0
(18) X f(z,0) = / (£(z +10),0™) e~ I 2@ts0)s gy (1 @) € I,
—7(x,0)
We approach the range characterization via the well-known connection with the transport model
as follows: The boundary value problem

(19a) 0 - Vu(zr,0) + a(z)u(z,0) = (f(x),0™), (r,0)c QxS
(19b) ulr. =0,
has a unique solution in 2 x S' and
(20) ulr, (z,0) = X £(,0), (x,0)¢cl.
The range characterization is given in terms of the boundary value
(21) g = u|pxs1= { gfaf’ 22 ;i’u I,

3. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later.
For 0 < u < 1, p = 1,2, we consider the Banach spaces:

LA = {g = (90, 9-1,9-2,--) * 8llprr) = ?611132<j>”|9-j(€)l < OO},
=0

18(&) — &)l

@2 C'I5h)={e=(909-1,9-2,.) : igﬁ)”g(g)”h + sup

nel’ ’6_77|u ’
§#n
19506 = g-5(n)]
Y () :={g:gecl?)and sup g <00y,
D) (I)and s 2 0= j

&#n 7
where [ (, [1) is the space of bounded (, respectively summable) sequences, and for brevity, we use
the notation (j) = (1 + [4]*)'/2. Similarly, we consider C*(€2; 1), and C*(£2; l.).
A sequence valued map Q 3 2 — v(z) := (vo(2),v_1(2),v_2(2),...) in C(; 1) N CH (2 1s)
is called L*-analytic (in the sense of Bukhgeim), k = 1,2, if
(23) ov(z)+ L*ov(z) =0, z€Q,

where L is the left shift operator L{vg, v_1,v_9,-++) = (v_1,v_9,-++),and L? = Lo L.
Bukhgeim’s original theory in [7] shows that solutions of (23), satisfy a Cauchy-like integral
formula,

(24) v(z) = Bvlr(z), €,
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where B is the Bukhgeim-Cauchy operator acting on v|,. We use the formula in [11], where B is
defined component-wise for n > 0 by
(25)

B)n(e) = o [ 2 L [ LS (g%_) zeq

Jj=1

The following regularity result in [36, Proposition 4.1] is needed.

Proposition 3.1. [36, Proposition 4.1] Let u > 1/2 and g = (90, 9-1,9—2, -..) be the sequence
valued map of non-positive Fourier modes of g.

(i) If g € CH(I"; CYH(SY)), then g € LN () N CH(T;1y).

(ii) If g € CH(I'; CH+(SY)) N C(I; C*#(SY)), then g € Y, ().

(iii) If g € CYM(Q; 1) N CH(Q; 1Y), then g € CHH(Q x SHNCH(Q x SY.

Similar to the analytic maps, the boundary values of L-analytic maps must satisfy some con-

straints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in
[36]. More precisely, the Bukhgeim-Hilbert transform # acting on g,

(26) I' > z = (Hg)(2) = (Hg)o(2), (Hg)-1(2), (Hg)-2(2), )
is defined component-wise for n > 0 by
27) .
1 fgaQ 1A O\ (=Y
(’Hg)n(z)—w/F C—ZdC+W/F{C—Z Z_E};gm(() (C—z) z €T,

and we refer to [36] for its mapping properties.

Note that the Bukhgeim-Cauchy integral formula in (25) above is restated in terms of L-analytic
maps as opposed to L2-analytic as in [36]. The only change is the index relabeling. In particular,
the index g_,,_; will change to g_,,_»; therein to account for L?-analytic. Moreover, the same index
relabelling in the Bukhgeim-Hilbert transform formula (27) is made to account for the difference
between L-analytic and L?-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map
to be the boundary value of an L*-analytic function, k = 1, 2.

Theorem 3.1. Let 0 < p < 1, and k = 1,2. Let B be the Bukhgeim-Cauchy operator in (25).
Let g = (90, 9-1,9-2,...) € Y, (I") for p > 1/2 be defined on the boundary I, and let H be the
Bukhgeim-Hilbert transform acting on g as in (27).

(i) If g is the boundary value of an L*-analytic function, then Hg € C*(I';1,) and satisfies

(28) (I +iH)g = 0.

(ii) If g satisfies (28), then there exists an LF-analytic function v = Bg € CY*(Q; 1) NCH(Q; 1) N
C?*(Q; 1), such that

(29) V|F: g.

For the proof of Theorem 3.1 we refer to [36, Theorem 3.2, Corollary 4.1, and Proposition 4.2]
and [37, Proposition 2.3].

Another ingredient, in addition to L2-analytic maps, consists in the one-to-one relation between
solutions u := (ug, u_1,u_o, ...) satisfying

(30) Ou_n(2) +0u_p o(2) +a(2)u_pn1(2) =0, 2€Q, n>0,
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and the L?-analytic map v = (v, v_1,v_o, ...) satisfying
(31) Ov_p(2) +O0_p_a(2) =0, z€Q, n>0;

via a special function h, see [40, Lemma 4.2] for details. The function h is defined as

(32) h(z,0) := Da(z,0) — % (I —iH) Ra(z - 6+,07),

where 8 is the counter-clockwise rotation of by 7/2, Ra(s, 8) = / a (s@" +10) dt is the

o0
o0

Radon transform in R? of the attenuation a, Da(z,0) = / a(z + t0)dt is the divergent beam

1 [ h(t
transform of the attenuation a, and Hh(s) = — / <—)tdt is the classical Hilbert transform [22],
™ J_

[e.9]

taken in the first variable and evaluated at s = z- @-. The function h appeared first in [23] and
enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

(33) e M=0) .— Zak(z)eika, eM=0) .= Zﬂk(z)eike, (2,0) € Q x S
k=0 k=0

Using the Fourier coefficients of e*", we construct the sequence valued maps
03z alz) = (ao(2),an(2), ), Q320 B(2) = (Bol2), Bi(2), -..,)

to define the convolution operators e*“ acting on some u = (ug,u_1,u_g,...) via
o0 oo

(34) e %u= E arlfu=axu, and e%u= E BeLFu = B % u,
k=0 k=0

where L* is the k-th composition of left translation. In particular, note that e*“ commutes with L.
We refer [40, Lemma 4.1] for the properties of h, and we restate the following result [36, Propo-

sition 5.2] to incorporate the operators e*¢ notation used in here.

Proposition 3.2. [36, Proposition 5.2] Let a € C**(Q), u > 1/2. Then o, dcx, 3,08 € 1L1(),

and the operators

(i) eX9 : O* (1) = CH(l); (1) € - CH(Q1y) — CH(1y); (idd) ¢ 1 Y, () — Y ().

Lemma 3.1. [37, Lemma 4.2] Let a € CY(Q), u > 1/2, and e*C be operators as defined in (34).
(i) If u € CY(, 1) solves Ou + L*0u + aLu = 0, then v = e~ “u € C*(,1;) solves Ov +

L?*0v = 0.

_ (i) Conversely, if v € C'(Q,1y) solves Ov + L*9v = 0, then u = v € C'(Q,1) solves

ou+ L*0u+ alLu = 0.

4. m-TENSOR - NON-ATTENUATED CASE

In the non-attenuated a = 0 case, using (12) the transport equation (19a) becomes

( m
2
Jo+ Z foone MO 4 fore71ERP, (if m is even),

f—(2/{;+1)€i(2k+1)0 4 f2k+1€—i(2k+1)9; (lfm is Odd),
0

MF

i

\
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where f s are defined as in (13) and (14), and f,, = f_n, for0 < mn < m. Note that f; is real-valued
while other modes are complex conjugates.

For z = 2, + izy € €, the advection operator 6 - V in complex notation becomes e Y0 + €10,
where 6 = (cos 6, sin 6), and 0, O are the Cauchy-Riemann operators in (3).

If Z u,,(2)e™ is the Fourier series expansion in the angular variable @ of a solution u of (35),

nez
then by identifying the Fourier coefficients of the same order, (35) reduces to the system for even

order m-tensor:

(36) gu,(gn,l)(z) + Ou_(2n11)(2) = fon(2), 0<n< %, m even,
(37) Tt (3n1)(2) + Ou_(ans1)(2) = 0, nz o+,

(38) Ou_9,(2) + Ou_(an49)(2) = 0, n >0,

and for odd order m-tensor we have:

(39) Ou_gn(2) + Ou_(2n+2)(2) = fant1(2), 0<n< m- 1, m odd,
(40) O_on(2) + Ou_(2n+2)(2) = 0, n > mTH’

41) gu_(gn_1)<2) + Ou_(2n+1)(2) = 0, n > 0.

Recall that the boundary value | ys1:= g asin (21), with g = Xfon I'y and g =0 on I U I.
The range characterization is given in terms of the Fourier modes of g in the angular variables:

9(¢,0) = Z gn(C)e™ for ¢ € I'. Since the data g is also real valued, its modes satisfies

n=—oo

(42) J-n(C) =9gn(¢), for n>0, el

From the non-positive Fourier modes, we built the sequences
(43) geven = <g(]7g—27g—47 >7 and gOdd = <g—17g—37g—57 >

4.1. Even order m-tensor. In this subsection, we establish necessary and sufficient conditions for
a sufficiently smooth function on I" x S! to be the non-attenuated X -ray data of some sufficiently
smooth real valued symmetric tensor field f of even order m = 2¢q, ¢ > 0.

We characterize next the non-attenuated X -ray data g in terms of the Bukhgeim-Hilbert Trans-
form H in (27). We will construct the solution u of the transport equation (35) in the m-even case,
whose boundary value matches the boundary data g, and also construct the right hand side of the
(35). The construction of solution w is in terms of its Fourier modes in the angular variable. We first
construct the non-positive Fourier modes and then the positive Fourier modes are constructed by
conjugation. For even m = 2q, ¢ > 1, apart from ¢ many Fourier modes u_y, u_3, - - u_(24—1), all
non-positive Fourier modes are defined by Bukhgeim-Cauchy integral formula (25) using boundary
data. Other than having the boundary value u_(gj_l)‘F = g—(2j-1), 1 < J < ¢q, ¢ > 1, the ¢ many
Fourier modes u_(2j_1), 1 < 7 < ¢, ¢ > 1, are unconstrained. They are chosen arbitrarily from the
class WE*" of functions of cardinality ¢ = %+ with prescribed restriction on the boundary I" defined:

et = {(Yor, s o) € (M@ C))" 20> 1

(44) w—(2j—1)‘p =9-2j-1), 1 <7<q,q= 1} .
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Remark 4.1. Any arbitrary C**(Q) functions such that its restriction on the boundary matches
with the respective Fourier mode of data will suffice in (44). Note for the 0-tensor case, there is no
class, and the characterization of the X -ray data g is in terms of the Fourier modes g.

Theorem 4.1 (Range characterization for even order tensors). (i) Let f € C’é’“ (S™Q), p > 1/2,
be a real-valued symmetric tensor field of even order m = 2q, ¢ > 0, and

g=Xftonl'yandg=0o0onI_U Iy.
Then g**", g*¥ € [L1(T) N C*(T; 1y) satisfy
(45) [[ +iH]g™" =0, and [I+iH]L%g =0,

where g, g°4 are sequences in (43), and H is the Bukhgeim-Hilbert operator in (27).

(ii) Let g € C* (I'; CH#(SY)) N C(L; C*#(SY)) be real valued with g|r_,r,= 0. For q = 0, if
the corresponding sequences g, g®% ¢ Y, (I") satisfies (45), then there is a unique real valued
symmetric O-tensor f such that g|r, = Xf. Moreover, for ¢ > 1, if g™, g € Y, (I") satisfies
(45), and for each element (@D_l, Yoz, ,@D—(zq—l)) € Wi, then there is a unique real valued
symmetric m-tensors fy € C*(S™; Q) such that g|r, = Xfy.

Proof. (i) Necessity: Let f = (f;,..;. ) € Cy*(S™: Q). Since all components f;,..;,, € Co*(1)
are compactly supported inside {2, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus ¢ = 0 in the neighborhood of the variety I which yields g €
CH(I" x S'). Moreover, g is the boundary value on I" x S' of a solution u € C#(Q2 x S') of the
transport equation (35) in the m-even case. By Proposition 3.1 (i), g&¥*", g°% € [LY(T) N C*(T; 1y).

If u solves (35), then its Fourier modes satisfy (36) - (38). Since the negative even Fourier modes
ugy, for n < 0, satisfies the system (38), then the sequence u™" := (ug, u_o, u_y4, - - - ) is L-analytic
in () and the necessity part in Theorem 3.1 yields the first condition in (45).

The equation (37) for negative odd Fourier modes starting from negative 2¢q 4+ 1 mode, yield that
the sequence (t_(2g+1), U—(2g+3) ---) is L-analytic in € and the necessity part in Theorem 3.1 gives
the last condition in (45).

(ii) Sufficiency: Let g € C* (I';C#(S')) N C(I'; C*#(S')) be real valued with g|r = 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the
corresponding sequences g**", g* satisfy (45). By Proposition (3.1), g, g° € Y, (I").

Let m = 2q, ¢ > 0, be an even integer. To prove the sufficiency we will construct a real valued
symmetric m-tensor f in { and a real valued function u € C*(Q x S') N C(Q x S') such that
u|rwst= ¢ and u solves (35) in Q. The construction of such u is in terms of its Fourier modes in
the angular variable and it is done in several steps.

Step 1: The construction of even modes u,, for n € Z.

Apply the Bukhgeim-Cauchy Integral operator (25) to construct the negative even Fourier modes:

(46) (ug(z),u_o(2),u_4(2),...) .= Bg="(z), =ze€.
By Theorem 3.1, the sequence (ug, u_s, ...) € C*(Q; 1) N C*(Q;11) is L-analytic in €2, thus
(47) Ou_gy + Ou_g,—2 = 0,

are satisfied for all n > 0. Moreover, the hypothesis (45) and the sufficiency part of Theorem 3.1
yields that they extend continuously to I" and u_s, | = g_a,, for all n > 0.
Construct the positive even Fourier modes by conjugation: us, := u_s,, for alln > 1.
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By conjugating (47) we note that the positive even Fourier modes also satisfy
5U2n+2 + OJug, =0, n>0.
Moreover, by reality of g in (42) they extend continuously to /" and
Usp|r = U—on|r = G—2n = Gon, 1> 1.
Thus, as a summary from above equations, we have shown that the even modes us,, satisfy
(48) gy + Ouzn—o =0, and  Ugy|, = g2, foralln € Z.

Step 2: The construction of odd modes us,,_; for |n| > ¢, ¢ > 0.
Apply the Bukhgeim-Cauchy Integral operator (25) to construct the other odd negative modes:

(49) (U—(2g+1)(2), U—(2g13)(2), ) = BLig™(z), zeQ.

By Theorem 3.1, the sequence (u_(ag+1), U—(2g13), - ) € C*(11) N C*(Q;1h), is L-analytic
in €2, thus the equations

(50) 5u—(2n+1) + au_(2n+3) =0,

are satisfied for all n > ¢, ¢ > 0. Moreover, the hypothesis (45) : [I + iH]L? g = 0, and the
sufficiency part of Theorem 3.1 yields that they extend continuously to /" and

(51 u—(2n+1)’F = J—(2n+1), Vn >gq,q > 0.

Construct the positive odd Fourier modes by conjugation: g, 1 := U_(2n41), foralln > ¢, ¢ > 0.
By conjugating (50) we note that the positive odd Fourier modes also satisfy

(52) 5u2n+3 + Qugny1 =0, Vn=>gq,q=>0.
Moreover, by (42) they extend continuously to /" and
(53) Uont1|r = U—n41)|r = G_(2n41) = Y2nt1, N =>4, ¢ 2 0.

Step 3: The construction of the 0- tensor field f. In the case of the O-tensor, f = f; is uniquely
determined from the odd mode u_; in (49), by

(54) fo:=2Re0u_y, (forq=0case).

We consider next the case ¢ > 1 of tensors of order 2 or higher. In this case the construction of
the tensor field fy is in terms of the Fourier mode u_ (544 1) in (49) and the class Wevet in (44).

Step 4: The construction of odd modes v (2,_1),for 1 <n < ¢, ¢ > 1.

For (1/)_1, Wz, ,1/)_(2q_1)) € Wevh arbitrary, define the modes w1, us, ..., Ut (24-1) IN Q by

(55) U_(2n—1) ‘= V_(2n—1) and Uz, 1 1= E—(m—l)? I<n<gq q=>1
By the definition of the class \Ifz"e“ in (44), and the reality of g in (42), we have
(56)  U-@n-1)|lr =9g-@2n-1), and Uz 1|r=7F_pp1)=9g2n-1, 1<n<gq g>1

Step 5: The construction of the tensor field f; whose X -ray data is g.
For g > 1, we define f5, by using ¢)_ (3,1 from the non-uniqueness class (44), and Fourier mode
U_(24+1) from the Bukhgeim-Cauchy formula (49). Then, define { f5,, : 0 < n < ¢—1} solely from
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the information in the non-uniqueness class. Finally, define {f_5, : 1 < n < ¢} by conjugation.

foq = 5¢—<2q—1> + Ou_(2g+1), ¢ =1,
Jon = 51#(21%1) +O0V_ont1y, 1<n<qg—1,q=>2,

57
( ) f() = 2Re 877[}_1, q > 1, and
f-2n = fon, 1<n<gq q>1,
By construction, fo, € C*(Q), for —g < n < q, a8 ¥_q,- -+ ,_9,01 € CH#(Q). We use these
Fourier modes fo, f1o, fa4, -, fao, for ¢ > 1, and equations (13), (7) and (9) to construct the

pseudovectors (fo, f1,- -, fin), and thus the m-tensor field fy € C*(S™; Q).
In order to show g| r.= Xfy for ¢ > 1, with fy being constructed as in (57), we define the real
valued function w via its Fourier modes for ¢ > 1,

(58) u(z,0) Z Usn 20 4 Z e 2n+1)0+z¢ (2n-1)€" i(2n— 1)0+Zw 1(2n—1)0.
n=—oo |n\>q n=1

Since g € C* (I'; CH#(S')) N C(I'; C*#(S')), we use Proposition 3.1 (ii)-(iii), to conclude that
u defined in (58) belongs to C1#(Q x SHYNCH(Q2 x S). Using (48), (51), (53), (56), and definition
of (1/1,1, e ,w_(gq_l)) € Ve for ¢ > 1, the u(-, @) in (58) extends to the boundary,

u(-,0)|r=g(-,0).

Since u € CH*(2 x S') N CH(Q x S'), then the term by term differentiation in (58) is now
justified, and u satisfy (35):

[y

.
0-Vu=0¢_1+0_1+ Z(5¢—(2n—1) + 0U_@ns))e P DY (DU 910 + O (g1y)e P

1

Q

n=1 n

+ e COGY_5g 1) + Ou_(ag41)) + €V (00 (2g— 1)+5 —(2q+1))

Z f2n 71 (2n)8 _ <f7 02q>’

n=-q

where we use (48), (50), (52), (55), and the second equality uses the definition of fo,’s in (57). [

4.2. Odd order m-tensor. In this subsection we establish necessary and sufficient conditions for
a sufficiently smooth function on I" x S! to be the non-attenuated X -ray data of some sufficiently
smooth real valued symmetric tensor field f of odd order m = 2r + 1, » > 0.

In the m-tensor case, the even and odd Fourier modes of u plays a different role, unlike the even
m-tensor case in the previous section. To emphasize this difference we separate the non-positive
even modes u®**" := (g, u_s,u_4...), and negative odd modes u®® := (u_;,u_3, ...), and note that
if (up(2),u_1(2),u_o(2),...) is L*-analytic, then u®**", u®® are L-analytic.

Let us consider the sequence {u?*1},5; C O(Q;15) N CY(Q; 1) given by

2k—1
(59) u = (u%,l,u%,g, e, U, U1, U3, U—p, >, k > 1,

obtained by augmenting the sequence of negative odd indices (u_1,u_3,u_s,...) by k many terms
in the order uoy_1, Ugk_3, --.., U7.

One of the ingredients in our characterization of the odd m-tensor is the following simple prop-
erty of L-analytic maps, shown in [36, Lemma 2.6].
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Lemma 4.1. [36, Lemma 2.6] Let {u®*~'},~, be the sequence of L-analytic maps defined in (59).
Assume that g1 |p= U_(ax—1)|r, for all k > 1. Then, for each k > 1,

(60) Ugk—1(2) = U_(2-1)(2), 2 € Q.

Similar to the even m-tensor case, the range characterization of data g will be given in terms of
its Fourier modes.From the non-positive even modes, we build the sequences g***", g** as in (43).
For each k£ > 1, we use the odd modes {g_1, g_3, g5, ...} to build the sequence

(61) gl = (G2k—15 G2k—3s s G15 G—1, =35 G5 ---)

by augmenting the negative odd indices by k-many terms in the order gor_1, gox—3, ----, 91-

Similar to the even m-tensor case before, we will construct the solution u of the transport equation
(35) in the m-odd case, whose boundary value matches the boundary data g, and also construct the
right hand side of the (35). The construction of solution = is in terms of its Fourier modes in
the angular variable. Except for non-positive modes ug, u_o, - - - , u_o,, all non-positive modes are
defined by Bukhgeim-Cauchy integral formula in (25) using boundary data. Other than having the
restrictions u_gj‘ r = 9-2 0 <7 <r, r >0, on the boundary, the » + 1 many Fourier modes
u_g95, 0 <7 <7, r >0, are unconstrained. They are chosen arbitrarily from the class of functions

\Ilgdd = {(1/)072/}—27 e 7¢—27‘> S Clﬂu(ﬁ; R) X (C’Lﬂ(ﬁ; C))T : 2:u >1:
(62) @/J—2j|ng—2j, 0<y<, 7“20}-

Remark 4.2. Any arbitrary C**(Q) functions such that its restriction on the boundary matches
with the respective Fourier mode of data will suffice in (62). In the I-tensor case (m = 1), only
Fourier mode gy be an arbitrary function in C*(Q) N C(Q) with wo|r = go. The arbitrariness of
ug characterizes the non-uniqueness (up to the gradient field of a function which vanishes at the
boundary) in the reconstruction of a vector field from its Doppler data.

Theorem 4.2 (Range characterization for odd tensors.). Let f € Cy*(S™;Q), i1 > 1/2, be a real-
valued symmetric tensor field of odd order m = 2r + 1, r > 0, and

g=Xftonl'yandg=0o0onlI_U Iy.
Then g, g?*~1 € [LYT) N CH(T; 1y) for k > 1, and satisfy
(63) [[+iH]L™ g =0, and [I+iH]g* =0, Vk>1,

where g is the sequence in (43), g2~ for k > 1 is the sequence in (61), and H is the Bukhgeim-
Hilbert operator in (27).

(ii) Let g € C* (I'; CH#(SY))NC(I; C*#(SY)) be real valued with g|r_,r,= 0. If the correspond-
ing sequence g, g**~1 € Y,(I') for k > 1, satisfies (63), and for each element (1, - -+ ,_s,) €
W9, then there is a unique real valued symmetric m-tensor fy € C*(S™; Q) such that g|p, = Xf,.

Proof. (i) Necessity: Let f = (f;,.... ) € Ca*(S™: Q). Since all components f;,..; € Co*(€),
Xf € C'#(I}), and, thus, the solution u to the transport equation (35) is in C**(QxS'). Moreover,
its boundary value g = u|p 1€ CV#(I" x St).

By Proposition 3.1 (i), g=**", g?*~! € [LY(T') N CH#(T; 1) for all k > 1.

If u solves (35) then its Fourier modes satisfy (39) - (41). Since the negative even Fourier modes
U_oy, forn > mT“, satisfies the system (40), then the sequence (u_ (1), U—(m+3), - - - ) is L-analytic
in () and the necessity part in Theorem 3.1 yields the first condition in (63).
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The system (41) yield that the sequence u' := (u;,u_j,u_3---) is L-analytic in {2 with the
boundary value satisfying wuox_1|r= gox_1, for all & < 1. By Theorem 3.1 necessity part, the
sequence g' = (g1, 9_1, g—3, ...) must satisfy [ +iH]g' = 0.

Recall that u is real valued so that its Fourier modes occur in conjugates u,, = u_,, for all n > 0.
Consider now the equation (41) for n = 1 and take its conjugate to yield

(64) Oug + Ouy = 0.

The above equation (64) together with (41) yield that the sequence u® := (us, uy, u_1,u_s---) is

L-analytic in €2 with the boundary value satisfying uox_1|r= gox—1 for all k& < 2. By the necessity

part in Theorem 3.1, it must be that g% = (g3, g1, g_1, g_s3, ...) satisfies [I + iH]g® = 0.
Inductively, the argument above holds for any odd index 2k — 1 to yield that the sequence

Q22w H2) = (g1 (2), uor—3(2), oy ur (2), u_1(2), u_3(2)---)

is L-analytic in §2. Then, again by the necessity part in Theorem 3.1, its boundary value u
g?*~1 must satisfy the last condition in (63).

(i) Sufficiency: Let g € C* (I'; C#(SY)) N C(I'; C*#(S')) be real valued with g|r_ = 0.
Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the
corresponding sequences g*'*", g* satisfies (45). By Proposition (3.1), g&**", g € Y, (I").

Letm = 2r + 1, » > 0, be an odd integer. To prove the sufficiency we will construct a real
valued symmetric m-tensor f in §) and a real valued function u € C*(2 x S') N C(Q x S') such
that u|rys1= g and u solves (35) in 2. The construction of such w is in terms of its Fourier modes
in the angular variable and it is done in several steps.

Step 1: The construction of even modes sy, for [n| > 2r + 1, r > 0.

Apply the Bukhgeim-Cauchy integral formula (25) to construct the negative even Fourier modes:
(65) <U—2(r+1)7 U_2(r+2), ) = BLTngven-
By Theorem 3.1, the sequence (u_o(41), U—a(r12); ---) € CVH(Q;15) N C*(S2;1y)is L-analytic in
(66) Ou_gn + OU_(2n42) = 0,

are satisfied for all n > r + 1, » > 0. Moreover, the hypothesis (63) and the sufficiency part of
Theorem 3.1 yields that they extend continuously to /" and

21| =

(67) U_on|r = g-on, n>r+1,1r>0.

Construct the positive even Fourier modes by conjugation: s, := u_a,, foralln > r+1, r > 0.
By conjugating (66) we note that the positive even Fourier modes also satisfy

(68) Olgnia + Otusy =0, n>r+1,7>0.
Moreover, by reality of g in (42), they extend continuously to /" and

(69) Ugn|r = U2n|r = G=2n = g2n, n>71+1,17>0.

Step 2: The construction of even modes w5, for |n| < 2r, r > 0.

For (0,%_2, -+ ,9_3.) € W' arbitrary, define the modes wg, Uta, Uss, ..., Uzoy in Q by
(70) U—2n = 1/)—271, and  ug, := ¢—2n7 0<n<r.

By the definition of the class (62), and reality of g in (42), we have
(71) Uon|r= G—2n = Gon, 0<n <.

Step 3: The construction of negative modes w5, | for n € Z.
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Use the Bukhgeim-Cauchy Integral formula (25) to construct the negative odd Fourier modes:
(72) (u_1(2),u_3(2),...) := Bg*(2), ze€Q.
By Theorem 3.1, the sequence (u_y,u_3...) € CY*(Q;11) N C*(;11) is L-analytic in €2, thus
(73) OU_op—1 + OUu_9y_3 = 0,

are satisfied for all n > 0.
Note that Lg' = g°!. By hypothesis (63), [ + iH]g' = 0. Since H commutes with the left
translation L, then

0=L[I+iH]|g' =[] +iH]Lg" = [I +iH]|g*".

By applying Theorem 3.1 sufficiency part, we have that each wus,,_; extends continuously to I'*:

U_op—1|r = G—2p—1, N > 1.

If we were to define the positive odd index modes by conjugating the negative ones (as we did
for the non-attenuated even tensor case) it would not be clear why the equation (41) for n = O:

gul + 8u_1 = 0,

should hold. To solve this problem we will define the positive odd modes by using the Bukhgeim-
Cauchy integral formula (25) inductively.
Letu' = (uj,u! |, ul;,---) be the L-analytic map defined by

(74) u! = Bg'.

The hypothesis (63) for k = 1: [I +iH]g"' = 0, allows us to apply the sufficiency part of Theorem
3.1 to yield that u' extends continuously to I" and has boundary value g' on I". However, Lu! =
u°¥ is also L-analytic with the same boundary value g®¥ as u®¥. By the uniqueness of L-analytic

maps with the given boundary value we must have the equality
1 1
<u_1’u_3’ .. > — <u71,u73’ e >

In other words the formula (74) constructs only one new function u; and recovers the previously
defined negative odd functions u_1,u_3, .... In particular u' = (uy,u_i,u_s,---) is L-analytic,
and the equation du; + du_; = 0 holds in 2. We stress here that, at this stage, we do not know that
uy 1s the complex conjugate of u_.

Inductively, for £ > 1, the formula
(75) = (U, ugy g, uit T ut T ) = B
defines a sequence {u?*~'};>, of L-analytic maps with u?*~!|,= g?*~!. By the uniqueness of
L-analytic maps with the given boundary value, a similar reasoning as above shows

Lu*t =3 Vg > 2.

In particular, for all £ > 1, the sequence w1t = (Ugk—1,Ugk—3, ..., U1, U_1,- - ) is L-analytic.
Note that the sequence {u?*~'},-, constructed above satisfies the hypotheses of the Lemma 4.1,
and therefore for each k£ > 1,

(76) ugk—1(2) = U_e—1)(2), =z €.

We stress here that the identities (76) need the hypothesis (63) for all £ > 1, cannot be inferred
directly from the Bukhgeim-Cauchy integral formula (25) for finitely many £’s.
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‘We have shown that
(77) Ougn—1 + Ougy3=0, and ugy 1|r = gon_1, Vn € Z.

Step 4: The construction of the tensor field f, whose X-ray data is g.

For r > 0, we define first f,. 1 by using ©)_,, from the non-uniqueness class in (62), and mode
U_(2r42) from (65). Then, next define { fo,+1 : 0 < n < r — 1} solely from the information in the
non-uniqueness class. Finally, define { f_(2,41) : 0 < n <7} by conjugation:

f2r+1 = 5¢—2r + 8“—(1"-}—2)7 T > Oa
(78) f2n+1 = 52b—2n + 81/1_(2”+2), 0<n<r-— Lr=> 17 and

J=@nt1) = fons1, 0<n<r r=>0.
By construction, fi(2,+1) € C*(Q), for 0 < n < 7, as ¢g, Vs, ,¥Y_s, € CH*(Q). We use
these Fourier modes [, fig,; o fem fqr m = 2r + 1, r > 0, and equations (14), (7) and (9) to
construct the pseudovectors (fo, f1,- - , fm), and thus the m-tensor field fy € C*(S™; Q).

In order to show g| . = Xty with fy being constructed from pseudovectors via Fourier modes as
in (78) from class \Il"dd we define the real valued function w via its Fourier modes

(79)  ul(z,0) Z Usp—1(2)el =10 4 Z Ugn (2)€20 + 27/}7271(2)6_12"9 + Z@,Qn(z)ei%a.
n=0 n=0

ne—oo In|>r+1
Since g € C* (I'; C+(SY))NC(I"; C**(S')), we use Proposition 3.1 (ii) and (iii), to conclude that
u defined in (79) belongs to CH#(2 x S') N CH(Q x Sh).

Using (67), (69), (71), (77), and element (¢g, 1_3, - - - ,1h_5,) € WY, the u(-, @) in (79) extends
to the boundary u(-, 0)|r= g(-,0).

Since u € CH*(2 x S') N CH(Q x S'), then the term by term differentiation in (79) is now
justified, satisfying the transport equation (35):

r—1

0 Vu=2Re {(Qa; + Ou_(r42))e* ™"} + 2Re {Z(5¢—zn - 0w(2n+2>>€i(2n+1)9}

n=0

- Z (f2n+1€71(2n+1)9 + f—(2n+1)€i(2”+1)9) = (f, 671,

n=0

where we use (66), (68), (77), and the second equality uses the definition of fo,1’s in (78).

5. m-TENSOR - ATTENUATED CASE

Leta € 02’“(5), p > 1/2, with min a > 0. In this case, the transport equation (19a) becomes

¢

NERe]

+ ) fopel®O £y emIR (if m is even),
=1

Sh

ol

(80) 0 -Vu+au=

—1

forrnye O 4 fop e RO (if 1 s odd),

‘ 3
[

=
Il
o

\

where f/ s are defined as in (13) and (14), and f,, = f_,, for0 < n < m.
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If Z u,(2)e™ is the Fourier series expansion in the angular variable 6 of a solution v of (80),

neZ
then by identifying the Fourier coefficients of the same order, (80) reduces to the system for even

order m-tensor:

(81) 5U-(2n—1)(2) + Ou_(2n11)(2) + au_2,(2) = fon(2), 0<n< %, m even,

(82) Dt (2) + OU_ (a2 (2) + Ali_gy_1(2) = 0, 0<n< % —1,

(83) Ou_p(2) + Ou_(ni2)(2) + au_g11y(2) = 0, n>m,

and for odd order m-tensor we have:

(84) gu,(gn,l)(z) + Ou_(2n41)(2) + au_on(2) = 0, 0<n< m- ., m odd,
m—1

(85) Q9 (2) + Ou_(2n42)(2) + ati_(2n41)(2) = fans1(2), 0<n<—/—,
(86)  Ju_p(2) + Ou_(ny9)(2) + au_(ny1)(2) =0, n>m.

Given the data ¢ for attenuated X -ray transform for even or odd order tensor field, we expand the

o0

data ¢ in terms of its Fourier modes in the angular variables: ¢((,0) = Z gn(Q)e™ for ¢ € I,

Since the data g is also real valued, its Fourier modes will satisfy g_,, = g, for n > 0. From the
negative modes, we built the sequence g := (g9, 91,92, ...). From the special function A defined
in (32) and the data g, we built the sequence

(87) 8h = e_Gg = <’70;7—1a7—27 >a

where e~ as defined in (34).
Next we characterize the attenuated X -ray data g in terms of its Fourier modes go, g—1, * * §—(m—1)
and the Fourier modes

L7gp o= L™e™ g i= (Yomy Yo (mt1)s V—(m42)s ---)-

Similar to the non-attenuated case as before, we construct simultaneously the right hand side
of the transport equation (80) together with the solution w via its Fourier modes. In both cases,
apart from modes g, u_1,u_2, - U_(n_1), all Fourier modes are constructed uniquely from the
data L™gy,. For even m > 2, the modes ug, u_2,u_4, - * - U_(;n—2) Will be chosen arbitrarily from
the class WE'°" of cardinality % with prescribed boundary value and gradient on /" defined as

Yag = {(¢0’¢—2’ o) € CALR) x (CA(@;C))) 2
w—Qj}F:g—Qj, 0<j;<

5wf(mf2)|1—a = —8(6G86_Gg)fmlp - &}F g—(m-1), M > 27

(88) MWoosgj|p = —0U_jur) | — a| pg-jrr), 035 <
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odd

and for odd m > 1, the modes u_y,u_3, - -, u_(,—2) Will be chosen arbitrarily from the class Wg'o

of cardinality mT_l with prescribed boundary value and gradient on [’ defined as

m—1

Wl =L (Vo ts V) € (C@0)

.om—1
¢7(2j71)’1ﬂ = g-(2j-1), 1<y< 5 o m > 3,
(89) gw—(m—2)|r - —3(@GBe_Gg)_m‘F - a‘r g-(m-1), m=3,
_ .om—
8¢7(2j71)‘p = —3¢—(2j+1)|p - a‘p 925, 1<7< 5 m > 9,

2 (Redy|) = —alr 90} ;

where B be the Bukhgeim-Cauchy operator in (25), and the operators e*“ as defined in (34).
Theorem 5.1 (Range characterization). Leta € C**(Q), u > 1/2 withmina > 0, and Z > m > 0.
Q

(i) Let f € Cg H(S™: Q) be a real-valued m-order symmetric tensor field, and
g=Xgfonlyandg=00n1_UIyj.

Then gy, € IL1(T) N CH(T;1y) satisfy

(90) [I +iH|L™g, =0,

where gy, is sequence in (87) and H is the Bukhgeim-Hilbert operator in (27). Additionally, in

m = 1 case, for each ¢ € I', the zero-th Fourier mode go of g satisfy

o G
1) w@) = lim 2RI Be)a)

 Q3z5Cel a(z)

where B be the Bukhgeim-Cauchy operator in (25), and the operators et as defined in (34).

(ii) Let g € C* (I'; CYH(SY))YNC(I'; C*#(SY)) be real valued with g|r_r,= 0. For m = 0, if the
corresponding sequences g, € Y, (I") satisfies (90), then there is a unique real valued symmetric
0-tensor £ such that g|r, = X.f. Moreover, for m = 1, if the corresponding sequences gy, € Y, (I")
satisfies (90), and gy satisfies (91), then there exists a unique real valued vector field (1-tensor) f €
C(8™; Q) such that g\, = X,f. Furthermore, form > 2, if gy, € Y,,(I") satisfies (90), and for each
element (1[)0, Vg, - ,¢_(m_2)) € Wy'" for even m-tensor, and (1[)_1, Yoz, ,1/)_(m_2)) € \I/g‘i‘;
for m-odd tensor, then there is a unique real valued symmetric m-tensor £y € C'(S™; Q) such that
g |F+: Xafy.

Proof. (i) Necessity: Let f = (f;,...,,) € Ca*(S™; Q). Since all components f;,..;. € Co*()
are compactly supported inside {2, then for any point at the boundary there is a cone of lines which
do not meet the support. Thus ¢ = 0 in the neighborhood of the variety [ which yields g €
CH#(I" x S'). Moreover, g is the boundary value on I" x S' of a solution u € C'#(Q x S!) of the
transport equation (80). By Proposition 3.1(i) and Proposition 3.2, g;, = e “g € [LY(T)NCH(T; 1y).

If u solves (80) then its Fourier modes satisfies (81) - (83) for even m-tensors, and (85)- (86) for
odd m-tensors.

In either of the even m-tensor case or the odd m-tensor case, (from (83) or (86)), the sequence
L™a = (U_py, U_py1,U_py_2,- - ) satisfies

OL™u + L*0L™u + aLl™u = 0.
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Letv := ¢~ “L™u, then by Lemma 3.1, and the fact that the operators e+ commute with the left
translation, [e*¢, L] = 0, the sequence v = L™e~“u solves Ov + L?0v = 0, i.e v is L? analytic,
with boundary value L™gy,. The necessity part in Theorem 3.1 yields (90).

Additionally, in the m = 1 case, the Fourier modes wg, u_1, u; of u solve (84) for n = 0. Since

a > 01in €2, we have
~ —2Redu_(2)
(92) uo(z) = a2

Since the left hand side of (92) is continuous all the way to the boundary, so is the right hand side.

Moreover, the limit below exists and in the m = 1 case, we have
—2Redu_4(2)
zo) = lim wup(z) = lim
90( 0) Q3z—zp€l’ O( ) Q>z—zp€l’ a(z) ’

thus (91) holds. This proves part (i) of the theorem.

(i) Sufficiency: Let g € C* (I'; CH#(SY))NC(I"; C*#(SY)) be real valued with g|_r,= 0. Let
the corresponding sequence g, as in (87) satisfying (90). By Proposition 3.1(ii) and Proposition
3.2(iii), we have g;, € Y,,(I).

To prove the sufficiency we will construct a real valued symmetric m-tensor f in {2 and a real
valued function u € C1(Q2 x S*) N C(2 x S') such that u|rs1= ¢ and u solves (80) in Q. The
construction of such w is in terms of its Fourier modes in the angular variable and it is done in
several steps. We first construct modes u_,, for [n| > m from data g, in either of the m-even case
or the m-odd case.

Step 1: The construction of modes u_,, for [n| > m.

Use the Bukhgeim-Cauchy Integral formula (25) to define the L?-analytic maps

v(z) = (vo(2),v-1(2),v_2(2),...) ;= BL"gy(z), =z € Q.
By Theorem 3.1 (i1),
(93) v e O Q1) NCH(Q; 1) N C*HY o).
Moreover, since g, satisfy the hypothesis (90), by Theorem 3.1 sufficiency part, we have
(94) vlr=L"g = L™ “g.

Define the sequence valued map

(95) Q3 2z L™U(2) = (U_p(2), Uep_1(2), -+ ) == ev(2),

where the operator e“ as @ﬁned in (34). Since convolution preserves [, by Proposition 3.2,
L™a € CYM(Q;1;) N C*(Q;1,). Moreover, since v € C?(;1,,) as in (93), we also conclude
from convolution that L™u € C*(€; [ ). Thus,

(96) L'™a € CH(Q; 1) N CH(Q;11) N C* (s 1)

As v is L? analytic, by Lemma 3.1, L™u satisfies 0L™u + L?*0L™u + aL™ ™ u = 0, which in
component form:

(97) Oy +OU_pyg +aU_p_1 =0, n>m.

, z€.

Moreover, the restriction to the boundary satisfy
(98) L™u|p= e%v|p=e“Lme g = L™g,

where the second equality follows from (94) and in the last equality we use the fact that the operators
et commute with the left translation, [e*“, L] = 0.



ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS 19

Construct the positive Fourier modes by conjugation: w,, := u_,, for all n > m. Moreover using
(98), the boundary value wu, |, for each n > m, satisfy
(99) Un|r=TU_p|lr=0-0 = gn, n>m.
By conjugating (97) we note that the positive Fourier modes also satisfy
(100) Oy o + Ou, + au,y1 =0, n>m.

Step 2: The construction of the O-tensor field f.
In the case of the O-tensor, all the modes in (95) is constructed from the data. Using the modes
ug, u_; € C*(Q) from (95), the real valued O-tensor f = fy € C'(2; R) is uniquely determined by

(101) f:=2Redu_; + aup.

Step 3: The construction of the 1-tensor field f.
In the 1-tensor case, all the modes except u, are constructed in (95). Using (84) for n = 0, and
a > 0 in §2, we can define v, via the mode u_; from (95) by

2Redu_y(z)
a(z)
From (91), uy defined above extends continuously to the boundary /" and u()’ r = Yo- Moreover,
since u_; € C*(Q) from (96) and a € C?*(Q) we get ug € C1(Q).
Using modes u_1, u_o from (95) and ug from (102), the real valued 1-tensor (vector field) f €
C(9;R?) is uniquely determined by
(103) f=(2Ref;,2Im f1), where fi:= dug+ Ou_o+au_;.

(102) up(2) == z €.

Remark 5.1. In the attenuated case, both the 0-tensor and the 1-tensor are uniquely recovered,
and there is no class.

For m-tensor with m > 2, we next consider separately the m-even and m-odd cases. Using the
first step, where modes u_,, for |[n| > m are already constructed from the data gy, in either of the
m-even case or the m-odd case, we construct the remaining modes u,, for |n| < m — 1 separately
first in the m-even case (m = 2q, ¢ > 1) and then in the m-odd case (m = 2r +1,r > 1).

Step 4: In the m even case, the construction of modes v, for [n| < m — 1.

Given (%, Y_g, - ,w_Q(q_l)) € Wyt arbitrary, define the modes ug, U2, ..., ux(2(4-1)) in £2 by
(104) U—gj =195, and ug =1 g, 0<j<g—1,¢>1

Using the mode u_3, from (95) and ¢_5(,_1), define the modes w4 (24—1) by

OY_o(g_1) + Ou_
(105) U pgt) = — U—z(g-1) + Fu—2zg
a
As ¢y € C?(Q;R) and ¢_(9j42) € C*(;C), for 0 < j < g — 2, ¢ > 2, define modes

_5¢—2j + OY_(2542)

,and  ugy_1 1= U_(z4—1), forallg > 1.

U_(2j41) = - , and ugjyq = U_(9541), forall0 <j <qg—2, qg=>2.
By the construction in the above equations, we have
u_9; € C*( 1), for 0<j<q—1,¢9g>1,
(106) U_2541) € CH(Q; 1), for 0<j<g—1,¢g>1, and

EU,QJ‘ + 8u_(2j+2) + aU_(2541) = 0, for 0 < ] < q— 1, q > 1,
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are satisfied. Moreover, by conjugating the last equation in (106) yields
(107) Ougj + Ou(ajy) + atjyy =0, for 0<j<qg—1,g>1.
By the definition of the class (88), and reality of g, we have
(108) U_gjlr = g_9j, and ugjlr=79-2; =¢go5, 0<j<qg—1,¢>1.
We check next that the boundary value of u_(g;41)18 g_(2j41) for0 < j < g —2, ¢ > 2:
0og; + O_249)

a

(109) U_(j41) | = = g—(2j+1),

r
where the last equality uses the condition in class (88). Similar calculation to (109) for mode
U_(2¢—1) Yields u_(z4_1) ‘ r=9-(2¢-1)- Thus, from the above equations, we have

(110) Un|p = Ggn, Vn|<m—1.
Step 5: The construction of even m-tensor f; whose attenuated X -ray data is g.

We define first f5, by using 1)_,,—_) from the non-uniqueness class, and modes u_,, U_p,—1 €
C?(Q; 1) from (95). Then, next define Jag—2 by using ¢_s(,_1), ¥ _3(4—2) from the non-uniqueness
class \Ilgfg“, and Fourier mode u_s, from (95). Then, define { f2, : 0 < n < ¢ — 2} solely from the

information in the non-uniqueness class. Finally, define { f_5, : 1 < n < g} by conjugation.
(111)

— [ Op_o(g1) + Ou_
faq =0 Pt 1; U2q>+au—<2q+1>+CW—2q, q=1,
[ OY_ag-) + OV (4 OY_a(g-1) + Ou_
[ —8( V_2(q 2)2 P_2(q ”)—8( V_2(q 1;+ u 2q>+a¢_2(q_1), 0> 2.
O _apn_1) + Op_ay O_an + O_a(n
f2n::_a<w2( 1;+ w2)—6<¢2 +a,l/} 2(+1)>+aw—2n; 1§”§Q_27 q237

—92Red (M) +aky, q=1,
fo= (5% +a¢_2)
a

—2Re0 +ayyy, q>2,

fooni=fon, 1<n<gq, q¢>1,

By construction, fy, € C(Q),for0 < n <gq, ¢ > 1,as ¢ 5, € C*(Q;l), for 0 < n < g —1,
from (88). Note that fo, satisfy (81). We use these Fourier modes (fo, f+2, - , f+m) and equations
(13), (7) and (9) to construct <f0, fi,-- ,fm>, and thus even m-tensor field fy € C(S™; ().

In order to show g|p, = X,fy with fy being constructed from pseudovectors via Fourier modes

as in (111) from class Wg'™", we define the real valued function u via its Fourier modes
(112)

u(z, 0) = Z un(2)e™ 4+ 2Re (_5¢2(q1) + 8U_2q> o—i(20-1)0

a
[n|>2q

q—1 q—2 _
+2Re {Z 1/)_2n(z)e—i(2n)0} 4 92Re { (_ O_oj + 8¢(2j+2)> e_i@nﬂ)g}
n=0 a

n=0
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and check that it has the boundary value g on /" and satisfies the transport equation (80).

Since g € C* (I'; CH#(SY)) N C(I'; C*#(SY)), we use Proposition 3.1 (ii) and (iii), to conclude
that u defined in (112) belongs to C1#(Q x SY) N C*(Q x S'). In particular u(-,8) for § =
(cos #, sin ) extends to the boundary and it satisfies

u(’0)|F = Z un|F€in0 + Z un{peine = Z gneme + Z gneimg = g('70)7
In|>2q In|<2¢—1 [n|>2q [n|<2¢—1
where in the second equality above we use (94), (99) and (110).
Since u € C*(Q x S') N C*(Q x S'), then using (97), (100), (105), (106), (107), and the
definition of f5, for —g < n < ¢, ¢ > 1in (111), the real valued u defined in (112) satisfies the
transport equation (80) in the m-even case.

We consider next the m-odd tensor case of order m = 2r + 1, » > 1, Using the first step, where
modes u_,, for |n| > m are already constructed from the data gj,, we construct the remaining modes
uy, for |n| < m — 1 in the m-odd case.

Step 6: In the m odd case, the construction of modes v, for |n| < m — 1.

Given (¢p_1,%_3, -, th_(m—2)) € VoM arbitrary, firstly define the odd modes

(113) U_(2n-1) ‘= V_(2n—1), and ug, 1 := Ef(anl)a I<n<r r=lL
Secondly, by using 1_1, 9 _(,—2) and the mode u_,, from (95), we define the modes
2Re 01 O_(2r_1) + OUu_ (2,
(114) g := —e—%, U_gy 1= — -tz 4 H), and ug, :=U_p, for 7 >1.
a a

Lastly, by using 1_(2,,—1) € C*Q;C), for1 <n <r—1, r > 2, we define the even modes

O (an—1) + OY_(2n :
U_gy, ‘= — V-(zn-) V-(ent) ,and ug, 1= U _o5,,for1 <n < r—1, r > 2. By the construction

in the above equationsc,b we have
U_(2n—1) € C*Qly), for 1<n<r r>1,
(115) U_on € CH(Qly), for 0<n<r r>1, and
gu_(gn_l) +O0u_(gny1) +au_g, =0, for 0<n<r r>1,
is satisfied. Moreover, by conjugating the last equation in (115), we have the Fourier modes satisfy
(116) gu_(zn_l) + Ou_(2n41) + at_o, =0, for |n| <7, r>1.
By the class (89), and reality of g, we have the boundary value of u_ (2, 1) in (113) satisfy
17y u—@a-plr=9-@n-1), and ug |lr=9 91y =g2n-1, 1<n <7 7 >1
We check next that the boundary value of u_s, 18 g9, for1 <n <r —1, r > 2:

_5¢—(2n—1) + OV_(2n11)
a

(118) u72n’1ﬂ = = J-2n,
r
where the last equality uses the condition in class (89). Similar calculation to (118) for modes

and u_o, in (114), yields UO‘F = go, and u_QT|F = ¢_o,, for r > 1. Thus, we have

Step 7: The construction of odd m-tensor fy whose attenuated X -ray data is g.
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We first define f5,.4; by using 1_(,_) from the non-uniqueness class, and the Fourier modes
U—_p, U—(m+1) I (95). Next, define fy._; by using 1_(,,,—2), ¥—(m—4) from the non-uniqueness class,
and Fourier mode u_,, in (95). Then, define { f,,+1 : 0 < n < r — 2} solely from the information
in the non-uniqueness class. Finally, define { f_(2n41) : 0 < n < r} by conjugation.

(120)

OV_(2r—1) + Ou_(2,41)

Jory1 1= =0

a

5w7(27“73) + 6)?/J(2r1)) _ 9 (51/)(%1) + 8U(2r+1)> Fat o, T2

) + 8U_(2r+2) + au—(2r+1)7 r Z 17

f2r—1 = —0

a a

a a

) +aY_(ns1), L <n<r—2,

Rea¢1)_a(5w1+aU3>+aw ) =1
a ) ’

a
Re 04 s (3¢—1 +8¢—3> . >
a a

J—en+1) = fonyr, 0<n<r, r>1

f2n+1 — _5 <5w(2n1) + a¢(2n+1)> _9 (5¢(2n+1) + 8¢7(2n+3)

By construction, fo,11 € C(Q) for 0 < n < r, r > 1, as u_o,41) € C*(Q;ls) from (96),
and ¢_(a,1) € C*(Qly), for 1 < n < r—1, r > 1, from (89). We use these m + 1
Fourier modes (f+1, fi3, -, f+m), and equations (14), (7) and (9) to construct the pseudovec-
tors (fo, fi, - ,fm), and thus the odd m-tensor field fy € C(S™; Q).

Define the real valued function w via its Fourier modes

U(Z,e) = Z un(z)ei’rLQ +2Re {Z @D_(zn_l)(z)e_i(%_l)a} i —2Reaw_1(z)
n=1

[n|>2r+1 a
(121) i 1
OV (9 + Ou_(9y . — .
+ 2 Re (_ w (2r—1) (Z) u (2r+1) <Z>>6—1(2r)9 + 2 Re {ZU—Qne_l(Qna)} .
a n=1

Using (116) and (119), and definition of (¢_1,%_3,- -+ ,1_(3,—1)) € W% forr > 1, then u(-, 6)
in (121) extends to the boundary, and its boundary value satisfy u(-, 8)|r= g(-, 0).
Moreover, by using (115), (116) and the definition of f3, ; for |n| < r, r > 1 in (120), the real
valued v defined in (121) satisfies the transport equation (80) in the m-odd case.
O

6. CONCLUSION

In conclusion, we characterize the X -ray data g in both the non-attenuated case (Theorem 4.1 and
Theorem 4.2) and the attenuated case (Theorem 5.1) for arbitrary m-tensor in terms of its Fourier
modes g = (go,9-1,9_2, - .. in the spatial variable and the Bukhgeim-Hilbert transform (27). In
the necessity, while the non-attenuated case separates the even modes g = (go, g_o,...) and
the odd modes g°¥ = (g_;,¢g_3,...) (see Table 1), the attenuated case mixes all the even and
odd Fourier modes: g, = e~ “g (see (90) and Table 2). In the sufficiency part, in both cases we
showed that reconstruction of the m-tensor field for m > 2 is possible upto a non-uniqueness class
of functions that extends continuously to the boundary with prescribed boundary values. Moreover,
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the 1-tensor is uniquely recovered in the attenuated case, and in the non-attenuated case, the 1-
tensor is recovered upto an arbitrary function (see Remark 4.2). Furthermore, the O-tensor field is
uniquely recovered (see also Remark 4.1 and Remark 5.1) in both cases.

TABLE 1. Range Characterization in the non-attenuated case

Datag = (g0, 9-1,9-2,9-3,--- ) Theorem 4.1, m-even Theorem 4.2, m-odd
geven — <g()7g—27g—4, . > [I _|_ iH]geven — 0 [I + iH}LmTngven — O
g =(9-1.9-3,9-5,...) [ +iH]L2g* =0

ng_l - <g2k—17 -5 9-1,8-3,- . >7 k Z 1 [I + i%]ng—l =0

TABLE 2. Range Characterization in the attenuated case

Data g = (90, 9-1,9-2,9-3,---) | Theorem 5.1, m-tensor

gh = eng = <’707,y—1a V-2, > [‘[ + IH]ngh =0
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