ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

K. Sadiq, D. Omogbhe

RICAM-Report 2023-22

ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

Abstract

In this article we characterize the range of the attenuated and non-attenuated X-ray transform of compactly supported symmetric tensor fields in the Euclidean plane. The characterization is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. Introduction

We consider here the problem of the range characterization of (non)-attenuated X-ray transform of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane. As the X-ray and Radon transform [35] for planar functions (0 -tensors) differ merely by the way lines are parameterized, the $m=0$ case is the classical Radon transform [35], for which the range characterization has been long established independently by Gelfand and Graev [12], Helgason [13], and Ludwig [18]. Models in the presence of attenuation have also been considered in the homogeneous case [17, 1], and in the non-homogeneous case in the breakthrough works [2, 28, 29], and subsequently $[24,5,4,14,21]$. The references here are by no means exhaustive.

The interest in the range characterization problem in the 0 -tensors case stems out from their applications to data enhancement in medical imaging methods such as Single Photon Emission Computed Tomography or Positron Emission Computed Tomography [23, 11]. The X-ray transform of 1-tensors (Doppler transform [25, 44]) appears in the investigation of velocity distribution in a flow [6], in ultrasound tomography [45, 42], and also in non-invasive industrial measurements for reconstructing the velocity of a moving fluid [26, 27]. The X-ray transform of second order tensors arises as the linearization of the boundary rigidity problem [44]. The case of tensor fields of rank four describes the perturbation of travel times of compressional waves propagating in slightly anisotropic elastic media [44, Chapters 6,7]. Thus, due to the various applications the range characterization problem has been a continuing subject of research.

Unlike the scalar case, the X-ray transform of tensor fields has a non-zero kernel, and the nullspace becomes larger as the order of the tensor field increases. For tensors of order $m \geq 1$, it is easy to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors, and it is possible to reconstruct uniquely (without additional information of moment ray transforms [44]) only the solenoidal part of a tensor field. The non-injectivity of the X-ray transform makes the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1 -tensor field can be recovered in the regions of positive absorption as shown in [15, 46, 37, 30], without using some additional data information [43, 8, 19]. It is due to a surprising fact that the two-dimensional attenuated Doppler transform with positive attenuation is injective while the non-attenuated Doppler transform is not.

[^0]Key words and phrases. X-ray transform of symmetric tensors, Attenuated X-ray transform, A-analytic maps, Hilbert transform.

The systematic study of tensor tomography in non-Euclidean spaces originated in [44]. On simple Riemannian surfaces, the range characterization of the geodesic X-ray of compactly supported 0 and 1-tensors has been established in terms of the scattering relation in [34], and the results were extended in $[3,10,16]$ to symmetric tensors of arbitrary order. Explicit inversion approaches in the Euclidean case have been proposed in [14, 9, 20]. In the attenuating media, tensor tomography was solved for the cases $m=0,1$ in [41]. Inversion for the attenuated X-ray transform for solenoidal tensors of rank two and higher can be found in [32], with a range characterization in [33, 21, 3].

The original characterization in $[12,13,18]$ was extended to arbitrary symmetric m-tensors in [31]; see [9] for a partial survey on the tensor tomography in the Euclidean plane. The connection between the Euclidean version of the characterization in [34] and the characterization in [12, 13, 18] was established in [20]. Recently, in [38] the connection between the range characterization result in [36] and the original range characterization in [12, 13, 18] has been established. Moreover, the results in [38] from 0-order is extended to symmetric tensors of an arbitrary order in [39] and also establishes the connection with the generalized moment conditions in [31].

In here we build on the results in [36, 37, 40], and extends them to symmetric tensor fields of any arbitrary order. In particular, the range characterization therein are given in terms of the Bukhgeim-Hilbert transform [36] (the Hilbert-like transform associated with A-analytic maps in the sense of Bukhgeim [7]). The characterization in here can be viewed as an explicit description of the scattering relation in [32,33] particularized to the Euclidean setting. The characterization in both the non-attenuated case (see Theorem 4.1 and Theorem 4.2 below) and in the attenuated case (see Theorem 5.1 below) are given in terms of the Bukhgeim-Hilbert transform (27). In the sufficiency part we reconstruct all possible m-tensors yielding identical X-ray data; see (44) and (62) for the non-attenuated case, and (88) and (89) for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties of symmetric tensor fields needed here are in Section 2. In Section 3 we briefly recall existing results on A-analytic maps that are used in the proofs. We provide range characterization of symmetric m-tensor field \mathbf{f} in the non-attenuated case in Section 4, and in the attenuated case in Section 5. In Section 6 we gave some concluding remarks.

2. PreLiminaries

Given an integer $m \geq 0$, let $\mathbf{T}^{m}\left(\mathbb{R}^{2}\right)$ denote the space of all real-valued covariant tensor fields of rank m :

$$
\begin{equation*}
\mathbf{f}\left(x^{1}, x^{2}\right)=f_{i_{1} \cdots i_{m}}\left(x^{1}, x^{2}\right) d x^{i_{1}} \otimes d x^{i_{2}} \otimes \cdots \otimes d x^{i_{m}}, \quad i_{1}, \cdots, i_{m} \in\{1,2\} \tag{1}
\end{equation*}
$$

where \otimes is the tensor product, $f_{i_{1} \cdots i_{m}}$ are the components of tensor field \mathbf{f} in the Cartesian basis $\left(x^{1}, x^{2}\right)$, and where by repeating superscripts and subscripts in a monomial a summation from 1 to 2 is meant.

We denote by $\mathbf{S}^{m}\left(\mathbb{R}^{2}\right)$ the space of symmetric covariant tensor fields of rank m on \mathbb{R}^{2}. Let $\sigma: \mathbf{T}^{m}\left(\mathbb{R}^{2}\right) \rightarrow \mathbf{S}^{m}\left(\mathbb{R}^{2}\right)$ be the canonical projection defined by $(\sigma \mathbf{f})_{i_{1} \cdots i_{m}}=\frac{1}{m!} \sum_{\pi \in \Pi_{m}} f_{i_{\pi(1)} \cdots i_{\pi(m)}}$, where the summation is over the group Π_{m} of all permutations of the set $\{1, \cdots, m\}$.

A planar covariant symmetric tensor field of rank m has $m+1$ independent component, which we denote by

$$
\begin{equation*}
\tilde{f}_{k}:=f_{m-k}^{1 \cdots 1} \underbrace{2 \cdots 2}_{k}, \quad(k=0, \cdots, m), \tag{2}
\end{equation*}
$$

in connection with this, a symmetric tensor $\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}, i_{1}, \cdots, i_{m}=1,2\right)$ of rank m will be given by a pseudovector of size $m+1$: $\mathbf{f}=\left(\tilde{f}_{0}, \tilde{f}_{1}, \cdots, \tilde{f}_{m-1}, \tilde{f}_{m}\right)$.

We identify the plane \mathbb{R}^{2} by the complex plane $\mathbb{C}, z^{1} \equiv z=x^{1}+\mathrm{i} x^{2}, z^{2} \equiv \bar{z}=x^{1}-\mathrm{i} x^{2}$. We consider the Cauchy-Riemann operators

$$
\begin{equation*}
\frac{\partial}{\partial z^{1}} \equiv \frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}-\mathrm{i} \frac{\partial}{\partial x^{2}}\right), \quad \frac{\partial}{\partial z^{2}} \equiv \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}+\mathrm{i} \frac{\partial}{\partial x^{2}}\right) \tag{3}
\end{equation*}
$$

and the inverse relation by $\frac{\partial}{\partial x^{1}}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}, \quad \frac{\partial}{\partial x^{2}}=\mathrm{i} \frac{\partial}{\partial z}-\mathrm{i} \frac{\partial}{\partial \bar{z}}$.
Let $\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}\left(x^{1}, x^{2}\right), i_{1}, \cdots, i_{m}=1,2\right)$ be real valued symmetric m-tensor field in Cartesian coordinates $\left(x^{1}, x^{2}\right)$, then in complex coordinates $\left(z^{1}, z^{2}\right)$ it will have new components $\left(F_{i_{1} \cdots i_{m}}(z, \bar{z})\right)$, which are formally expressed by the covariant tensor law:

$$
\begin{align*}
F_{i_{1} \cdots i_{m}}(z, \bar{z}) & =\frac{\partial x^{s_{1}}}{\partial z^{i_{1}}} \cdots \frac{\partial x^{s_{m}}}{\partial z^{i_{m}}} f_{s_{1} \cdots s_{m}}\left(x^{1}, x^{2}\right), \quad \text { and } \\
f_{i_{1} \cdots i_{m}}\left(x^{1}, x^{2}\right) & =\frac{\partial z^{s_{1}}}{\partial x^{i_{1}}} \cdots \frac{\partial z^{s_{m}}}{\partial x^{i_{m}}} F_{s_{1} \cdots s_{m}}(z, \bar{z}), \tag{4}
\end{align*}
$$

where the Jacobian matrix has the form

$$
J:=\left(\begin{array}{cc}
\frac{\partial x^{1}}{\partial z^{1}} & \frac{\partial x^{1}}{\partial z^{2}} \\
\frac{\partial x^{2}}{\partial z^{1}} & \frac{\partial x^{2}}{\partial z^{2}}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-\mathrm{i} & \mathrm{i}
\end{array}\right), \quad \text { and } \quad J^{-1}=\left(\begin{array}{cc}
\frac{\partial z^{1}}{\partial x^{1}} & \frac{\partial z^{1}}{\partial x^{2}} \\
\frac{\partial z^{2}}{\partial x^{1}} & \frac{\partial z^{2}}{\partial x^{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & \mathrm{i} \\
1 & -\mathrm{i}
\end{array}\right) .
$$

Adopting the notation in [14], we shall write the transformations (4) as

$$
\begin{array}{rll}
\mathbf{f}=\left\{f_{i_{1} \cdots i_{m}}\left(x^{1}, x^{2}\right)\right\} & & \mathbf{F}=\left\{F_{i_{1} \cdots i_{m}}(z, \bar{z})\right\}, \quad \text { and } \\
\mathbf{F}=\left\{F_{i_{1} \cdots i_{m}}(z, \bar{z})\right\} & & \mathbf{f}=\left\{f_{i_{1} \cdots i_{m}}\left(x^{1}, x^{2}\right)\right\} . \tag{5}
\end{array}
$$

A symmetric tensor \mathbf{F} of rank m, obtained from the real symmetric tensor \mathbf{f} by passing to complex variables, we also define a pseudovector $\left(F_{0}, F_{1}, \cdots, F_{m-1}, F_{m}\right)$ with components

$$
\begin{equation*}
F_{k}=F_{\underbrace{}_{m-k}}^{1 \cdots 1} \underbrace{2 \cdots 2}_{k}, \quad k=0, \cdots, m, \tag{6}
\end{equation*}
$$

and subject to the conditions

$$
\begin{equation*}
F_{k}=\bar{F}_{m-k}, \quad k=0, \cdots, m \tag{7}
\end{equation*}
$$

Taking into account the tensor law (4), we obtain formulas relating the components of pseudovectors in (2) and pseudovectors in (6):

$$
\begin{align*}
F_{k} & =\frac{(-\mathrm{i})^{m-k}}{2^{m}} \sum_{q=0}^{m-k} \sum_{p=0}^{k}\binom{m-k}{q}\binom{k}{p} \mathrm{i}^{k-p+q} \tilde{f}_{p+q}, \quad k=0,1, \cdots, m \tag{8}\\
\tilde{f}_{k} & =\mathrm{i}^{k} \sum_{q=0}^{m-k} \sum_{p=0}^{k}\binom{m-k}{q}\binom{k}{p}(-1)^{k-p} F_{p+q}, \quad k=0,1, \cdots, m . \tag{9}
\end{align*}
$$

In Cartesian coordinates covariant and contravariant components are the same, and thus contravariant components of the tensor field f coincide with its corresponding covariant components, $f_{i_{1} \cdots i_{m}}=f^{i_{1} \cdots i_{m}}$. The dot product on $\mathbf{S}^{m}\left(\mathbb{R}^{2}\right)$ induced by the Euclidean metric is defined by

$$
\begin{equation*}
\langle\mathbf{f}, \mathbf{h}\rangle:=f_{i_{1} \cdots i_{m}} h^{i_{1} \cdots i_{m}} \tag{10}
\end{equation*}
$$

Note that if $\mathbf{f}_{1} \mapsto \mathbf{F}_{1}$ and $\mathbf{f}_{2} \mapsto \mathbf{F}_{2}$, then the pointwise inner product of tensors is invariant:

$$
\begin{equation*}
\left\langle\mathbf{f}_{1}, \mathbf{f}_{2}\right\rangle=\left\langle\mathbf{F}_{1}, \mathbf{F}_{2}\right\rangle . \tag{11}
\end{equation*}
$$

For $\boldsymbol{\theta}=\left(\theta^{1}, \theta^{2}\right)=(\cos \theta, \sin \theta) \in \mathbb{S}^{1}$, we denote by $\boldsymbol{\theta}^{m}$ the tensor product $\boldsymbol{\theta}^{m}:=\underbrace{\boldsymbol{\theta} \otimes \boldsymbol{\theta} \otimes \cdots \otimes \boldsymbol{\theta}}_{m}$ and $\boldsymbol{\theta}^{m}$ will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for contravariant components its representation in complex coordinates will look like

$$
\boldsymbol{\theta} \mapsto \Theta, \quad \Theta^{k}=\frac{\partial z^{k}}{\partial x^{s}} \theta^{s}, \quad \Theta=\left(\Theta^{1}, \Theta^{2}\right)=\left(e^{\mathrm{i} \theta}, e^{-\mathrm{i} \theta}\right)
$$

and $\Theta^{m}:=\underbrace{\Theta \otimes \Theta \otimes \cdots \otimes \Theta}_{m}$ be an m-contravariant tensor, and we also have $\boldsymbol{\theta}^{m} \mapsto \Theta^{m}$. Using (11), we get

$$
\begin{align*}
\left\langle\mathbf{f}, \boldsymbol{\theta}^{m}\right\rangle & =\left\langle\mathbf{F}, \Theta^{m}\right\rangle=\sum_{k=0}^{m}\binom{m}{k} F_{k} e^{\mathrm{i} \theta(m-k)} e^{-\mathrm{i} \theta k}=\sum_{k=0}^{m}\binom{m}{k} F_{k} e^{\mathrm{i}(m-2 k) \theta} \\
& = \begin{cases}f_{0}+\sum_{k=1}^{q}\left(f_{-2 k} e^{\mathrm{i}(2 k) \theta}+f_{2 k} e^{-\mathrm{i}(2 k) \theta}\right), & (\text { if } m=2 q, q \geq 0), \\
\sum_{k=0}^{q}\left(f_{-(2 k+1)} e^{\mathrm{i}(2 k+1) \theta}+f_{2 k+1} e^{-\mathrm{i}(2 k+1) \theta}\right), & (\text { if } m=2 q+1, q \geq 0),\end{cases} \tag{12}
\end{align*}
$$

where

$$
\begin{array}{rlrl}
f_{-2 k} & =\binom{2 q}{q-k} F_{q-k}, & 0 \leq k \leq q, q \geq 0, \quad\left(q=\frac{m}{2}, m \text { even }\right), \\
f_{-(2 k+1)} & =\binom{2 q+1}{q-k} F_{q-k}, & & 0 \leq k \leq q, q \geq 0, \quad\left(q=\frac{m-1}{2}, m \text { odd }\right), \tag{14}
\end{array}
$$

and $f_{n}=\overline{f_{-n}}$ and $F_{n}=\bar{F}_{m-n}$, for $0 \leq n \leq m$.
Let \mathbf{f} be a real valued symmetric m-tensor, with integrable components of compact support in \mathbb{R}^{2}, and $a \in L^{1}\left(\mathbb{R}^{2}\right)$ a real valued function. The attenuated X-ray transform of \mathbf{f} is given by

$$
\begin{equation*}
X_{a} \mathbf{f}(x, \boldsymbol{\theta}):=\int_{-\infty}^{\infty}\left\langle\mathbf{f}(x+t \boldsymbol{\theta}), \boldsymbol{\theta}^{m}\right\rangle \exp \left\{-\int_{t}^{\infty} a(x+s \boldsymbol{\theta}) d s\right\} d t \tag{15}
\end{equation*}
$$

where $x \in \mathbb{R}^{2}, \boldsymbol{\theta} \in \mathbb{S}^{1}$, and $\langle\cdot, \cdot\rangle$ is the inner product in (10). For the non attenuated case $(a \equiv 0)$, we use the notation $X \mathbf{f}$.

In here, we consider the tensor field \mathbf{f} be defined on a strongly convex bounded set $\Omega \subset \mathbb{R}^{2}$ with vanishing boundary values on Γ; further regularity and the order of vanishing will be specified in the theorems. In the statements below we use the notations in [44]:

$$
C^{\mu}\left(\mathbf{S}^{m} ; \Omega\right)=\left\{\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}\right) \in \mathbf{S}^{m}(\Omega): f_{i_{1} \cdots i_{m}} \in C^{\mu}(\Omega)\right\}
$$

$0<\mu<1$, for the space of real valued, symmetric tensor fields of order m with locally Hölder continuous components. Similarly, $L^{1}\left(\mathbf{S}^{m} ; \Omega\right)$ denotes the tensor fields of order m with integrable components.

For any $(x, \boldsymbol{\theta}) \in \bar{\Omega} \times \mathbb{S}^{1}$, let $\tau(x, \boldsymbol{\theta})$ be length of the chord passing through x in the direction of $\boldsymbol{\theta}$. Let also consider the incoming $(-)$, respectively outgoing $(+)$ submanifolds of the unit bundle
restricted to the boundary

$$
\begin{equation*}
\Gamma_{ \pm}:=\left\{(x, \boldsymbol{\theta}) \in \Gamma \times \mathbb{S}^{1}: \pm \boldsymbol{\theta} \cdot \nu(x)>0\right\} \tag{16}
\end{equation*}
$$

and the variety

$$
\begin{equation*}
\Gamma_{0}:=\left\{(x, \boldsymbol{\theta}) \in \Gamma \times \mathbb{S}^{1}: \boldsymbol{\theta} \cdot \nu(x)=0\right\} \tag{17}
\end{equation*}
$$

where $\nu(x)$ denotes outer normal.
The a-attenuated X-ray transform of \mathbf{f} is realized as a function on Γ_{+}by

$$
\begin{equation*}
X_{a} \mathbf{f}(x, \boldsymbol{\theta})=\int_{-\tau(x, \boldsymbol{\theta})}^{0}\left\langle\mathbf{f}(x+t \boldsymbol{\theta}), \boldsymbol{\theta}^{m}\right\rangle e^{-\int_{t}^{0} a(x+s \boldsymbol{\theta}) d s} d t, \quad(x, \boldsymbol{\theta}) \in \Gamma_{+} \tag{18}
\end{equation*}
$$

We approach the range characterization via the well-known connection with the transport model as follows: The boundary value problem

$$
\begin{align*}
& \boldsymbol{\theta} \cdot \nabla u(x, \boldsymbol{\theta})+a(x) u(x, \boldsymbol{\theta})=\left\langle\mathbf{f}(x), \boldsymbol{\theta}^{m}\right\rangle, \quad(x, \boldsymbol{\theta}) \in \Omega \times \mathbb{S}^{1}, \tag{19a}\\
& \left.u\right|_{\Gamma_{-}}=0 \tag{19b}
\end{align*}
$$

has a unique solution in $\Omega \times \mathbb{S}^{1}$ and

$$
\begin{equation*}
\left.u\right|_{\Gamma_{+}}(x, \boldsymbol{\theta})=X_{a} \mathbf{f}(x, \boldsymbol{\theta}), \quad(x, \boldsymbol{\theta}) \in \Gamma_{+} . \tag{20}
\end{equation*}
$$

The range characterization is given in terms of the boundary value

$$
g:=\left.u\right|_{\Gamma \times \mathbb{S}^{1}}= \begin{cases}X_{a} \mathbf{f}, & \text { on } \Gamma_{+}, \tag{21}\\ 0, & \text { on } \Gamma_{-} \cup \Gamma_{0} .\end{cases}
$$

3. Ingredients from A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later.
For $0<\mu<1, p=1,2$, we consider the Banach spaces:

$$
\begin{aligned}
l_{\infty}^{1, p}(\Gamma) & :=\left\{\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle:\|\mathbf{g}\|_{l_{\infty}^{1, p}(\Gamma)}:=\sup _{\xi \in \Gamma} \sum_{j=0}^{\infty}\langle j\rangle^{p}\left|g_{-j}(\xi)\right|<\infty\right\}, \\
C^{\mu}\left(\Gamma ; l_{1}\right) & :=\left\{\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle: \sup _{\xi \in \Gamma}\|\mathbf{g}(\xi)\|_{l_{1}}+\sup _{\substack{\xi, \eta \in \Gamma \\
\xi \neq \eta}} \frac{\|\mathbf{g}(\xi)-\mathbf{g}(\eta)\|_{l_{1}}}{|\xi-\eta|^{\mu}}<\infty\right\}, \\
Y_{\mu}(\Gamma) & :=\left\{\mathbf{g}: \mathbf{g} \in l_{\infty}^{1,2}(\Gamma) \text { and } \sup _{\substack{\xi, \eta \in \Gamma \\
\xi \neq \eta}} \sum_{j=0}^{\infty}\langle j\rangle \frac{\left|g_{-j}(\xi)-g_{-j}(\eta)\right|}{|\xi-\eta|^{\mu}}<\infty\right\},
\end{aligned}
$$

where $l_{\infty}\left(, l_{1}\right)$ is the space of bounded (, respectively summable) sequences, and for brevity, we use the notation $\langle j\rangle=\left(1+|j|^{2}\right)^{1 / 2}$. Similarly, we consider $C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$, and $C^{\mu}\left(\bar{\Omega} ; l_{\infty}\right)$.

A sequence valued map $\Omega \ni z \mapsto \mathbf{v}(z):=\left\langle v_{0}(z), v_{-1}(z), v_{-2}(z), \ldots\right\rangle$ in $C\left(\bar{\Omega} ; l_{\infty}\right) \cap C^{1}\left(\Omega ; l_{\infty}\right)$ is called L^{k}-analytic (in the sense of Bukhgeim), $k=1,2$, if

$$
\begin{equation*}
\bar{\partial} \mathbf{v}(z)+L^{k} \partial \mathbf{v}(z)=\mathbf{0}, \quad z \in \Omega \tag{23}
\end{equation*}
$$

where L is the left shift operator $L\left\langle v_{0}, v_{-1}, v_{-2}, \cdots\right\rangle=\left\langle v_{-1}, v_{-2}, \cdots\right\rangle$, and $L^{2}=L \circ L$.
Bukhgeim's original theory in [7] shows that solutions of (23), satisfy a Cauchy-like integral formula,

$$
\begin{equation*}
\mathbf{v}(z)=\mathcal{B}\left[\left.\mathbf{v}\right|_{\Gamma}\right](z), \quad z \in \Omega \tag{24}
\end{equation*}
$$

where \mathcal{B} is the Bukhgeim-Cauchy operator acting on $\left.\mathbf{v}\right|_{\Gamma}$. We use the formula in [11], where \mathcal{B} is defined component-wise for $n \geq 0$ by

$$
\begin{equation*}
(\mathcal{B} \mathbf{g})_{-n}(z):=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{g_{-n}(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}\left\{\frac{d \zeta}{\zeta-z}-\frac{d \bar{\zeta}}{\bar{\zeta}-\bar{z}}\right\} \sum_{j=1}^{\infty} g_{-n-j}(\zeta)\left(\frac{\bar{\zeta}-\bar{z}}{\zeta-z}\right)^{j}, z \in \Omega \tag{25}
\end{equation*}
$$

The following regularity result in [36, Proposition 4.1] is needed.
Proposition 3.1. [36, Proposition 4.1] Let $\mu>1 / 2$ and $\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle$ be the sequence valued map of non-positive Fourier modes of g.
(i) If $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right)$, then $\mathbf{g} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$.
(ii) If $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$, then $\mathbf{g} \in Y_{\mu}(\Gamma)$.
(iii) If $\mathbf{g} \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$, then $g \in C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$.

Similar to the analytic maps, the boundary values of L-analytic maps must satisfy some constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in [36]. More precisely, the Bukhgeim-Hilbert transform \mathcal{H} acting on \mathbf{g},

$$
\begin{equation*}
\Gamma \ni z \mapsto(\mathcal{H} \mathbf{g})(z)=\left\langle(\mathcal{H} \mathbf{g})_{0}(z),(\mathcal{H} \mathbf{g})_{-1}(z),(\mathcal{H} \mathbf{g})_{-2}(z), \ldots\right\rangle \tag{26}
\end{equation*}
$$

is defined component-wise for $n \geq 0$ by

$$
\begin{equation*}
(\mathcal{H} \mathbf{g})_{-n}(z)=\frac{1}{\pi} \int_{\Gamma} \frac{g_{-n}(\zeta)}{\zeta-z} d \zeta+\frac{1}{\pi} \int_{\Gamma}\left\{\frac{d \zeta}{\zeta-z}-\frac{d \bar{\zeta}}{\bar{\zeta}-\bar{z}}\right\} \sum_{j=1}^{\infty} g_{-n-j}(\zeta)\left(\frac{\bar{\zeta}-\bar{z}}{\zeta-z}\right)^{j}, z \in \Gamma \tag{27}
\end{equation*}
$$

and we refer to [36] for its mapping properties.
Note that the Bukhgeim-Cauchy integral formula in (25) above is restated in terms of L-analytic maps as opposed to L^{2}-analytic as in [36]. The only change is the index relabeling. In particular, the index g_{-n-j} will change to $g_{-n-2 j}$ therein to account for L^{2}-analytic. Moreover, the same index relabelling in the Bukhgeim-Hilbert transform formula (27) is made to account for the difference between L-analytic and L^{2}-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map to be the boundary value of an L^{k}-analytic function, $k=1,2$.
Theorem 3.1. Let $0<\mu<1$, and $k=1,2$. Let \mathcal{B} be the Bukhgeim-Cauchy operator in (25).
Let $\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle \in Y_{\mu}(\Gamma)$ for $\mu>1 / 2$ be defined on the boundary Γ, and let \mathcal{H} be the Bukhgeim-Hilbert transform acting on \mathbf{g} as in (27).
(i) If \mathbf{g} is the boundary value of an L^{k}-analytic function, then $\mathcal{H} \mathbf{g} \in C^{\mu}\left(\Gamma ; l_{1}\right)$ and satisfies

$$
\begin{equation*}
(I+\mathrm{i} \mathcal{H}) \mathbf{g}=\mathbf{0} \tag{28}
\end{equation*}
$$

(ii) If \mathbf{g} satisfies (28), then there exists an L^{k}-analytic function $\mathbf{v}:=\mathcal{B} \mathbf{g} \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right) \cap$ $C^{2}\left(\Omega ; l_{\infty}\right)$, such that

$$
\begin{equation*}
\left.\mathbf{v}\right|_{\Gamma}=\mathbf{g} . \tag{29}
\end{equation*}
$$

For the proof of Theorem 3.1 we refer to [36, Theorem 3.2, Corollary 4.1, and Proposition 4.2] and [37, Proposition 2.3].

Another ingredient, in addition to L^{2}-analytic maps, consists in the one-to-one relation between solutions $\mathbf{u}:=\left\langle u_{0}, u_{-1}, u_{-2}, \ldots\right\rangle$ satisfying

$$
\begin{equation*}
\bar{\partial} u_{-n}(z)+\partial u_{-n-2}(z)+a(z) u_{-n-1}(z)=0, \quad z \in \Omega, n \geq 0 \tag{30}
\end{equation*}
$$

and the L^{2}-analytic map $\mathbf{v}=\left\langle v_{0}, v_{-1}, v_{-2}, \ldots\right\rangle$ satisfying

$$
\begin{equation*}
\bar{\partial} v_{-n}(z)+\partial v_{-n-2}(z)=0, \quad z \in \Omega, n \geq 0 \tag{31}
\end{equation*}
$$

via a special function h, see [40, Lemma 4.2] for details. The function h is defined as

$$
\begin{equation*}
h(z, \boldsymbol{\theta}):=D a(z, \boldsymbol{\theta})-\frac{1}{2}(I-\mathrm{i} H) R a\left(z \cdot \boldsymbol{\theta}^{\perp}, \boldsymbol{\theta}^{\perp}\right), \tag{32}
\end{equation*}
$$

where $\boldsymbol{\theta}^{\perp}$ is the counter-clockwise rotation of $\boldsymbol{\theta}$ by $\pi / 2, R a\left(s, \boldsymbol{\theta}^{\perp}\right)=\int_{-\infty}^{\infty} a\left(s \boldsymbol{\theta}^{\perp}+t \boldsymbol{\theta}\right) d t$ is the Radon transform in \mathbb{R}^{2} of the attenuation $a, D a(z, \boldsymbol{\theta})=\int_{0}^{\infty} a(z+t \boldsymbol{\theta}) d t$ is the divergent beam transform of the attenuation a, and $H h(s)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{h(t)}{s-t} d t$ is the classical Hilbert transform [22], taken in the first variable and evaluated at $s=z \cdot \boldsymbol{\theta}^{\perp}$. The function h appeared first in [23] and enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

$$
\begin{equation*}
e^{-h(z, \boldsymbol{\theta})}:=\sum_{k=0}^{\infty} \alpha_{k}(z) e^{\mathrm{i} k \theta}, \quad e^{h(z, \boldsymbol{\theta})}:=\sum_{k=0}^{\infty} \beta_{k}(z) e^{\mathrm{i} k \theta}, \quad(z, \boldsymbol{\theta}) \in \bar{\Omega} \times \mathbb{S}^{1} . \tag{33}
\end{equation*}
$$

Using the Fourier coefficients of $e^{ \pm h}$, we construct the sequence valued maps

$$
\bar{\Omega} \ni z \mapsto \boldsymbol{\alpha}(z):=\left\langle\alpha_{0}(z), \alpha_{1}(z), \ldots,\right\rangle, \quad \bar{\Omega} \ni z \mapsto \boldsymbol{\beta}(z):=\left\langle\beta_{0}(z), \beta_{1}(z), \ldots,\right\rangle
$$

to define the convolution operators $e^{ \pm G}$ acting on some $\mathbf{u}=\left\langle u_{0}, u_{-1}, u_{-2}, \ldots\right\rangle$ via

$$
\begin{equation*}
e^{-G} \mathbf{u}=\sum_{k=0}^{\infty} \alpha_{k} L^{k} \mathbf{u}=\boldsymbol{\alpha} * \mathbf{u}, \quad \text { and } \quad e^{G} \mathbf{u}=\sum_{k=0}^{\infty} \beta_{k} L^{k} \mathbf{u}=\boldsymbol{\beta} * \mathbf{u} \tag{34}
\end{equation*}
$$

where L^{k} is the k-th composition of left translation. In particular, note that $e^{ \pm G}$ commutes with L.
We refer [40, Lemma 4.1] for the properties of h, and we restate the following result [36, Proposition 5.2] to incorporate the operators $e^{ \pm G}$ notation used in here.
Proposition 3.2. [36, Proposition 5.2] Let $a \in C^{1, \mu}(\bar{\Omega}), \mu>1 / 2$. Then $\boldsymbol{\alpha}, \partial \boldsymbol{\alpha}, \boldsymbol{\beta}, \partial \boldsymbol{\beta} \in l_{\infty}^{1,1}(\bar{\Omega})$, and the operators
$(i) e^{ \pm G}: C^{\mu}\left(\bar{\Omega} ; l_{\infty}\right) \rightarrow C^{\mu}\left(\bar{\Omega} ; l_{\infty}\right) ;(i i) e^{ \pm G}: C^{\mu}\left(\bar{\Omega} ; l_{1}\right) \rightarrow C^{\mu}\left(\bar{\Omega} ; l_{1}\right) ;(i i i) e^{ \pm G}: Y_{\mu}(\Gamma) \rightarrow Y_{\mu}(\Gamma)$.
Lemma 3.1. [37, Lemma 4.2] Let $a \in C^{1, \mu}(\bar{\Omega}), \mu>1 / 2$, and $e^{ \pm G}$ be operators as defined in (34).
(i) If $\mathbf{u} \in C^{1}\left(\Omega, l_{1}\right)$ solves $\bar{\partial} \mathbf{u}+L^{2} \partial \mathbf{u}+a L \mathbf{u}=\mathbf{0}$, then $\mathbf{v}=e^{-G} \mathbf{u} \in C^{1}\left(\Omega, l_{1}\right)$ solves $\bar{\partial} \mathbf{v}+$ $L^{2} \partial \mathbf{v}=\mathbf{0}$.
(ii) Conversely, if $\mathbf{v} \in C^{1}\left(\Omega, l_{1}\right)$ solves $\bar{\partial} \mathbf{v}+L^{2} \partial \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=e^{G} \mathbf{v} \in C^{1}\left(\Omega, l_{1}\right)$ solves $\bar{\partial} \mathbf{u}+L^{2} \partial \mathbf{u}+a L \mathbf{u}=\mathbf{0}$.

4. m-TENSOR - NON-ATTENUATED CASE

In the non-attenuated $a \equiv 0$ case, using (12) the transport equation (19a) becomes

$$
\boldsymbol{\theta} \cdot \nabla u= \begin{cases}f_{0}+\sum_{k=1}^{\frac{m}{2}} f_{-2 k} e^{\mathrm{i}(2 k) \theta}+f_{2 k} e^{-\mathrm{i}(2 k) \theta}, & (\text { if } m \text { is even }), \tag{35}\\ \sum_{k=0}^{\frac{m-1}{2} f_{-(2 k+1)} e^{\mathrm{i}(2 k+1) \theta}+f_{2 k+1} e^{-\mathrm{i}(2 k+1) \theta},} & (\text { if } m \text { is odd })\end{cases}
$$

where $f_{n}^{\prime} s$ are defined as in (13) and (14), and $f_{n}=\overline{f_{-n}}$, for $0 \leq n \leq m$. Note that f_{0} is real-valued while other modes are complex conjugates.

For $z=x_{1}+\mathrm{i} x_{2} \in \Omega$, the advection operator $\boldsymbol{\theta} \cdot \nabla$ in complex notation becomes $e^{-\mathrm{i} \theta} \bar{\partial}+e^{\mathrm{i} \theta} \partial$, where $\boldsymbol{\theta}=(\cos \theta, \sin \theta)$, and $\bar{\partial}, \partial$ are the Cauchy-Riemann operators in (3).

If $\sum_{n \in \mathbb{Z}} u_{n}(z) e^{\mathrm{i} n \theta}$ is the Fourier series expansion in the angular variable $\boldsymbol{\theta}$ of a solution u of (35), then by identifying the Fourier coefficients of the same order, (35) reduces to the system for even order m-tensor:

$$
\begin{array}{ll}
\bar{\partial} u_{-(2 n-1)}(z)+\partial u_{-(2 n+1)}(z)=f_{2 n}(z), & 0 \leq n \leq \frac{m}{2}, m \text { even } \\
\bar{\partial} u_{-(2 n-1)}(z)+\partial u_{-(2 n+1)}(z)=0, & n \geq \frac{m}{2}+1, \\
\bar{\partial} u_{-2 n}(z)+\partial u_{-(2 n+2)}(z)=0, & n \geq 0, \tag{38}
\end{array}
$$

and for odd order m-tensor we have:

$$
\begin{array}{ll}
\bar{\partial} u_{-2 n}(z)+\partial u_{-(2 n+2)}(z)=f_{2 n+1}(z), & 0 \leq n \leq \frac{m-1}{2}, m \text { odd }, \\
\bar{\partial} u_{-2 n}(z)+\partial u_{-(2 n+2)}(z)=0, & n \geq \frac{m+1}{2}, \\
\bar{\partial} u_{-(2 n-1)}(z)+\partial u_{-(2 n+1)}(z)=0, & n \geq 0 . \tag{41}
\end{array}
$$

Recall that the boundary value $\left.u\right|_{\Gamma \times \mathbb{S}^{1}}:=g$ as in (21), with $g=X \mathbf{f}$ on Γ_{+}and $g=0$ on $\Gamma_{-} \cup \Gamma_{0}$. The range characterization is given in terms of the Fourier modes of g in the angular variables: $g(\zeta, \boldsymbol{\theta})=\sum_{n=-\infty}^{\infty} g_{n}(\zeta) e^{\mathrm{i} n \theta}$, for $\zeta \in \Gamma$. Since the data g is also real valued, its modes satisfies

$$
\begin{equation*}
g_{-n}(\zeta)=\overline{g_{n}(\zeta)}, \quad \text { for } n \geq 0, \zeta \in \Gamma \tag{42}
\end{equation*}
$$

From the non-positive Fourier modes, we built the sequences

$$
\begin{equation*}
\mathbf{g}^{\text {even }}:=\left\langle g_{0}, g_{-2}, g_{-4}, \ldots\right\rangle, \quad \text { and } \quad \mathbf{g}^{\text {odd }}:=\left\langle g_{-1}, g_{-3}, g_{-5}, \ldots\right\rangle \tag{43}
\end{equation*}
$$

4.1. Even order m-tensor. In this subsection, we establish necessary and sufficient conditions for a sufficiently smooth function on $\Gamma \times \mathbb{S}^{1}$ to be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field \mathbf{f} of even order $m=2 q, q \geq 0$.

We characterize next the non-attenuated X-ray data g in terms of the Bukhgeim-Hilbert Transform \mathcal{H} in (27). We will construct the solution u of the transport equation (35) in the m-even case, whose boundary value matches the boundary data g, and also construct the right hand side of the (35). The construction of solution u is in terms of its Fourier modes in the angular variable. We first construct the non-positive Fourier modes and then the positive Fourier modes are constructed by conjugation. For even $m=2 q, q \geq 1$, apart from q many Fourier modes $u_{-1}, u_{-3}, \cdots u_{-(2 q-1)}$, all non-positive Fourier modes are defined by Bukhgeim-Cauchy integral formula (25) using boundary data. Other than having the boundary value $\left.u_{-(2 j-1)}\right|_{\Gamma}=g_{-(2 j-1)}, 1 \leq j \leq q, q \geq 1$, the q many Fourier modes $u_{-(2 j-1)}, 1 \leq j \leq q, q \geq 1$, are unconstrained. They are chosen arbitrarily from the class $\Psi_{g}^{\text {even }}$ of functions of cardinality $q=\frac{m}{2}$ with prescribed restriction on the boundary Γ defined:

$$
\begin{gather*}
\Psi_{g}^{\text {even }}:=\left\{\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2 q-1)}\right) \in\left(C^{1, \mu}(\bar{\Omega} ; \mathbb{C})\right)^{q}, 2 \mu>1:\right. \\
\left.\left.\psi_{-(2 j-1)}\right|_{\Gamma}=g_{-(2 j-1)}, 1 \leq j \leq q, q \geq 1\right\} . \tag{44}
\end{gather*}
$$

Remark 4.1. Any arbitrary $C^{1, \mu}(\bar{\Omega})$ functions such that its restriction on the boundary matches with the respective Fourier mode of data will suffice in (44). Note for the 0-tensor case, there is no class, and the characterization of the X-ray data g is in terms of the Fourier modes \mathbf{g}.

Theorem 4.1 (Range characterization for even order tensors). (i) Let $\mathbf{f} \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right), \mu>1 / 2$, be a real-valued symmetric tensor field of even order $m=2 q, q \geq 0$, and

$$
g=X \mathbf{f} \text { on } \Gamma_{+} \text {and } g=0 \text { on } \Gamma_{-} \cup \Gamma_{0}
$$

Then $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$ satisfy

$$
\begin{equation*}
[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{\text {even }}=\mathbf{0}, \quad \text { and } \quad[I+\mathrm{i} \mathcal{H}] L^{\frac{m}{2}} \mathbf{g}^{\text {odd }}=\mathbf{0} \tag{45}
\end{equation*}
$$

where $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }}$ are sequences in (43), and \mathcal{H} is the Bukhgeim-Hilbert operator in (27).
(ii) Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. For $q=0$, if the corresponding sequences $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in Y_{\mu}(\Gamma)$ satisfies (45), then there is a unique real valued symmetric 0-tensor \mathbf{f} such that $\left.g\right|_{\Gamma_{+}}=X \mathbf{f}$. Moreover, for $q \geq 1$, if $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in Y_{\mu}(\Gamma)$ satisfies (45), and for each element $\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2 q-1)}\right) \in \Psi_{g}^{\text {even }}$, then there is a unique real valued symmetric m-tensors $\mathbf{f}_{\Psi} \in C^{\mu}\left(\mathbf{S}^{m} ; \Omega\right)$ such that $\left.g\right|_{\Gamma_{+}}=X \mathbf{f}_{\Psi}$.

Proof. (i) Necessity: Let $\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}\right) \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right)$. Since all components $f_{i_{1} \cdots i_{m}} \in C_{0}^{1, \mu}(\Omega)$ are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which do not meet the support. Thus $g \equiv 0$ in the neighborhood of the variety Γ_{0} which yields $g \in$ $C^{1, \mu}\left(\Gamma \times \mathbb{S}^{1}\right)$. Moreover, g is the boundary value on $\Gamma \times \mathbb{S}^{1}$ of a solution $u \in C^{1, \mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$ of the transport equation (35) in the m-even case. By Proposition 3.1 (i), $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$.

If u solves (35), then its Fourier modes satisfy (36) - (38). Since the negative even Fourier modes $u_{2 n}$ for $n \leq 0$, satisfies the system (38), then the sequence $\mathbf{u}^{\text {even }}:=\left\langle u_{0}, u_{-2}, u_{-4}, \cdots\right\rangle$ is L-analytic in Ω and the necessity part in Theorem 3.1 yields the first condition in (45).

The equation (37) for negative odd Fourier modes starting from negative $2 q+1$ mode, yield that the sequence $\left\langle u_{-(2 q+1)}, u_{-(2 q+3)}, \ldots\right\rangle$ is L-analytic in Ω and the necessity part in Theorem 3.1 gives the last condition in (45).
(ii) Sufficiency: Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the corresponding sequences $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }}$ satisfy (45). By Proposition (3.1), $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in Y_{\mu}(\Gamma)$.

Let $m=2 q, q \geq 0$, be an even integer. To prove the sufficiency we will construct a real valued symmetric m-tensor \mathbf{f} in Ω and a real valued function $u \in C^{1}\left(\Omega \times \mathbb{S}^{1}\right) \cap C\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$ such that $\left.u\right|_{\Gamma \times \mathbb{S}^{1}}=g$ and u solves (35) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of even modes $u_{2 n}$ for $n \in \mathbb{Z}$.
Apply the Bukhgeim-Cauchy Integral operator (25) to construct the negative even Fourier modes:

$$
\begin{equation*}
\left\langle u_{0}(z), u_{-2}(z), u_{-4}(z), \ldots\right\rangle:=\mathcal{B} \mathbf{g}^{\text {even }}(z), \quad z \in \Omega \tag{46}
\end{equation*}
$$

By Theorem 3.1, the sequence $\left\langle u_{0}, u_{-2}, \ldots\right\rangle \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$ is L-analytic in Ω, thus

$$
\begin{equation*}
\bar{\partial} u_{-2 n}+\partial u_{-2 n-2}=0 \tag{47}
\end{equation*}
$$

are satisfied for all $n \geq 0$. Moreover, the hypothesis (45) and the sufficiency part of Theorem 3.1 yields that they extend continuously to Γ and $\left.u_{-2 n}\right|_{\Gamma}=g_{-2 n}$, for all $n \geq 0$.

Construct the positive even Fourier modes by conjugation: $u_{2 n}:=\overline{u_{-2 n}}$, for all $n \geq 1$.

By conjugating (47) we note that the positive even Fourier modes also satisfy

$$
\bar{\partial} u_{2 n+2}+\partial u_{2 n}=0, \quad n \geq 0
$$

Moreover, by reality of g in (42) they extend continuously to Γ and

$$
\left.u_{2 n}\right|_{\Gamma}=\left.\overline{u_{-2 n}}\right|_{\Gamma}=\overline{g_{-2 n}}=g_{2 n}, \quad n \geq 1 .
$$

Thus, as a summary from above equations, we have shown that the even modes $u_{2 n}$ satisfy

$$
\begin{equation*}
\bar{\partial} u_{2 n}+\partial u_{2 n-2}=0, \quad \text { and }\left.\quad u_{2 n}\right|_{\Gamma}=g_{2 n}, \quad \text { for all } n \in \mathbb{Z} \tag{48}
\end{equation*}
$$

Step 2: The construction of odd modes $u_{2 n-1}$ for $|n| \geq q, q \geq 0$.
Apply the Bukhgeim-Cauchy Integral operator (25) to construct the other odd negative modes:

$$
\begin{equation*}
\left\langle u_{-(2 q+1)}(z), u_{-(2 q+3)}(z), \cdots\right\rangle:=\mathcal{B} L^{q} \mathbf{g}^{\text {odd }}(z), \quad z \in \Omega \tag{49}
\end{equation*}
$$

By Theorem 3.1, the sequence $\left\langle u_{-(2 q+1)}, u_{-(2 q+3)}, \ldots,\right\rangle \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$, is L-analytic in Ω, thus the equations

$$
\begin{equation*}
\bar{\partial} u_{-(2 n+1)}+\partial u_{-(2 n+3)}=0, \tag{50}
\end{equation*}
$$

are satisfied for all $n \geq q, q \geq 0$. Moreover, the hypothesis (45) : $[I+\mathrm{i} \mathcal{H}] L^{\frac{m}{2}} \mathbf{g}^{\text {odd }}=\mathbf{0}$, and the sufficiency part of Theorem 3.1 yields that they extend continuously to Γ and

$$
\begin{equation*}
\left.u_{-(2 n+1)}\right|_{\Gamma}=g_{-(2 n+1)}, \quad \forall n \geq q, q \geq 0 \tag{51}
\end{equation*}
$$

Construct the positive odd Fourier modes by conjugation: $u_{2 n+1}:=\bar{u}_{-(2 n+1)}$, for all $n \geq q, q \geq 0$.
By conjugating (50) we note that the positive odd Fourier modes also satisfy

$$
\begin{equation*}
\bar{\partial} u_{2 n+3}+\partial u_{2 n+1}=0, \quad \forall n \geq q, q \geq 0 \tag{52}
\end{equation*}
$$

Moreover, by (42) they extend continuously to Γ and

$$
\begin{equation*}
\left.u_{2 n+1}\right|_{\Gamma}=\left.\bar{u}_{-(2 n+1)}\right|_{\Gamma}=\bar{g}_{-(2 n+1)}=g_{2 n+1}, \quad n \geq q, q \geq 0 . \tag{53}
\end{equation*}
$$

Step 3: The construction of the 0 - tensor field \mathbf{f}. In the case of the 0 -tensor, $\mathbf{f}=f_{0}$ is uniquely determined from the odd mode u_{-1} in (49), by

$$
\begin{equation*}
\left.f_{0}:=2 \mathbb{R e} \partial u_{-1}, \quad \text { (for } q=0 \text { case }\right) . \tag{54}
\end{equation*}
$$

We consider next the case $q \geq 1$ of tensors of order 2 or higher. In this case the construction of the tensor field \mathbf{f}_{Ψ} is in terms of the Fourier mode $u_{-(2 q+1)}$ in (49) and the class $\Psi_{g}^{\text {even }}$ in (44).

Step 4: The construction of odd modes $u_{ \pm(2 n-1)}$, for $1 \leq n \leq q, q \geq 1$.
For $\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2 q-1)}\right) \in \Psi_{g}^{\text {even }}$ arbitrary, define the modes $u_{ \pm 1}, u_{ \pm 3}, \ldots, u_{ \pm(2 q-1)}$ in Ω by

$$
\begin{equation*}
u_{-(2 n-1)}:=\psi_{-(2 n-1)} \text { and } u_{2 n-1}:=\bar{\psi}_{-(2 n-1)}, \quad 1 \leq n \leq q, q \geq 1 \tag{55}
\end{equation*}
$$

By the definition of the class $\Psi_{g}^{\text {even }}$ in (44), and the reality of g in (42), we have

$$
\begin{equation*}
\left.u_{-(2 n-1)}\right|_{\Gamma}=g_{-(2 n-1)}, \quad \text { and }\left.\quad u_{2 n-1}\right|_{\Gamma}=\bar{g}_{-(2 n-1)}=g_{2 n-1}, \quad 1 \leq n \leq q, q \geq 1 \tag{56}
\end{equation*}
$$

Step 5: The construction of the tensor field f_{Ψ} whose X-ray data is g.
For $q \geq 1$, we define $f_{2 q}$ by using $\psi_{-(2 q-1)}$ from the non-uniqueness class (44), and Fourier mode $u_{-(2 q+1)}$ from the Bukhgeim-Cauchy formula (49). Then, define $\left\{f_{2 n}: 0 \leq n \leq q-1\right\}$ solely from
the information in the non-uniqueness class. Finally, define $\left\{f_{-2 n}: 1 \leq n \leq q\right\}$ by conjugation.

$$
\begin{array}{ll}
f_{2 q}:=\bar{\partial} \psi_{-(2 q-1)}+\partial u_{-(2 q+1)}, & q \geq 1 \\
f_{2 n}:=\bar{\partial} \psi_{-(2 n-1)}+\partial \psi_{-(2 n+1)}, & 1 \leq n \leq q-1, q \geq 2 \\
f_{0}:=2 \mathbb{R e} \partial \psi_{-1}, & q \geq 1, \quad \text { and } \tag{57}\\
f_{-2 n}:=\overline{f_{2 n}}, & 1 \leq n \leq q, q \geq 1,
\end{array}
$$

By construction, $f_{2 n} \in C^{\mu}(\Omega)$, for $-q \leq n \leq q$, as $\psi_{-1}, \cdots, \psi_{-2 q+1} \in C^{1, \mu}(\Omega)$. We use these Fourier modes $f_{0}, f_{ \pm 2}, f_{ \pm 4}, \cdots, f_{ \pm 2 q}$ for $q \geq 1$, and equations (13), (7) and (9) to construct the pseudovectors $\left\langle\tilde{f}_{0}, \tilde{f}_{1}, \cdots, \tilde{f}_{m}\right\rangle$, and thus the m-tensor field $\mathbf{f}_{\Psi} \in C^{\mu}\left(\mathbf{S}^{m} ; \Omega\right)$.

In order to show $\left.g\right|_{\Gamma_{+}}=X \mathbf{f}_{\Psi}$ for $q \geq 1$, with \mathbf{f}_{Ψ} being constructed as in (57), we define the real valued function u via its Fourier modes for $q \geq 1$,

$$
\begin{equation*}
u(z, \boldsymbol{\theta})=\sum_{n=-\infty}^{\infty} u_{2 n} e^{\mathrm{i} 2 n \theta}+\sum_{|n| \geq q} u_{2 n+1} e^{\mathrm{i}(2 n+1) \theta}+\sum_{n=1}^{q} \psi_{-(2 n-1)} e^{-\mathrm{i}(2 n-1) \theta}+\sum_{n=1}^{q} \bar{\psi}_{-(2 n-1)} \mathrm{e}^{\mathrm{i}(2 n-1) \theta} \tag{58}
\end{equation*}
$$

Since $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$, we use Proposition 3.1 (ii)-(iii), to conclude that u defined in (58) belongs to $C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$. Using (48), (51), (53), (56), and definition of $\left(\psi_{-1}, \cdots, \psi_{-(2 q-1)}\right) \in \Psi_{g}^{\text {even }}$ for $q \geq 1$, the $u(\cdot, \boldsymbol{\theta})$ in (58) extends to the boundary,

$$
\left.u(\cdot, \boldsymbol{\theta})\right|_{\Gamma}=g(\cdot, \boldsymbol{\theta})
$$

Since $u \in C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$, then the term by term differentiation in (58) is now justified, and u satisfy (35):

$$
\begin{aligned}
\boldsymbol{\theta} \cdot \nabla u= & \bar{\partial} \\
\psi_{-1} & +\partial \psi_{-1}+\sum_{n=1}^{q-1}\left(\bar{\partial} \psi_{-(2 n-1)}+\partial \psi_{-(2 n+1)}\right) e^{-\mathrm{i}(2 n) \theta}+\sum_{n=1}^{q-1}\left(\bar{\partial} \bar{\psi}_{-(2 n+1)}+\partial \bar{\psi}_{-(2 n-1)}\right) e^{\mathrm{i}(2 n) \theta} \\
& +e^{-\mathrm{i}(2 q) \theta}\left(\bar{\partial} \psi_{-(2 q-1)}+\partial u_{-(2 q+1)}\right)+e^{\mathrm{i}(2 q) \theta}\left(\partial \bar{\psi}_{-(2 q-1)}+\bar{\partial} \bar{u}_{-(2 q+1)}\right) \\
= & \sum_{n=-q}^{q} f_{2 n}(z) e^{-\mathrm{i}(2 n) \theta}=\left\langle\mathbf{f}, \boldsymbol{\theta}^{2 q}\right\rangle
\end{aligned}
$$

where we use (48), (50), (52), (55), and the second equality uses the definition of $f_{2 k}$'s in (57).
4.2. Odd order m-tensor. In this subsection we establish necessary and sufficient conditions for a sufficiently smooth function on $\Gamma \times \mathbb{S}^{1}$ to be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field \mathbf{f} of odd order $m=2 r+1, r \geq 0$.

In the m-tensor case, the even and odd Fourier modes of u plays a different role, unlike the even m-tensor case in the previous section. To emphasize this difference we separate the non-positive even modes $\mathbf{u}^{\text {even }}:=\left\langle u_{0}, u_{-2}, u_{-4} \ldots\right\rangle$, and negative odd modes $\mathbf{u}^{\text {odd }}:=\left\langle u_{-1}, u_{-3}, \ldots\right\rangle$, and note that if $\left\langle u_{0}(z), u_{-1}(z), u_{-2}(z), \ldots\right\rangle$ is L^{2}-analytic, then $\mathbf{u}^{\text {even }}, \mathbf{u}^{\text {odd }}$ are L-analytic.

Let us consider the sequence $\left\{\mathbf{u}^{2 k-1}\right\}_{k \geq 1} \subset C\left(\bar{\Omega} ; l_{\infty}\right) \cap C^{1}\left(\Omega ; l_{\infty}\right)$ given by

$$
\begin{equation*}
\mathbf{u}^{2 k-1}:=\left\langle u_{2 k-1}, u_{2 k-3}, \ldots, u_{1}, u_{-1}, u_{-3}, u_{-5}, \ldots\right\rangle, \quad k \geq 1 \tag{59}
\end{equation*}
$$

obtained by augmenting the sequence of negative odd indices $\left\langle u_{-1}, u_{-3}, u_{-5}, \ldots\right\rangle$ by k many terms in the order $u_{2 k-1}, u_{2 k-3}, \ldots, u_{1}$.

One of the ingredients in our characterization of the odd m-tensor is the following simple property of L-analytic maps, shown in [36, Lemma 2.6].

Lemma 4.1. [36, Lemma 2.6] Let $\left\{\mathbf{u}^{2 k-1}\right\}_{k \geq 1}$ be the sequence of L-analytic maps defined in (59). Assume that $\left.u_{2 k-1}\right|_{\Gamma}=\left.\bar{u}_{-(2 k-1)}\right|_{\Gamma}$, for all $k \geq 1$. Then, for each $k \geq 1$,

$$
\begin{equation*}
u_{2 k-1}(z)=\bar{u}_{-(2 k-1)}(z), \quad z \in \Omega \tag{60}
\end{equation*}
$$

Similar to the even m-tensor case, the range characterization of data g will be given in terms of its Fourier modes.From the non-positive even modes, we build the sequences $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }}$ as in (43).

For each $k \geq 1$, we use the odd modes $\left\{g_{-1}, g_{-3}, g_{-5}, \ldots\right\}$ to build the sequence

$$
\begin{equation*}
\mathbf{g}^{2 k-1}:=\left\langle g_{2 k-1}, g_{2 k-3}, \ldots, g_{1}, g_{-1}, g_{-3}, g_{-5}, \ldots\right\rangle \tag{61}
\end{equation*}
$$

by augmenting the negative odd indices by k-many terms in the order $g_{2 k-1}, g_{2 k-3}, \ldots, g_{1}$.
Similar to the even m-tensor case before, we will construct the solution u of the transport equation (35) in the m-odd case, whose boundary value matches the boundary data g, and also construct the right hand side of the (35). The construction of solution u is in terms of its Fourier modes in the angular variable. Except for non-positive modes $u_{0}, u_{-2}, \cdots, u_{-2 r}$, all non-positive modes are defined by Bukhgeim-Cauchy integral formula in (25) using boundary data. Other than having the restrictions $\left.u_{-2 j}\right|_{\Gamma}=g_{-2 j}, 0 \leq j \leq r, r \geq 0$, on the boundary, the $r+1$ many Fourier modes $u_{-2 j}, 0 \leq j \leq r, r \geq 0$, are unconstrained. They are chosen arbitrarily from the class of functions

$$
\begin{gather*}
\Psi_{g}^{\text {odd }}:=\left\{\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-2 r}\right) \in C^{1, \mu}(\bar{\Omega} ; \mathbb{R}) \times\left(C^{1, \mu}(\bar{\Omega} ; \mathbb{C})\right)^{r}: 2 \mu>1:\right. \\
\left.\left.\psi_{-2 j}\right|_{\Gamma}=g_{-2 j}, 0 \leq j \leq r, r \geq 0\right\} \tag{62}
\end{gather*}
$$

Remark 4.2. Any arbitrary $C^{1, \mu}(\bar{\Omega})$ functions such that its restriction on the boundary matches with the respective Fourier mode of data will suffice in (62). In the 1-tensor case ($m=1$), only Fourier mode u_{0} be an arbitrary function in $C^{1}(\Omega) \cap C(\bar{\Omega})$ with $\left.u_{0}\right|_{\Gamma}=g_{0}$. The arbitrariness of u_{0} characterizes the non-uniqueness (up to the gradient field of a function which vanishes at the boundary) in the reconstruction of a vector field from its Doppler data.

Theorem 4.2 (Range characterization for odd tensors.). Let $\mathbf{f} \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right), \mu>1 / 2$, be a realvalued symmetric tensor field of odd order $m=2 r+1, r \geq 0$, and

$$
g=X \mathbf{f} \text { on } \Gamma_{+} \text {and } g=0 \text { on } \Gamma_{-} \cup \Gamma_{0} .
$$

Then $\mathbf{g}^{\text {even }}, \mathbf{g}^{2 k-1} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$ for $k \geq 1$, and satisfy

$$
\begin{equation*}
[I+\mathrm{i} \mathcal{H}] L^{\frac{m+1}{2}} \mathbf{g}^{\text {even }}=\mathbf{0}, \quad \text { and } \quad[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{2 k-1}=\mathbf{0}, \quad \forall k \geq 1 \tag{63}
\end{equation*}
$$

where $\mathrm{g}^{\mathrm{even}}$ is the sequence in (43), $\mathrm{g}^{2 k-1}$ for $k \geq 1$ is the sequence in (61), and \mathcal{H} is the BukhgeimHilbert operator in (27).
(ii) Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. If the corresponding sequence $\mathbf{g}^{\text {even }}, \mathbf{g}^{2 k-1} \in Y_{\mu}(\Gamma)$ for $k \geq 1$, satisfies (63), and for each element $\left(\psi_{0}, \cdots, \psi_{-2 r}\right) \in$ $\Psi_{g}^{\text {odd }}$, then there is a unique real valued symmetric m-tensor $\mathbf{f}_{\Psi} \in C^{\mu}\left(\mathbf{S}^{m} ; \Omega\right)$ such that $\left.g\right|_{\Gamma_{+}}=X \mathbf{f}_{\psi}$.

Proof. (i) Necessity: Let $\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}\right) \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right)$. Since all components $f_{i_{1} \cdots i_{m}} \in C_{0}^{1, \mu}(\Omega)$, $X \mathbf{f} \in C^{1, \mu}\left(\Gamma_{+}\right)$, and, thus, the solution u to the transport equation (35) is in $C^{1, \mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$. Moreover, its boundary value $g=\left.u\right|_{\Gamma \times \mathbb{S}^{1}} \in C^{1, \mu}\left(\Gamma \times \mathbb{S}^{1}\right)$.

By Proposition 3.1 (i), $\mathbf{g}^{\text {even }}, \mathbf{g}^{2 k-1} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$ for all $k \geq 1$.
If u solves (35) then its Fourier modes satisfy (39) - (41). Since the negative even Fourier modes $u_{-2 n}$ for $n \geq \frac{m+1}{2}$, satisfies the system (40), then the sequence $\left\langle u_{-(m+1)}, u_{-(m+3)}, \cdots\right\rangle$ is L-analytic in Ω and the necessity part in Theorem 3.1 yields the first condition in (63).

The system (41) yield that the sequence $\mathbf{u}^{1}:=\left\langle u_{1}, u_{-1}, u_{-3} \cdots\right\rangle$ is L-analytic in Ω with the boundary value satisfying $\left.u_{2 k-1}\right|_{\Gamma}=g_{2 k-1}$, for all $k \leq 1$. By Theorem 3.1 necessity part, the sequence $\mathbf{g}^{1}=\left\langle g_{1}, g_{-1}, g_{-3}, \ldots\right\rangle$ must satisfy $[I+\mathrm{i} \mathcal{H}] \mathrm{g}^{1}=\mathbf{0}$.

Recall that u is real valued so that its Fourier modes occur in conjugates $u_{n}=\overline{u_{-n}}$ for all $n \geq 0$. Consider now the equation (41) for $n=1$ and take its conjugate to yield

$$
\begin{equation*}
\bar{\partial} u_{3}+\partial u_{1}=0 \tag{64}
\end{equation*}
$$

The above equation (64) together with (41) yield that the sequence $\mathbf{u}^{3}:=\left\langle u_{3}, u_{1}, u_{-1}, u_{-3} \cdots\right\rangle$ is L-analytic in Ω with the boundary value satisfying $\left.u_{2 k-1}\right|_{\Gamma}=g_{2 k-1}$ for all $k \leq 2$. By the necessity part in Theorem 3.1, it must be that $\mathbf{g}^{3}=\left\langle g_{3}, g_{1}, g_{-1}, g_{-3}, \ldots\right\rangle$ satisfies $[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{3}=\mathbf{0}$.

Inductively, the argument above holds for any odd index $2 k-1$ to yield that the sequence

$$
\Omega \ni z \mapsto \mathbf{u}^{2 k-1}(z):=\left\langle u_{2 k-1}(z), u_{2 k-3}(z), \ldots, u_{1}(z), u_{-1}(z), u_{-3}(z) \cdots\right\rangle
$$

is L-analytic in Ω. Then, again by the necessity part in Theorem 3.1 , its boundary value $\left.\mathbf{u}^{2 k-1}\right|_{\Gamma}=$ $\mathrm{g}^{2 k-1}$ must satisfy the last condition in (63).
(ii) Sufficiency: Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. Since g is real valued, its Fourier modes in the angular variable occurs in conjugates (42). Let the corresponding sequences $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }}$ satisfies (45). By Proposition (3.1), $\mathbf{g}^{\text {even }}, \mathbf{g}^{\text {odd }} \in Y_{\mu}(\Gamma)$.

Let $m=2 r+1, r \geq 0$, be an odd integer. To prove the sufficiency we will construct a real valued symmetric m-tensor \mathbf{f} in Ω and a real valued function $u \in C^{1}\left(\Omega \times \mathbb{S}^{1}\right) \cap C\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$ such that $\left.u\right|_{\Gamma \times \mathbb{S}^{1}}=g$ and u solves (35) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of even modes $u_{2 n}$ for $|n| \geq 2 r+1, r \geq 0$.
Apply the Bukhgeim-Cauchy integral formula (25) to construct the negative even Fourier modes:

$$
\begin{equation*}
\left\langle u_{-2(r+1)}, u_{-2(r+2)}, \ldots\right\rangle:=\mathcal{B} L^{r+1} \mathbf{g}^{\text {even }} . \tag{65}
\end{equation*}
$$

By Theorem 3.1, the sequence $\left\langle u_{-2(r+1)}, u_{-2(r+2)}, \ldots\right\rangle \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$ is L-analytic in Ω :

$$
\begin{equation*}
\bar{\partial} u_{-2 n}+\partial u_{-(2 n+2)}=0 \tag{66}
\end{equation*}
$$

are satisfied for all $n \geq r+1, r \geq 0$. Moreover, the hypothesis (63) and the sufficiency part of Theorem 3.1 yields that they extend continuously to Γ and

$$
\begin{equation*}
\left.u_{-2 n}\right|_{\Gamma}=g_{-2 n}, \quad n \geq r+1, r \geq 0 \tag{67}
\end{equation*}
$$

Construct the positive even Fourier modes by conjugation: $u_{2 n}:=\overline{u_{-2 n}}$, for all $n \geq r+1, r \geq 0$. By conjugating (66) we note that the positive even Fourier modes also satisfy

$$
\begin{equation*}
\bar{\partial} u_{2 n+2}+\partial u_{2 n}=0, \quad n \geq r+1, r \geq 0 \tag{68}
\end{equation*}
$$

Moreover, by reality of g in (42), they extend continuously to Γ and

$$
\begin{equation*}
\left.u_{2 n}\right|_{\Gamma}=\left.\overline{u_{-2 n}}\right|_{\Gamma}=\overline{g_{-2 n}}=g_{2 n}, \quad n \geq r+1, r \geq 0 \tag{69}
\end{equation*}
$$

Step 2: The construction of even modes $u_{2 n}$, for $|n| \leq 2 r, r \geq 0$.
For $\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-2 r}\right) \in \Psi_{g}^{\text {odd }}$ arbitrary, define the modes $u_{0}, u_{ \pm 2}, u_{ \pm 4}, \ldots, u_{ \pm 2 r}$ in Ω by

$$
\begin{equation*}
u_{-2 n}:=\psi_{-2 n}, \quad \text { and } \quad u_{2 n}:=\overline{\psi_{-2 n}}, \quad 0 \leq n \leq r \tag{70}
\end{equation*}
$$

By the definition of the class (62), and reality of g in (42), we have

$$
\begin{equation*}
\left.u_{2 n}\right|_{\Gamma}=\overline{g_{-2 n}}=g_{2 n}, \quad 0 \leq n \leq r \tag{71}
\end{equation*}
$$

Step 3: The construction of negative modes $u_{2 n-1}$ for $n \in \mathbb{Z}$.

Use the Bukhgeim-Cauchy Integral formula (25) to construct the negative odd Fourier modes:

$$
\begin{equation*}
\left\langle u_{-1}(z), u_{-3}(z), \ldots\right\rangle:=\mathcal{B} \mathbf{g}^{\text {odd }}(z), \quad z \in \Omega \tag{72}
\end{equation*}
$$

By Theorem 3.1, the sequence $\left\langle u_{-1}, u_{-3} \ldots\right\rangle \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$ is L-analytic in Ω, thus

$$
\begin{equation*}
\bar{\partial} u_{-2 n-1}+\partial u_{-2 n-3}=0, \tag{73}
\end{equation*}
$$

are satisfied for all $n \geq 0$.
Note that $L \mathbf{g}^{1}=\mathbf{g}^{\text {odd }}$. By hypothesis (63), $[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{1}=\mathbf{0}$. Since \mathcal{H} commutes with the left translation L, then

$$
\mathbf{0}=L[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{1}=[I+\mathrm{i} \mathcal{H}] L \mathbf{g}^{1}=[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{\text {odd }}
$$

By applying Theorem 3.1 sufficiency part, we have that each $u_{2 n-1}$ extends continuously to Γ :

$$
\left.u_{-2 n-1}\right|_{\Gamma}=g_{-2 n-1}, \quad n \geq 1
$$

If we were to define the positive odd index modes by conjugating the negative ones (as we did for the non-attenuated even tensor case) it would not be clear why the equation (41) for $n=0$:

$$
\bar{\partial} u_{1}+\partial u_{-1}=0
$$

should hold. To solve this problem we will define the positive odd modes by using the BukhgeimCauchy integral formula (25) inductively.

Let $\mathbf{u}^{1}=\left\langle u_{1}, u_{-1}^{1}, u_{-3}^{1}, \cdots\right\rangle$ be the L-analytic map defined by

$$
\begin{equation*}
\mathbf{u}^{1}:=\mathcal{B} \mathbf{g}^{1} \tag{74}
\end{equation*}
$$

The hypothesis (63) for $k=1$: $[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{1}=\mathbf{0}$, allows us to apply the sufficiency part of Theorem 3.1 to yield that \mathbf{u}^{1} extends continuously to Γ and has boundary value \mathbf{g}^{1} on Γ. However, $L \mathbf{u}^{1}=$ $\mathbf{u}^{\text {odd }}$ is also L-analytic with the same boundary value $\mathbf{g}^{\text {odd }}$ as $\mathbf{u}^{\text {odd }}$. By the uniqueness of L-analytic maps with the given boundary value we must have the equality

$$
\left\langle u_{-1}^{1}, u_{-3}^{1}, \cdots\right\rangle=\left\langle u_{-1}, u_{-3}, \cdots\right\rangle
$$

In other words the formula (74) constructs only one new function u_{1} and recovers the previously defined negative odd functions u_{-1}, u_{-3}, \ldots. In particular $\mathbf{u}^{1}=\left\langle u_{1}, u_{-1}, u_{-3}, \cdots\right\rangle$ is L-analytic, and the equation $\bar{\partial} u_{1}+\partial u_{-1}=0$ holds in Ω. We stress here that, at this stage, we do not know that u_{1} is the complex conjugate of u_{-1}.

Inductively, for $k \geq 1$, the formula

$$
\begin{equation*}
\mathbf{u}^{2 k-1}=\left\langle u_{2 k-1}, u_{2 k-3}^{2 k-1}, \ldots, u_{1}^{2 k-1}, u_{-1}^{2 k-1}, \cdots\right\rangle:=\mathcal{B} \mathbf{g}^{2 k-1} \tag{75}
\end{equation*}
$$

defines a sequence $\left\{\mathbf{u}^{2 k-1}\right\}_{k \geq 1}$ of L-analytic maps with $\left.\mathbf{u}^{2 k-1}\right|_{\Gamma}=\mathbf{g}^{2 k-1}$. By the uniqueness of L-analytic maps with the given boundary value, a similar reasoning as above shows

$$
L \mathbf{u}^{2 k-1}=\mathbf{u}^{2 k-3}, \quad \forall k \geq 2
$$

In particular, for all $k \geq 1$, the sequence $\mathbf{u}^{2 k-1}=\left\langle u_{2 k-1}, u_{2 k-3}, \ldots, u_{1}, u_{-1}, \cdots\right\rangle$ is L-analytic. Note that the sequence $\left\{\mathbf{u}^{2 k-1}\right\}_{k \geq 1}$ constructed above satisfies the hypotheses of the Lemma 4.1, and therefore for each $k \geq 1$,

$$
\begin{equation*}
u_{2 k-1}(z)=\overline{u_{-(2 k-1)}}(z), \quad z \in \Omega \tag{76}
\end{equation*}
$$

We stress here that the identities (76) need the hypothesis (63) for all $k \geq 1$, cannot be inferred directly from the Bukhgeim-Cauchy integral formula (25) for finitely many k 's.

We have shown that

$$
\begin{equation*}
\bar{\partial} u_{2 n-1}+\partial u_{2 n-3}=0, \quad \text { and }\left.\quad u_{2 n-1}\right|_{\Gamma}=g_{2 n-1}, \quad \forall n \in \mathbb{Z} . \tag{77}
\end{equation*}
$$

Step 4: The construction of the tensor field \mathbf{f}_{ψ} whose X-ray data is g.
For $r \geq 0$, we define first $f_{2 r+1}$ by using $\psi_{-2 r}$ from the non-uniqueness class in (62), and mode $u_{-(2 r+2)}$ from (65). Then, next define $\left\{f_{2 n+1}: 0 \leq n \leq r-1\right\}$ solely from the information in the non-uniqueness class. Finally, define $\left\{f_{-(2 n+1)}: 0 \leq n \leq r\right\}$ by conjugation:

$$
\begin{array}{ll}
f_{2 r+1}:=\bar{\partial} \psi_{-2 r}+\partial u_{-(r+2)}, & r \geq 0 \\
f_{2 n+1}:=\bar{\partial} \psi_{-2 n}+\partial \psi_{-(2 n+2)}, & 0 \leq n \leq r-1, r \geq 1, \quad \text { and } \tag{78}\\
f_{-(2 n+1)}:=\overline{f_{2 n+1}}, & 0 \leq n \leq r, r \geq 0
\end{array}
$$

By construction, $f_{ \pm(2 n+1)} \in C^{\mu}(\Omega)$, for $0 \leq n \leq r$, as $\psi_{0}, \psi_{-2}, \cdots, \psi_{-2 r} \in C^{1, \mu}(\Omega)$. We use these Fourier modes $f_{ \pm 1}, f_{ \pm 3}, \cdots, f_{ \pm m}$ for $m=2 r+1, r \geq 0$, and equations (14), (7) and (9) to construct the pseudovectors $\left\langle\tilde{f}_{0}, \tilde{f}_{1}, \cdots, \tilde{f}_{m}\right\rangle$, and thus the m-tensor field $\mathbf{f}_{\Psi} \in C^{\mu}\left(\mathbf{S}^{m} ; \Omega\right)$.

In order to show $\left.g\right|_{\Gamma_{+}}=X \mathbf{f}_{\Psi}$ with \mathbf{f}_{Ψ} being constructed from pseudovectors via Fourier modes as in (78) from class $\Psi_{g}^{\text {odd }}$, we define the real valued function u via its Fourier modes

$$
\begin{equation*}
u(z, \boldsymbol{\theta}):=\sum_{n=-\infty}^{\infty} u_{2 n-1}(z) e^{\mathrm{i}(2 n-1) \theta}+\sum_{|n| \geq r+1} u_{2 n}(z) e^{\mathrm{i} 2 n \theta}+\sum_{n=0}^{r} \psi_{-2 n}(z) e^{-\mathrm{i} 2 n \theta}+\sum_{n=0}^{r} \bar{\psi}_{-2 n}(z) e^{\mathrm{i} 2 n \theta} . \tag{79}
\end{equation*}
$$

Since $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$, we use Proposition 3.1 (ii) and (iii), to conclude that u defined in (79) belongs to $C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$.

Using (67), (69), (71), (77), and element $\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-2 r}\right) \in \Psi_{g}^{\text {odd }}$, the $u(\cdot, \boldsymbol{\theta})$ in (79) extends to the boundary $\left.u(\cdot, \boldsymbol{\theta})\right|_{\Gamma}=g(\cdot, \boldsymbol{\theta})$.

Since $u \in C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$, then the term by term differentiation in (79) is now justified, satisfying the transport equation (35):

$$
\begin{aligned}
\boldsymbol{\theta} \cdot \nabla u & =2 \mathbb{R e}\left\{\left(\bar{\partial} \psi_{-2 r}+\partial u_{-(2 r+2)}\right) e^{\mathrm{i}(2 r+1) \theta}\right\}+2 \mathbb{R} \mathrm{e}\left\{\sum_{n=0}^{r-1}\left(\bar{\partial} \psi_{-2 n}+\partial \psi_{-(2 n+2)}\right) e^{\mathrm{i}(2 n+1) \theta}\right\} \\
& =\sum_{n=0}^{r}\left(f_{2 n+1} e^{-\mathrm{i}(2 n+1) \theta}+f_{-(2 n+1)} e^{\mathrm{i}(2 n+1) \theta}\right)=\left\langle\mathbf{f}, \boldsymbol{\theta}^{2 r+1}\right\rangle
\end{aligned}
$$

where we use (66), (68), (77), and the second equality uses the definition of $f_{2 k+1}$'s in (78).

5. m-TENSOR - ATTENUATED CASE

Let $a \in C^{2, \mu}(\bar{\Omega}), \mu>1 / 2$, with $\min _{\bar{\Omega}} a>0$. In this case, the transport equation (19a) becomes

$$
\boldsymbol{\theta} \cdot \nabla u+a u= \begin{cases}f_{0}+\sum_{k=1}^{\frac{m}{2}} f_{-2 k} e^{\mathrm{i}(2 k) \theta}+f_{2 k} e^{-\mathrm{i}(2 k) \theta}, & (\text { if } m \text { is even }) \tag{80}\\ \sum_{k=0}^{\frac{m-1}{2} f_{-(2 k+1)} e^{\mathrm{i}(2 k+1) \theta}+f_{2 k+1} e^{-\mathrm{i}(2 k+1) \theta},} & (\text { if } m \text { is odd })\end{cases}
$$

where $f_{n}^{\prime} s$ are defined as in (13) and (14), and $f_{n}=\overline{f_{-n}}$, for $0 \leq n \leq m$.

If $\sum_{n \in \mathbb{Z}} u_{n}(z) e^{\mathrm{i} n \boldsymbol{\theta}}$ is the Fourier series expansion in the angular variable $\boldsymbol{\theta}$ of a solution u of (80), then by identifying the Fourier coefficients of the same order, (80) reduces to the system for even order m-tensor:

$$
\begin{array}{ll}
\bar{\partial} u_{-(2 n-1)}(z)+\partial u_{-(2 n+1)}(z)+a u_{-2 n}(z)=f_{2 n}(z), & 0 \leq n \leq \frac{m}{2}, m \text { even, } \\
\bar{\partial} u_{-2 n}(z)+\partial u_{-(2 n+2)}(z)+a u_{-2 n-1}(z)=0, & 0 \leq n \leq \frac{m}{2}-1, \\
\bar{\partial} u_{-n}(z)+\partial u_{-(n+2)}(z)+a u_{-(n+1)}(z)=0, & n \geq m, \tag{83}
\end{array}
$$

and for odd order m-tensor we have:

$$
\begin{array}{ll}
\bar{\partial} u_{-(2 n-1)}(z)+\partial u_{-(2 n+1)}(z)+a u_{-2 n}(z)=0, & 0 \leq n \leq \frac{m-1}{2}, m \text { odd } \\
\bar{\partial} u_{-2 n}(z)+\partial u_{-(2 n+2)}(z)+a u_{-(2 n+1)}(z)=f_{2 n+1}(z), & 0 \leq n \leq \frac{m-1}{2}, \\
\bar{\partial} u_{-n}(z)+\partial u_{-(n+2)}(z)+a u_{-(n+1)}(z)=0, & n \geq m . \tag{86}
\end{array}
$$

Given the data g for attenuated X-ray transform for even or odd order tensor field, we expand the data g in terms of its Fourier modes in the angular variables: $g(\zeta, \boldsymbol{\theta})=\sum_{n=-\infty}^{\infty} g_{n}(\zeta) e^{\mathrm{i} n \theta}$, for $\zeta \in \Gamma$. Since the data g is also real valued, its Fourier modes will satisfy $g_{-n}=\overline{g_{n}}$, for $n \geq 0$. From the negative modes, we built the sequence $\mathbf{g}:=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle$. From the special function h defined in (32) and the data g, we built the sequence

$$
\begin{equation*}
\mathbf{g}_{h}:=e^{-G} \mathbf{g}:=\left\langle\gamma_{0}, \gamma_{-1}, \gamma_{-2}, \ldots\right\rangle \tag{87}
\end{equation*}
$$

where e^{-G} as defined in (34).
Next we characterize the attenuated X-ray data g in terms of its Fourier modes $g_{0}, g_{-1}, \cdots g_{-(m-1)}$, and the Fourier modes

$$
L^{m} \mathbf{g}_{h}:=L^{m} e^{-G} \mathbf{g}:=\left\langle\gamma_{-m}, \gamma_{-(m+1)}, \gamma_{-(m+2)}, \ldots\right\rangle
$$

Similar to the non-attenuated case as before, we construct simultaneously the right hand side of the transport equation (80) together with the solution u via its Fourier modes. In both cases, apart from modes $u_{0}, u_{-1}, u_{-2}, \cdots u_{-(m-1)}$, all Fourier modes are constructed uniquely from the data $L^{m} \mathbf{g}_{h}$. For even $m \geq 2$, the modes $u_{0}, u_{-2}, u_{-4}, \cdots u_{-(m-2)}$ will be chosen arbitrarily from the class $\Psi_{a, g}^{\text {even }}$ of cardinality $\frac{m}{2}$ with prescribed boundary value and gradient on Γ defined as

$$
\begin{align*}
\Psi_{a, g}^{\text {even }}:=\{ & \left.\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-(m-2)}\right) \in C^{2}(\bar{\Omega} ; \mathbb{R}) \times\left(C^{2}(\bar{\Omega} ; \mathbb{C})\right)\right)^{\frac{m}{2}-1}: \\
& \left.\psi_{-2 j}\right|_{\Gamma}=g_{-2 j}, \quad 0 \leq j \leq \frac{m}{2}-1, m \geq 2 \\
& \left.\bar{\partial} \psi_{-(m-2)}\right|_{\Gamma}=-\left.\partial\left(e^{G} \mathcal{B} e^{-G} \mathbf{g}\right)_{-m}\right|_{\Gamma}-\left.a\right|_{\Gamma} g_{-(m-1)}, \quad m \geq 2 \\
& \left.\left.\bar{\partial} \psi_{-2 j}\right|_{\Gamma}=-\left.\partial \psi_{-(2 j+2)}\right|_{\Gamma}-\left.a\right|_{\Gamma} g_{-(2 j+1)}, \quad 0 \leq j \leq \frac{m}{2}-2, m \geq 4\right\} \tag{88}
\end{align*}
$$

and for odd $m \geq 1$, the modes $u_{-1}, u_{-3}, \cdots, u_{-(m-2)}$ will be chosen arbitrarily from the class $\Psi_{a, g}^{\text {odd }}$ of cardinality $\frac{m-1}{2}$ with prescribed boundary value and gradient on Γ defined as

$$
\begin{align*}
\Psi_{a, g}^{\mathrm{odd}}:=\{ & \left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(m-2)}\right) \in\left(C^{2}(\bar{\Omega} ; \mathbb{C})\right)^{\frac{m-1}{2}}: \\
& \left.\psi_{-(2 j-1)}\right|_{\Gamma}=g_{-(2 j-1)}, \quad 1 \leq j \leq \frac{m-1}{2}, m \geq 3, \\
& \left.\bar{\partial} \psi_{-(m-2)}\right|_{\Gamma}=-\left.\partial\left(e^{G} \mathcal{B} e^{-G} \mathbf{g}\right)_{-m}\right|_{\Gamma}-\left.a\right|_{\Gamma} g_{-(m-1)}, \quad m \geq 3, \tag{89}\\
& \left.\bar{\partial} \psi_{-(2 j-1)}\right|_{\Gamma}=-\left.\partial \psi_{-(2 j+1)}\right|_{\Gamma}-\left.a\right|_{\Gamma} g_{-2 j}, \quad 1 \leq j \leq \frac{m-3}{2}, \quad m \geq 5, \\
& \left.2\left(\left.\mathbb{R e} \partial \psi_{-1}\right|_{\Gamma}\right)=-\left.a\right|_{\Gamma} g_{0}\right\},
\end{align*}
$$

where \mathcal{B} be the Bukhgeim-Cauchy operator in (25), and the operators $e^{ \pm G}$ as defined in (34).
Theorem 5.1 (Range characterization). Let $a \in C^{2, \mu}(\bar{\Omega}), \mu>1 / 2$ with $\min _{\bar{\Omega}} a>0$, and $\mathbb{Z} \ni m \geq 0$.
(i) Let $\mathbf{f} \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right)$ be a real-valued m-order symmetric tensor field, and

$$
g=X_{a} \mathbf{f} \text { on } \Gamma_{+} \text {and } g=0 \text { on } \Gamma_{-} \cup \Gamma_{0} .
$$

Then $\mathbf{g}_{h} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$ satisfy

$$
\begin{equation*}
[I+\mathrm{i} \mathcal{H}] L^{m} \mathbf{g}_{h}=\mathbf{0} \tag{90}
\end{equation*}
$$

where \mathbf{g}_{h} is sequence in (87) and \mathcal{H} is the Bukhgeim-Hilbert operator in (27). Additionally, in $m=1$ case, for each $\zeta \in \Gamma$, the zero-th Fourier mode g_{0} of g satisfy

$$
\begin{equation*}
g_{0}(\zeta)=\lim _{\Omega \ni z \rightarrow \zeta \in \Gamma} \frac{-2 \mathbb{R e} \partial\left(e^{G} \mathcal{B} \mathbf{g}_{h}\right)_{-1}(z)}{a(z)}, \quad \text { for } \quad m=1 \tag{91}
\end{equation*}
$$

where \mathcal{B} be the Bukhgeim-Cauchy operator in (25), and the operators $e^{ \pm G}$ as defined in (34).
(ii) Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. For $m=0$, if the corresponding sequences $\mathbf{g}_{h} \in Y_{\mu}(\Gamma)$ satisfies (90), then there is a unique real valued symmetric 0 -tensor \mathbf{f} such that $\left.g\right|_{\Gamma_{+}}=X_{a} \mathbf{f}$. Moreover, for $m=1$, if the corresponding sequences $\mathbf{g}_{h} \in Y_{\mu}(\Gamma)$ satisfies (90), and g_{0} satisfies (91), then there exists a unique real valued vector field (1-tensor) $\mathbf{f} \in$ $C\left(\mathbf{S}^{m} ; \Omega\right)$ such that $\left.g\right|_{\Gamma_{+}}=X_{a} \mathbf{f}$. Furthermore, for $m \geq 2$, if $\mathbf{g}_{h} \in Y_{\mu}(\Gamma)$ satisfies (90), and for each element $\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-(m-2)}\right) \in \Psi_{a, g}^{\text {even }}$ for even m-tensor, and $\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(m-2)}\right) \in \Psi_{a, g}^{\text {odd }}$ for m-odd tensor, then there is a unique real valued symmetric m-tensor $\mathbf{f}_{\Psi} \in C\left(\mathbf{S}^{m} ; \Omega\right)$ such that $\left.g\right|_{\Gamma_{+}}=X_{a} \mathbf{f}_{\Psi}$.
Proof. (i) Necessity: Let $\mathbf{f}=\left(f_{i_{1} \cdots i_{m}}\right) \in C_{0}^{1, \mu}\left(\mathbf{S}^{m} ; \Omega\right)$. Since all components $f_{i_{1} \cdots i_{m}} \in C_{0}^{1, \mu}(\Omega)$ are compactly supported inside Ω, then for any point at the boundary there is a cone of lines which do not meet the support. Thus $g \equiv 0$ in the neighborhood of the variety Γ_{0} which yields $g \in$ $C^{1, \mu}\left(\Gamma \times \mathbb{S}^{1}\right)$. Moreover, g is the boundary value on $\Gamma \times \mathbb{S}^{1}$ of a solution $u \in C^{1, \mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$ of the transport equation (80). By Proposition 3.1(i) and Proposition 3.2, $\mathbf{g}_{h}=e^{-G} \mathbf{g} \in l_{\infty}^{1,1}(\Gamma) \cap C^{\mu}\left(\Gamma ; l_{1}\right)$.

If u solves (80) then its Fourier modes satisfies (81) - (83) for even m-tensors, and (85)- (86) for odd m-tensors.

In either of the even m-tensor case or the odd m-tensor case, (from (83) or (86)), the sequence $L^{m} \mathbf{u}:=\left\langle u_{-m}, u_{-m-1}, u_{-m-2}, \cdots\right\rangle$ satisfies

$$
\bar{\partial} L^{m} \mathbf{u}+L^{2} \partial L^{m} \mathbf{u}+a L^{m+1} \mathbf{u}=\mathbf{0}
$$

Let $\mathbf{v}:=e^{-G} L^{m} \mathbf{u}$, then by Lemma 3.1, and the fact that the operators $e^{ \pm G}$ commute with the left translation, $\left[e^{ \pm G}, L\right]=\mathbf{0}$, the sequence $\mathbf{v}=L^{m} e^{-G} \mathbf{u}$ solves $\bar{\partial} \mathbf{v}+L^{2} \partial \mathbf{v}=\mathbf{0}$, i.e \mathbf{v} is L^{2} analytic, with boundary value $L^{m} \mathbf{g}_{h}$. The necessity part in Theorem 3.1 yields (90).

Additionally, in the $m=1$ case, the Fourier modes u_{0}, u_{-1}, u_{1} of u solve (84) for $n=0$. Since $a>0$ in Ω, we have

$$
\begin{equation*}
u_{0}(z)=\frac{-2 \mathbb{R e} \partial u_{-1}(z)}{a(z)}, \quad z \in \Omega \tag{92}
\end{equation*}
$$

Since the left hand side of (92) is continuous all the way to the boundary, so is the right hand side. Moreover, the limit below exists and in the $m=1$ case, we have

$$
g_{0}\left(z_{0}\right)=\lim _{\Omega \ni z \rightarrow z_{0} \in \Gamma} u_{0}(z)=\lim _{\Omega \ni z \rightarrow z_{0} \in \Gamma} \frac{-2 \mathbb{R e} \partial u_{-1}(z)}{a(z)}
$$

thus (91) holds. This proves part (i) of the theorem.
(ii) Sufficiency: Let $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$ be real valued with $\left.g\right|_{\Gamma_{-} \cup \Gamma_{0}}=0$. Let the corresponding sequence g_{h} as in (87) satisfying (90). By Proposition 3.1(ii) and Proposition 3.2(iii), we have $\mathrm{g}_{h} \in Y_{\mu}(\Gamma)$.

To prove the sufficiency we will construct a real valued symmetric m-tensor \mathbf{f} in Ω and a real valued function $u \in C^{1}\left(\Omega \times \mathbb{S}^{1}\right) \cap C\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$ such that $\left.u\right|_{\Gamma \times \mathbb{S}^{1}}=g$ and u solves (80) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps. We first construct modes u_{-n} for $|n| \geq m$ from data \mathbf{g}_{h} in either of the m-even case or the m-odd case.

Step 1: The construction of modes u_{-n} for $|n| \geq m$.
Use the Bukhgeim-Cauchy Integral formula (25) to define the L^{2}-analytic maps

$$
\mathbf{v}(z)=\left\langle v_{0}(z), v_{-1}(z), v_{-2}(z), \ldots\right\rangle:=\mathcal{B} L^{m} \mathbf{g}_{h}(z), \quad z \in \Omega
$$

By Theorem 3.1 (ii),

$$
\begin{equation*}
\mathbf{v} \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right) \cap C^{2}\left(\Omega ; l_{\infty}\right) . \tag{93}
\end{equation*}
$$

Moreover, since \mathbf{g}_{h} satisfy the hypothesis (90), by Theorem 3.1 sufficiency part, we have

$$
\begin{equation*}
\left.\mathbf{v}\right|_{\Gamma}=L^{m} \mathbf{g}_{h}=L^{m} e^{-G} \mathbf{g} \tag{94}
\end{equation*}
$$

Define the sequence valued map

$$
\begin{equation*}
\Omega \ni z \mapsto L^{m} \mathbf{u}(z)=\left\langle u_{-m}(z), u_{-m-1}(z), \cdots\right\rangle:=e^{G} \mathbf{v}(z) \tag{95}
\end{equation*}
$$

where the operator e^{G} as defined in (34). Since convolution preserves l_{1}, by Proposition 3.2, $L^{m} \mathbf{u} \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right)$. Moreover, since $\mathbf{v} \in C^{2}\left(\Omega ; l_{\infty}\right)$ as in (93), we also conclude from convolution that $L^{m} \mathbf{u} \in C^{2}\left(\Omega ; l_{\infty}\right)$. Thus,

$$
\begin{equation*}
L^{m} \mathbf{u} \in C^{1, \mu}\left(\Omega ; l_{1}\right) \cap C^{\mu}\left(\bar{\Omega} ; l_{1}\right) \cap C^{2}\left(\Omega ; l_{\infty}\right) \tag{96}
\end{equation*}
$$

As \mathbf{v} is L^{2} analytic, by Lemma 3.1, $L^{m} \mathbf{u}$ satisfies $\bar{\partial} L^{m} \mathbf{u}+L^{2} \partial L^{m} \mathbf{u}+a L^{m+1} \mathbf{u}=\mathbf{0}$, which in component form:

$$
\begin{equation*}
\bar{\partial} u_{-n}+\partial u_{-n-2}+a u_{-n-1}=0, \quad n \geq m \tag{97}
\end{equation*}
$$

Moreover, the restriction to the boundary satisfy

$$
\begin{equation*}
\left.L^{m} \mathbf{u}\right|_{\Gamma}=\left.e^{G} \mathbf{v}\right|_{\Gamma}=e^{G} L^{m} e^{-G} \mathbf{g}=L^{m} \mathbf{g} \tag{98}
\end{equation*}
$$

where the second equality follows from (94) and in the last equality we use the fact that the operators $e^{ \pm G}$ commute with the left translation, $\left[e^{ \pm G}, L\right]=\mathbf{0}$.

Construct the positive Fourier modes by conjugation: $u_{n}:=\overline{u_{-n}}$, for all $n \geq m$. Moreover using (98), the boundary value $\left.u_{n}\right|_{\Gamma}$ for each $n \geq m$, satisfy

$$
\begin{equation*}
\left.u_{n}\right|_{\Gamma}=\left.\overline{u_{-n}}\right|_{\Gamma}=\overline{g_{-n}}=g_{n}, \quad n \geq m . \tag{99}
\end{equation*}
$$

By conjugating (97) we note that the positive Fourier modes also satisfy

$$
\begin{equation*}
\bar{\partial} u_{n+2}+\partial u_{n}+a u_{n+1}=0, \quad n \geq m . \tag{100}
\end{equation*}
$$

Step 2: The construction of the 0 -tensor field f .

In the case of the 0 -tensor, all the modes in (95) is constructed from the data. Using the modes $u_{0}, u_{-1} \in C^{2}(\Omega)$ from (95), the real valued 0 -tensor $\mathbf{f}=f_{0} \in C(\Omega ; \mathbb{R})$ is uniquely determined by

$$
\begin{equation*}
\mathbf{f}:=2 \mathbb{R e} \partial u_{-1}+a u_{0} \tag{101}
\end{equation*}
$$

Step 3: The construction of the 1-tensor field f.

In the 1 -tensor case, all the modes except u_{0} are constructed in (95). Using (84) for $n=0$, and $a>0$ in Ω, we can define u_{0} via the mode u_{-1} from (95) by

$$
\begin{equation*}
u_{0}(z):=-\frac{2 \mathbb{R e} \partial u_{-1}(z)}{a(z)}, \quad z \in \Omega . \tag{102}
\end{equation*}
$$

From (91), u_{0} defined above extends continuously to the boundary Γ and $\left.u_{0}\right|_{\Gamma}=g_{0}$. Moreover, since $u_{-1} \in C^{2}(\Omega)$ from (96) and $a \in C^{2}(\Omega)$ we get $u_{0} \in C^{1}(\Omega)$.

Using modes u_{-1}, u_{-2} from (95) and u_{0} from (102), the real valued 1 -tensor (vector field) $\mathbf{f} \in$ $C\left(\Omega ; \mathbb{R}^{2}\right)$ is uniquely determined by

$$
\begin{equation*}
\mathbf{f}=\left\langle 2 \mathbb{R} \mathrm{e} f_{1}, 2 \mathbb{I} \mathrm{~m} f_{1}\right\rangle, \quad \text { where } \quad f_{1}:=\bar{\partial} u_{0}+\partial u_{-2}+a u_{-1} \tag{103}
\end{equation*}
$$

Remark 5.1. In the attenuated case, both the 0 -tensor and the 1 -tensor are uniquely recovered, and there is no class.

For m-tensor with $m \geq 2$, we next consider separately the m-even and m-odd cases. Using the first step, where modes u_{-n} for $|n| \geq m$ are already constructed from the data \mathbf{g}_{h} in either of the m-even case or the m-odd case, we construct the remaining modes u_{n} for $|n| \leq m-1$ separately first in the m-even case ($m=2 q, q \geq 1$) and then in the m-odd case ($m=2 r+1, r \geq 1$).

Step 4: In the m even case, the construction of modes u_{n} for $|n| \leq m-1$.
Given $\left(\psi_{0}, \psi_{-2}, \cdots, \psi_{-2(q-1)}\right) \in \Psi_{a, g}^{\text {even }}$ arbitrary, define the modes $u_{0}, u_{ \pm 2}, \ldots, u_{ \pm(2(q-1))}$ in Ω by

$$
\begin{equation*}
u_{-2 j}:=\psi_{-2 j}, \quad \text { and } \quad u_{2 j}:=\overline{\psi_{-2 j}}, \quad 0 \leq j \leq q-1, q \geq 1 \tag{104}
\end{equation*}
$$

Using the mode $u_{-2 q}$ from (95) and $\psi_{-2(q-1)}$, define the modes $u_{ \pm(2 q-1)}$ by

$$
\begin{equation*}
u_{-(2 q-1)}:=-\frac{\bar{\partial} \psi_{-2(q-1)}+\partial u_{-2 q}}{a}, \quad \text { and } \quad u_{2 q-1}:=\bar{u}_{-(2 q-1)}, \quad \text { for all } q \geq 1 \tag{105}
\end{equation*}
$$

As $\psi_{0} \in C^{2}(\bar{\Omega} ; \mathbb{R})$ and $\psi_{-(2 j+2)} \in C^{2}(\bar{\Omega} ; \mathbb{C})$, for $0 \leq j \leq q-2, q \geq 2$, define modes

$$
u_{-(2 j+1)}:=-\frac{\bar{\partial} \psi_{-2 j}+\partial \psi_{-(2 j+2)}}{a}, \text { and } u_{2 j+1}:=\bar{u}_{-(2 j+1)}, \text { for all } 0 \leq j \leq q-2, q \geq 2
$$

By the construction in the above equations, we have

$$
\begin{array}{ll}
u_{-2 j} \in C^{2}\left(\Omega ; l_{\infty}\right), & \text { for } \quad 0 \leq j \leq q-1, q \geq 1, \\
u_{-(2 j+1)} \in C^{1}\left(\Omega ; l_{\infty}\right), & \text { for } \quad 0 \leq j \leq q-1, q \geq 1, \tag{106}\\
\bar{\partial} u_{-2 j}+\partial u_{-(2 j+2)}+a u_{-(2 j+1)}=0, & \text { for } \quad 0 \leq j \leq q-1, q \geq 1,
\end{array} \quad \text { and },
$$

are satisfied. Moreover, by conjugating the last equation in (106) yields

$$
\begin{equation*}
\partial u_{2 j}+\bar{\partial} u_{(2 j+2)}+a u_{(2 j+1)}=0, \quad \text { for } \quad 0 \leq j \leq q-1, q \geq 1 . \tag{107}
\end{equation*}
$$

By the definition of the class (88), and reality of g, we have

$$
\begin{equation*}
\left.u_{-2 j}\right|_{\Gamma}=g_{-2 j}, \quad \text { and }\left.\quad u_{2 j}\right|_{\Gamma}=\overline{g_{-2 j}}=g_{2 j}, \quad 0 \leq j \leq q-1, q \geq 1 \tag{108}
\end{equation*}
$$

We check next that the boundary value of $u_{-(2 j+1)}$ is $g_{-(2 j+1)}$ for $0 \leq j \leq q-2, q \geq 2$:

$$
\begin{equation*}
\left.u_{-(2 j+1)}\right|_{\Gamma}=-\left.\frac{\bar{\partial} \psi_{-2 j}+\partial \psi_{-(2 j+2)}}{a}\right|_{\Gamma}=g_{-(2 j+1)}, \tag{109}
\end{equation*}
$$

where the last equality uses the condition in class (88). Similar calculation to (109) for mode $u_{-(2 q-1)}$ yields $\left.u_{-(2 q-1)}\right|_{\Gamma}=g_{-(2 q-1)}$. Thus, from the above equations, we have

$$
\begin{equation*}
\left.u_{n}\right|_{\Gamma}=g_{n}, \quad \forall|n| \leq m-1 . \tag{110}
\end{equation*}
$$

Step 5: The construction of even m-tensor \mathbf{f}_{Ψ} whose attenuated X-ray data is g.

We define first $f_{2 q}$ by using $\psi_{-(m-2)}$ from the non-uniqueness class, and modes $u_{-m}, u_{-m-1} \in$ $C^{2}\left(\Omega ; l_{\infty}\right)$ from (95). Then, next define $f_{2 q-2}$ by using $\psi_{-2(q-1)}, \psi_{-2(q-2)}$ from the non-uniqueness class $\Psi_{a, g}^{\text {even }}$, and Fourier mode $u_{-2 q}$ from (95). Then, define $\left\{f_{2 n}: 0 \leq n \leq q-2\right\}$ solely from the information in the non-uniqueness class. Finally, define $\left\{f_{-2 n}: 1 \leq n \leq q\right\}$ by conjugation.
$f_{2 q}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-2(q-1)}+\partial u_{-2 q}}{a}\right)+\partial u_{-(2 q+1)}+a u_{-2 q}, \quad q \geq 1$,
$f_{2 q-2}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-2(q-2)}+\partial \psi_{-2(q-1)}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-2(q-1)}+\partial u_{-2 q}}{a}\right)+a \psi_{-2(q-1)}, \quad q \geq 2$,
$f_{2 n}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-2(n-1)}+\partial \psi_{-2 n}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-2 n}+\partial \psi_{-2(n+1)}}{a}\right)+a \psi_{-2 n}, \quad 1 \leq n \leq q-2, \quad q \geq 3$,
$f_{0}:= \begin{cases}-2 \mathbb{R e} \partial\left(\frac{\bar{\partial} \psi_{0}+\partial u_{-2}}{a}\right)+a \psi_{0}, & q=1, \\ -2 \mathbb{R e} \partial\left(\frac{\bar{\partial} \psi_{0}+\partial \psi_{-2}}{a}\right)+a \psi_{0}, & q \geq 2,\end{cases}$
$f_{-2 n}:=\overline{f_{2 n}}, \quad 1 \leq n \leq q, q \geq 1$,
By construction, $f_{2 n} \in C(\Omega)$, for $0 \leq n \leq q, q \geq 1$, as $\psi_{-2 n} \in C^{2}\left(\Omega ; l_{\infty}\right)$, for $0 \leq n \leq q-1$, from (88). Note that $f_{2 n}$ satisfy (81). We use these Fourier modes $\left\langle f_{0}, f_{ \pm 2}, \cdots, f_{ \pm m}\right\rangle$ and equations (13), (7) and (9) to construct $\left\langle\tilde{f}_{0}, \tilde{f}_{1}, \cdots, \tilde{f}_{m}\right\rangle$, and thus even m-tensor field $\mathbf{f}_{\Psi} \in C\left(\mathbf{S}^{m} ; \Omega\right)$.

In order to show $\left.g\right|_{\Gamma_{+}}=X_{a} \mathbf{f}_{\Psi}$ with \mathbf{f}_{Ψ} being constructed from pseudovectors via Fourier modes as in (111) from class $\Psi_{a, g}^{\text {even }}$, we define the real valued function u via its Fourier modes (112)

$$
\begin{aligned}
u(z, \boldsymbol{\theta}): & =\sum_{|n| \geq 2 q} u_{n}(z) e^{\mathrm{i} n \theta}+2 \mathbb{R e}\left(-\frac{\bar{\partial} \psi_{-2(q-1)}+\partial u_{-2 q}}{a}\right) e^{-\mathrm{i}(2 q-1) \theta} \\
& +2 \mathbb{R e}\left\{\sum_{n=0}^{q-1} \psi_{-2 n}(z) e^{-\mathrm{i}(2 n) \theta}\right\}+2 \mathbb{R e}\left\{\sum_{n=0}^{q-2}\left(-\frac{\bar{\partial} \psi_{-2 j}+\partial \psi_{-(2 j+2)}}{a}\right) e^{-\mathrm{i}(2 n+1) \theta}\right\}
\end{aligned}
$$

and check that it has the boundary value g on Γ and satisfies the transport equation (80).
Since $g \in C^{\mu}\left(\Gamma ; C^{1, \mu}\left(\mathbb{S}^{1}\right)\right) \cap C\left(\Gamma ; C^{2, \mu}\left(\mathbb{S}^{1}\right)\right)$, we use Proposition 3.1 (ii) and (iii), to conclude that u defined in (112) belongs to $C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$. In particular $u(\cdot, \boldsymbol{\theta})$ for $\boldsymbol{\theta}=$ $(\cos \theta, \sin \theta)$ extends to the boundary and it satisfies

$$
\left.u(\cdot, \boldsymbol{\theta})\right|_{\Gamma}=\left.\sum_{|n| \geq 2 q} u_{n}\right|_{\Gamma} e^{\mathrm{i} n \theta}+\left.\sum_{|n| \leq 2 q-1} u_{n}\right|_{\Gamma} e^{\mathrm{i} n \theta}=\sum_{|n| \geq 2 q} g_{n} e^{\mathrm{i} n \theta}+\sum_{|n| \leq 2 q-1} g_{n} e^{\mathrm{i} n \theta}=g(\cdot, \boldsymbol{\theta}),
$$

where in the second equality above we use (94), (99) and (110).
Since $u \in C^{1, \mu}\left(\Omega \times \mathbb{S}^{1}\right) \cap C^{\mu}\left(\bar{\Omega} \times \mathbb{S}^{1}\right)$, then using (97), (100), (105), (106), (107), and the definition of $f_{2 n}$ for $-q \leq n \leq q, q \geq 1$ in (111), the real valued u defined in (112) satisfies the transport equation (80) in the m-even case.

We consider next the m-odd tensor case of order $m=2 r+1, r \geq 1$, Using the first step, where modes u_{-n} for $|n| \geq m$ are already constructed from the data \mathbf{g}_{h}, we construct the remaining modes u_{n} for $|n| \leq m-1$ in the m-odd case.

Step 6: In the m odd case, the construction of modes u_{n} for $|n| \leq m-1$.
Given $\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(m-2)}\right) \in \Psi_{a, g}^{\text {odd }}$ arbitrary, firstly define the odd modes

$$
\begin{equation*}
u_{-(2 n-1)}:=\psi_{-(2 n-1)}, \quad \text { and } \quad u_{2 n-1}:=\bar{\psi}_{-(2 n-1)}, \quad 1 \leq n \leq r, r \geq 1 \tag{113}
\end{equation*}
$$

Secondly, by using $\psi_{-1}, \psi_{-(m-2)}$ and the mode u_{-m} from (95), we define the modes

$$
\begin{equation*}
u_{0}:=-\frac{2 \operatorname{Re} \partial \psi_{-1}}{a}, \quad u_{-2 r}:=-\frac{\bar{\partial} \psi_{-(2 r-1)}+\partial u_{-(2 r+1)}}{a}, \text { and } \quad u_{2 r}:=\overline{u_{-2 r}} \quad \text { for } r \geq 1 \tag{114}
\end{equation*}
$$

Lastly, by using $\psi_{-(2 n-1)} \in C^{2}(\bar{\Omega} ; \mathbb{C})$, for $1 \leq n \leq r-1, r \geq 2$, we define the even modes $u_{-2 n}:=-\frac{\bar{\partial} \psi_{-(2 n-1)}+\partial \psi_{-(2 n+1)}}{a}$, and $u_{2 n}:=\overline{u_{-2 n}}$, for $1 \leq n \leq r-1, r \geq 2$. By the construction in the above equations, we have

$$
\begin{align*}
& u_{-(2 n-1)} \in C^{2}\left(\Omega ; l_{\infty}\right), \quad \text { for } \quad 1 \leq n \leq r, r \geq 1 \\
& u_{-2 n} \in C^{1}\left(\Omega ; l_{\infty}\right), \quad \text { for } \quad 0 \leq n \leq r, r \geq 1, \quad \text { and } \tag{115}\\
& \bar{\partial} u_{-(2 n-1)}+\partial u_{-(2 n+1)}+a u_{-2 n}=0, \quad \text { for } \quad 0 \leq n \leq r, r \geq 1,
\end{align*}
$$

is satisfied. Moreover, by conjugating the last equation in (115), we have the Fourier modes satisfy

$$
\begin{equation*}
\bar{\partial} u_{-(2 n-1)}+\partial u_{-(2 n+1)}+a u_{-2 n}=0, \quad \text { for } \quad|n| \leq r, r \geq 1 \tag{116}
\end{equation*}
$$

By the class (89), and reality of g, we have the boundary value of $u_{-(2 n-1)}$ in (113) satisfy

$$
\begin{equation*}
\left.u_{-(2 n-1)}\right|_{\Gamma}=g_{-(2 n-1)}, \quad \text { and }\left.\quad u_{2 n-1}\right|_{\Gamma}=\bar{g}_{-(2 n-1)}=g_{2 n-1}, \quad 1 \leq n \leq r, r \geq 1 \tag{117}
\end{equation*}
$$

We check next that the boundary value of $u_{-2 n}$ is $g_{-2 n}$ for $1 \leq n \leq r-1, r \geq 2$:

$$
\begin{equation*}
\left.u_{-2 n}\right|_{\Gamma}=-\left.\frac{\bar{\partial} \psi_{-(2 n-1)}+\partial \psi_{-(2 n+1)}}{a}\right|_{\Gamma}=g_{-2 n} \tag{118}
\end{equation*}
$$

where the last equality uses the condition in class (89). Similar calculation to (118) for modes u_{0} and $u_{-2 r}$ in (114), yields $\left.u_{0}\right|_{\Gamma}=g_{0}$, and $\left.u_{-2 r}\right|_{\Gamma}=g_{-2 r}$, for $r \geq 1$. Thus, we have

$$
\begin{equation*}
\left.u_{n}\right|_{\Gamma}=g_{n}, \quad \forall|n| \leq m-1 \tag{119}
\end{equation*}
$$

Step 7: The construction of odd m-tensor \mathbf{f}_{Ψ} whose attenuated X-ray data is g.

We first define $f_{2 r+1}$ by using $\psi_{-(2 r-1)}$ from the non-uniqueness class, and the Fourier modes $u_{-m}, u_{-(m+1)}$ in (95). Next, define $f_{2 r-1}$ by using $\psi_{-(m-2)}, \psi_{-(m-4)}$ from the non-uniqueness class, and Fourier mode u_{-m} in (95). Then, define $\left\{f_{2 n+1}: 0 \leq n \leq r-2\right\}$ solely from the information in the non-uniqueness class. Finally, define $\left\{f_{-(2 n+1)}: 0 \leq n \leq r\right\}$ by conjugation.

$$
\begin{align*}
& f_{2 r+1}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-(2 r-1)}+\partial u_{-(2 r+1)}}{a}\right)+\partial u_{-(2 r+2)}+a u_{-(2 r+1)}, \quad r \geq 1, \tag{120}\\
& f_{2 r-1}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-(2 r-3)}+\partial \psi_{-(2 r-1)}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-(2 r-1)}+\partial u_{-(2 r+1)}}{a}\right)+a \psi_{-(2 r-1)}, \quad r \geq 2, \\
& f_{2 n+1}:=-\bar{\partial}\left(\frac{\bar{\partial} \psi_{-(2 n-1)}+\partial \psi_{-(2 n+1)}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-(2 n+1)}+\partial \psi_{-(2 n+3)}}{a}\right)+a \psi_{-(2 n+1)}, 1 \leq n \leq r-2, \\
& f_{1}:=\left\{\begin{array}{l}
-2 \bar{\partial}\left(\frac{\mathbb{R e} \partial \psi_{-1}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-1}+\partial u_{-3}}{a}\right)+a \psi_{-1}, \quad r=1, \\
-2 \bar{\partial}\left(\frac{\mathbb{R e} \partial \psi_{-1}}{a}\right)-\partial\left(\frac{\bar{\partial} \psi_{-1}+\partial \psi_{-3}}{a}\right)+a \psi_{-1}, \quad r \geq 2, \\
f_{-(2 n+1)}:=\overline{f_{2 n+1}, \quad 0 \leq n \leq r, r \geq 1 .}
\end{array}\right.
\end{align*}
$$

By construction, $f_{2 n+1} \in C(\Omega)$ for $0 \leq n \leq r, r \geq 1$, as $u_{-(2 r+1)} \in C^{2}\left(\Omega ; l_{\infty}\right)$ from (96), and $\psi_{-(2 n-1)} \in C^{2}\left(\Omega ; l_{\infty}\right)$, for $1 \leq n \leq r-1, r \geq 1$, from (89). We use these $m+1$ Fourier modes $\left\langle f_{ \pm 1}, f_{ \pm 3}, \cdots, f_{ \pm m}\right\rangle$, and equations (14), (7) and (9) to construct the pseudovectors $\left\langle\tilde{f}_{0}, \tilde{f}_{1}, \cdots, \tilde{f}_{m}\right\rangle$, and thus the odd m-tensor field $\mathbf{f}_{\Psi} \in C\left(\mathbf{S}^{m} ; \Omega\right)$.

Define the real valued function u via its Fourier modes

$$
\begin{align*}
& u(z, \boldsymbol{\theta}):=\sum_{|n| \geq 2 r+1} u_{n}(z) e^{\mathrm{i} n \theta}+2 \mathbb{R e}\left\{\sum_{n=1}^{r} \psi_{-(2 n-1)}(z) e^{-\mathrm{i}(2 n-1) \theta}\right\}+\frac{-2 \mathbb{R e} \partial \psi_{-1}(z)}{a} \\
& \quad+2 \mathbb{R e}\left(-\frac{\bar{\partial} \psi_{-(2 r-1)}(z)+\partial u_{-(2 r+1)}(z)}{a}\right) e^{-\mathrm{i}(2 r) \theta}+2 \mathbb{R e}\left\{\sum_{n=1}^{r-1} u_{-2 n} e^{-\mathrm{i}(2 n \theta)}\right\} . \tag{121}
\end{align*}
$$

Using (116) and (119), and definition of $\left(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2 r-1)}\right) \in \Psi_{a, g}^{\text {odd }}$ for $r \geq 1$, then $u(\cdot, \boldsymbol{\theta})$ in (121) extends to the boundary, and its boundary value satisfy $\left.u(\cdot, \boldsymbol{\theta})\right|_{\Gamma}=g(\cdot, \boldsymbol{\theta})$.

Moreover, by using (115), (116) and the definition of $f_{2 n-1}$ for $|n| \leq r, r \geq 1$ in (120), the real valued u defined in (121) satisfies the transport equation (80) in the m-odd case.

6. Conclusion

In conclusion, we characterize the X-ray data g in both the non-attenuated case (Theorem 4.1 and Theorem 4.2) and the attenuated case (Theorem 5.1) for arbitrary m-tensor in terms of its Fourier modes $\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, \ldots\right\rangle$ in the spatial variable and the Bukhgeim-Hilbert transform (27). In the necessity, while the non-attenuated case separates the even modes $\mathbf{g}^{\text {even }}=\left\langle g_{0}, g_{-2}, \ldots\right\rangle$ and the odd modes g $^{\text {odd }}=\left\langle g_{-1}, g_{-3}, \ldots\right\rangle$ (see Table 1), the attenuated case mixes all the even and odd Fourier modes: $\mathbf{g}_{h}=e^{-G} \mathbf{g}$ (see (90) and Table 2). In the sufficiency part, in both cases we showed that reconstruction of the m-tensor field for $m \geq 2$ is possible upto a non-uniqueness class of functions that extends continuously to the boundary with prescribed boundary values. Moreover,
the 1-tensor is uniquely recovered in the attenuated case, and in the non-attenuated case, the 1 tensor is recovered upto an arbitrary function (see Remark 4.2). Furthermore, the 0 -tensor field is uniquely recovered (see also Remark 4.1 and Remark 5.1) in both cases.

Table 1. Range Characterization in the non-attenuated case

Data $\mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, g_{-3}, \ldots\right\rangle$	Theorem 4.1, m-even	Theorem 4.2, m-odd
$\mathbf{g}^{\text {even }}=\left\langle g_{0}, g_{-2}, g_{-4}, \ldots\right\rangle$	$[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{\text {even }}=\mathbf{0}$	$[I+\mathrm{i} \mathcal{H}] L^{\frac{m+1}{2}} \mathbf{g}^{\text {even }}=\mathbf{0}$
$\mathbf{g}^{\text {odd }}=\left\langle g_{-1}, g_{-3}, g_{-5}, \ldots\right\rangle$	$[I+\mathrm{i}]] L^{\frac{m}{2}} \mathbf{g}^{\text {odd }}=\mathbf{0}$	
$\mathbf{g}^{\mathbf{2 k - 1}}=\left\langle g_{2 k-1}, \ldots, g_{-1}, g_{-3}, \ldots\right\rangle, k \geq 1$		$[I+\mathrm{i} \mathcal{H}] \mathbf{g}^{\mathbf{2 k - 1}}=\mathbf{0}$

Table 2. Range Characterization in the attenuated case

$$
\begin{array}{|l|c|}
\hline \text { Data } \mathbf{g}=\left\langle g_{0}, g_{-1}, g_{-2}, g_{-3}, \ldots\right\rangle & \text { Theorem 5.1, } m \text {-tensor } \\
\hline \mathbf{g}_{h}=e^{-G} \mathbf{g}=\left\langle\gamma_{0}, \gamma_{-1}, \gamma_{-2}, \ldots\right\rangle & {[I+\mathrm{i} \mathcal{H}] L^{m} \mathbf{g}_{h}=\mathbf{0}} \\
\hline
\end{array}
$$

AcKnowledgment

The work of D. Omogbhe and K. Sadiq were supported by the Austrian Science Fund (FWF), Project P31053-N32 and by the FWF Project F6801N36 within the Special Research Program SFB F68 Tomography Across the Scales.

REFERENCES

[1] V. Aguilar, L. Ehrenpreis and P. Kuchment, Range conditions for the exponential Radon transform, J. Anal. Math. 68 (1996), 1-13.
[2] E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.
[3] Y. M. Assylbekov, F. Monard and G. Uhlmann, Inversion formulas and range characterizations for the attenuated geodesic ray transform, Journal de Mathématiques Pures et Appliquées 111 (2018), 161-190.
[4] G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004), 399-418.
[5] J. Boman and J.-O. Strömberg, Novikov's inversion formula for the attenuated Radon transform-a new approach, J. Geom. Anal., 14 (2004), 185-198.
[6] H. Braun and A. Hauk, Tomographic reconstruction of vector fields, IEEE Transactions on signal processing 39 (1991), 464-471.
[7] A. L. Bukhgeim, Inversion Formulas in Inverse Problems, chapter in Linear Operators and Ill-Posed Problems by M. M. Lavrentiev and L. Ya. Savalev, Plenum, New York, 1995.
[8] E. Y. Derevtsov and V. V. Pickalov, Reconstruction of vector fields and their singularities from ray transform Numerical Analysis and Applications 4 (2011), 21-35.
[9] E. Derevtsov and I. Svetov, Tomography of tensor fields in the plane, Eurasian J. Math. Comput. Appl., 3(2), (2015), 24-68.
[10] A. Denisiuk, On range condition of the tensor X-ray transforms in \mathbb{R}^{n}, Inverse Prob. Imaging, 14(3), (2020), 423-435.
[11] D. V. Finch, The attenuated x-ray transform: recent developments, in Inside out: inverse problems and applications, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003, 47-66.
[12] I. M. Gelfand and M.I. Graev, Integrals over hyperplanes of basic and generalized functions, Dokl. Akad. Nauk SSSR 135 (1960), no.6, 1307-1310; English transl., Soviet Math. Dokl. 1 (1960), 1369-1372.
[13] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogenous spaces and Grassmann manifolds, Acta Math., 113 (1965), 153-180.
[14] S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the $2 D$ fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Problems 12 (2004), 245-278.
[15] S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735-765.
[16] V. P. Krishnan, R. Manna, S. K. Sahoo, and V. A. Sharafutdinov, Momentum ray transforms, II: range characterization in the Schwartz space , Inverse Problems 36 (4) (2020) 045009 (33pp).
[17] P. Kuchment, DS. A. L’vin, Range of the Radon exponential transform, Soviet Math. Dokl. 42 (1991), no. 1, 183-184
[18] D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math., 19 (1966), 49-81.
[19] R. K. Mishra, Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in \mathbb{R}^{n}, J. Inverse Ill-Posed Problems 28 (2019), 173-184.
[20] F. Monard, Efficient tensor tomography in fan-beam coordinates, Inverse Probl. Imaging, 10(2) (2016), 433-459.
[21] F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12(2) (2018), 433-460.
[22] N. I. Muskhelishvili, Singular Integral Equations, Dover, New York, 2008.
[23] F. Natterer, The mathematics of computerized tomography, Wiley, New York, 1986.
[24] F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems 17 (2001), 113-119.
[25] F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction. SIAM Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, PA, 2001.
[26] S. J. Norton, Tomographic reconstruction of 2-D vector fields: application to flow imaging, Geophysical Journal 97 (1989), 161-168.
[27] S. J. Norton, Unique tomographic reconstruction of vector fields using boundary data, IEEE Transactions on image processing 1 (1992), 406-412.
[28] R. G. Novikov, Une formule d'inversion pour la transformation d'un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059-1063.
[29] R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems 18 (2002), no. 3, 677-700.
[30] D. Omogbhe and K. Sadiq, An inverse source problem for linearly anisotropic radiative sources in absorbing and scattering medium, Applicable Analysis, (2023), doi:10.1080/00036811.2023.2234387.
[31] E. Yu. Pantyukhina, Description of the image of a ray transformation in the two-dimensional case.(Russian) Methods for solving inverse problems (Russian), 80-89, 144, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1990.
[32] G. P. Paternain, M. Salo, and G. Uhlmann, Tensor tomography on surfaces, Invent. Math. 193(1) (2013), 229-247.
[33] G. P. Paternain, M. Salo, and G. Uhlmann, Tensor Tomography: Progress and Challenges, Chin. Ann. Math. Ser. B., 35(3) (2014), 399-428.
[34] L. Pestov and G. Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not., 80 (2004), 4331-4347.
[35] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917), 262-277.
[36] K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367(8) (2015), 5375-5398.
[37] K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47(3) (2015), 2001-2021.
[38] K. Sadiq and A. Tamasan, On the range of the planar X-ray transform on the Fourier lattice of the torus, preprint (2022), arXiv:2201.10926v2.
[39] K. Sadiq and A. Tamasan, On the range of the X-ray transform of symmetric tensors compactly supported in the plane, Inverse Probl. Imaging 17(3) (2023), 660-685.
[40] K. Sadiq, O. Scherzer, and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442(1) (2016), 31-49.
[41] M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom., 88(1) (2011), 161-187.
[42] T. Schuster, 20 years of imaging in vector field tomography: a review. In Y. Censor, M. Jiang, A.K. Louis (Eds.), Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), in: Publications of the Scuola Normale Superiore, CRM 7 (2008) 389-424.
[43] V. A. Sharafutdinov, A problem of integral geometry for generalized tensor fields on \mathbb{R}^{n}, Dokl. Akad. Nauk SSSR 286 (1986), 305-307.
[44] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, 1994.
[45] G. Sparr, K. Stråhlén, K. Lindström, and H. W. Persson, Doppler tomography for vector fields, Inverse Problems, 11 (1995), 1051-1061.
[46] A. Tamasan, Tomographic reconstruction of vector fields in variable background media, Inverse Problems 23 (2007), 2197-2205.

Faculty of Mathematics, Computational Science Center, University of Vienna, Oskar-MorgensternPlatz 1, 1090 Vienna, Austria

E-mail address: david.omogbhe@univie.ac.at
Johann Radon Institute for Computational and Applied Mathematics (RICAM), AltenbergerSTRASSE 69, 4040 LinZ, AUSTRIA

E-mail address: kamran.sadiq@ricam.oeaw.ac.at

[^0]: Date: August 3, 2023.
 2000 Mathematics Subject Classification. Primary 30E20; Secondary 35J56.

