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INVERSION OF THE MOMENTA DOPPLER TRANSFORM IN TWO DIMENSIONS

HIROSHI FUJIWARA, DAVID OMOGBHE, KAMRAN SADIQ, AND ALEXANDRU TAMASAN

ABSTRACT. We introduce an analytic method which stably reconstructs both components of a (suffi-
ciently) smooth, real valued, vector field compactly supported in the plane from knowledge of its Doppler
transform and its first moment Doppler transform. The method of proof is constructive. Numerical in-
version results indicate robustness of the method.

1. INTRODUCTION

We revisit the problem of inversion of the Doppler transform

D0Fpx,θq :“

ż 8

´8

θ ¨ Fpx` tθqdt, px,θq P R2
ˆ S1,(1)

of a real valued vector field F compactly supported in the plane. It is easy to note that D0 has a large
kernel containing all the gradient fields vanishing at the boundary of the support. In response, a vast
literature in tensor tomography concerns recovery questions (uniqueness, stability, reconstruction) on
the solenoidal part of the tensor field; see the surveys [23, 17, 8, 4, 16, 22] and reference therein. The
problem is originally motivated by engineering practices [29, 14, 2, 24].

In this paper, we consider the inversion problem introduced (for arbitrary order tensors) in [23]. In
particular for 1-order tensors: F is to be determined fromD0F and its first-moment-Doppler transform:

D1Fpx,θq :“

ż 8

´8

tθ ¨ FpΠθpxq ` tθqdt, px,θq P R2
ˆ S1,(2)

where Πθpxq “ x´ px ¨ θqθ is the projection of x onto θK.
Note that the first momentum transform I1F in [23] is defined on the unit tangent bundle of the

domain, while D1F here is normalized to the tangent bundle of the circle. However, there is an one-to-
one correspondence between D1F and I1F (affine in x ¨ θ with coefficients dependent on px ¨ θK,θq).
Modulo this correspondence, the unique determination of the full vector field F from pD0F, D1Fq has
been shown in [23, 13], while stability estimates and inversions are proposed in [10, 11], and most
recently in [12]. The latter work also includes a numerical implementation.

Different from the above referenced works, in here we introduce a new reconstruction method of the
full vector field (see the proof of Theorem 1.1), which is based on Bukhgeim’s theory of A-analyticity
[3] and its extension in [18, 21, 20]. Numerical results from its implementation are also presented.
Specific to two dimensions, the method solves an inverse boundary value problem for a coupled system
of Bukhgeim-Beltrami equations. Used in the stability estimates, but of independent interest, we
establish a priori estimates for higher order derivatives of solutions of the inhomogenous Bukhgeim-
Beltrami equation; see Theorem 2.2.
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We mention that Bukhgeim’s approach has also been used in the determination of the attenuated
X-ray transform of compactly supported functions in the plane [1], of the solenoidal part of a vector
field F from its Doppler transform in [9, 26, 15]. The full vector field has been recovered from the
weighted Doppler transform, with a weight arising from a positive attenuation factor [27, 26, 19]. We
stress that our problem here is different, since it corresponds to the zero attenuation case.

Throughout, F is a real valued vector field with support contained in a disc Ω of some known large
enough radius. We also assume F P H2

0 pΩ;R2q. Upon a translation and scaling, without loss of
generality, F is supported in the unit disc Ω “ tz P C : |z| ă 1u. The boundary Γ of Ω is the unit
circle, but we keep this notation to differentiate from the set S1 of directions.

Functions u on Ω ˆ S1 are characterized by the sequence valued map of their Fourier coefficients
u´npzq “

1
2π

ş2π

0
upz,θqeinθdθ (non-positive indexes are sufficient) in the angular variable,

Ω Q z ÞÑ upzq :“ xu0pzq, u´1pzq, u´2pzq, ¨ ¨ ¨ y.

We work in the spaces

l2,ppN;Hq
pΩqq :“

#

u “ xu0, u´1, u´2, ¨ ¨ ¨ y : }u}2p,q :“
8
ÿ

j“0

p1` jq2p }u´j}
2
HqpΩq ă 8

+

.(3)

The first index p encodes the smoothness of u in the angular variable, while the second index q shows
the smoothness in the spatial variable. The traces g “ u|Γ on Γ of maps u P l2,ppN;HqpΩqq are in
l2,ppN;Hq´ 1

2 pΓ qq endowed with the norm

}g}2p,q´ 1
2

:“
8
ÿ

j“0

p1` jq2p }g´j}
2

Hq´ 1
2 pΓ q

.(4)

Furthermore, since Γ is the unit circle, the Hq´ 1
2 pΓ q-norm of g´j are defined in the Fourier domain by

}g´j}
2

Hq´ 1
2 pΓ q

“

8
ÿ

k“´8

p1` |k|q2q´1
|g´j,k|

2,(5)

where g´j,k “
1

2π

ż 2π

0

g´jpe
iβ
qe´ikβdβ, for k P Z, j ě 0. In particular, for g P l2,ppN;Hq´ 1

2 pΓ qq,

}g}2p,q´ 1
2
“

8
ÿ

j“0

8
ÿ

n“´8

p1` jq2pp1` |n|q2q´1
|g´j,n|

2.(6)

Note that both D0F and D1F are functions on the lines, which vanish on lines laying outside Ω.
Upon parametrizing the lines intersecting Ω by points on the torus Γ ˆ S1, D0F and D1F are under-
stood as functions on the torus; see Figure 1 for an example.

For brevity we adopt throughout the notation }v} À }w} , whenever }v} ď C }w} for some constant
C ą 0 independent of v and w.

Theorem 1.1. Let Ω Ă R2 be the unit disc and F “ xF1, F2y be some unknown real valued vector
field compactly supported in Ω. If F P H2

0 pΩ;R2q, then

D0F, D1F P H
3
2 pS1;H

3
2 pΓ qq,(7)

and F is uniquely determined by D0F and D1F with the estimate

}F}2L2pΩq À
›

›D0F
›

›

2
3
2
, 1
2

`
›

›D1F
›

›

2
3
2
, 3
2

.(8)

The method of proof is constructive.
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2. REFINED A PRIORI ESTIMATES FOR THE INHOMOGENOUS BUKHGEIM-BELTRAMI EQUATION

The stability estimate in Theorem 1.1 requires a-priori estimates for higher order derivatives of
solution of the inhomogenous Bukhgeim-Beltrami equation

Bv ` L2
Bv “ w,(9)

where
Lv “ Lpv0, v´1, v´2, ¨ ¨ ¨ q :“ pv´1, v´2, ¨ ¨ ¨ q

denotes the left translation, and

B “
1

2
pBx1 ` iBx2q, B “

1

2
pBx1 ´ iBx2q(10)

are the Cauchy-Riemann operators.

Theorem 2.1. Let w P l2,p`1pN;L2pΩqq, for some fixed p ě 0. If v P l2,p`
1
2 pN;H1pΩqq solves (9),

then

}v}2p,1 À }w}
2
p`1,0 ` }v|Γ }

2
p` 1

2
, 1
2
.(11)

Proof. We reason by induction in p. The case p “ 0,

}v}20,1 À }w}
2
1,0 ` }v|Γ }

2
1
2
, 1
2
,(12)

is established in [6, Corollary 4.1].
Assume next that (11) holds for p:

}v}2p,1 À }w}
2
p`1,0 ` }v|Γ }

2
p` 1

2
, 1
2
.(13)

Since v solves (9), the left shifted sequence Lnv solves

BLnv ` L2
BLnv “ Lnw.(14)

Using the estimate (13) for Lnv solutions of (14), and a summation over n, we get
8
ÿ

n“0

}Lnv}2p,1 À
8
ÿ

n“0

}Lnw}2p`1,0 `

8
ÿ

n“0

}Lnv|Γ }2p` 1
2
, 1
2
,(15)

provided the right-hand-side is finite.
By applying the Lemma A.1 (with B “ l2pN;HqpΩqq for q “ 1, q “ 0, and q “ 1

2
), we obtain

}v}2p` 1
2
,1 À }w}

2
p` 3

2
,0 ` }v|Γ }

2
p`1, 1

2
.(16)

By using the estimate (16), for the sequence Lmv replacing v and Lmw replacing w, a summation
over m, and another application of Lemma A.1 (with B “ l2pN;HqpΩqq for q “ 1, q “ 0, and q “ 1

2
),

yields

}v}2p`1,1 À }w}
2
p`2,0 ` }v|Γ }

2
p` 3

2
, 1
2
.(17)

Note that, by hypothesis, the right-hand-side is finite.
�

Theorem 2.2. Let w P l2,
3
2 pN;H1pΩqq. If v P l2,

3
2 pN;H2pΩqq solves (9) then

}Bνv|Γ }21
2
, 1
2
À }v|Γ }23

2
, 3
2
` }w|Γ }23

2
, 1
2
, and(18)

}v}20,2 À }w}
2
1,1 ` }w|Γ }23

2
, 1
2
` }v|Γ }23

2
, 3
2
.(19)

In (18) Bν is the normal derivative at the boundary Γ .
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Proof. A change of coordinates at the boundary point eiη P Γ rewrites B, B in (10) in terms of the
tangential and normal derivatives Bτ , Bν as B “ e´iηpBν ´ iBτ q{2 respectively B “ eiηpBν ` iBτ q{2..

If v P l2,1pN;H2pΩqq, then Bνv|ΓP l2,1pN;H
1
2 pΓ qq and the restriction of (9) to the boundary,

re2iη
` L2

spBνv|Γ q “ ´ire2iη
´ L2

spBτv|Γ q ` 2eiηw|Γ

holds in H1{2pΓ q. With µ “ ieiη we get

rµ2
´ L2

spBνv|Γ q “ ´irµ2
` L2

spBτv|Γ q ` 2iµw|Γ .(20)

While the unit circle is in the spectrum of the left translation L : l2 ÞÑ l2, the resolvent pλ ´ L2q´1

extends continuously from |λ| ą 1 to |λ| “ 1 as a bounded operator from l2,1 to l2; see Lemma A.2 in
the appendix.

An application of Lemma A.2 to (20) estimates the normal derivative of solutions of (9) in terms of
their tangential derivative,

}Bνv|Γ }H1{2pΓ ;l2q À }Bτv|Γ }H1{2pΓ ;l2,1q ` }w|Γ }H1{2pΓ ;l2,1q .(21)

In terms of the Sobolev norms on the unit circle Γ in (3), the above estimate becomes

}Bνv|Γ }20, 1
2
À }Bτv|Γ }21, 1

2
` }w|Γ }21, 1

2
À }v|Γ }21, 3

2
` }w|Γ }21, 1

2
.(22)

For each n ě 0, the shifted sequence Lnv solves the shifted inhomogeneous Bukhgeim-Beltrami
equation (14) and, thus, it satisfies the estimate (22) with v replaced by Lnv, and w replaced by Lnw.
A summation in n yields

8
ÿ

n“0

}BνL
nv|Γ }20, 1

2
À

8
ÿ

n“0

}Lnv|Γ }21, 3
2
`

8
ÿ

n“0

}Lnw|Γ }21, 1
2

(23)

provided the right-hand-side is finite.
By applying the Lemma A.1 (with B “ l2pN;HqpΩqq for q “ 1

2
and q “ 3

2
) in (23) yields

}Bνv|Γ }21
2
, 1
2
À }v|Γ }23

2
, 3
2
` }w|Γ }23

2
, 1
2
.(24)

Since v P l2,
3
2 pN;H2pΩqq by hypothesis, the right hand of (24) is finite.

This ends the proof of the first estimate in (18).
For the estimate in (19), we differentiate the equation (9):

Bp∇vq ` L2
Bp∇vq “ ∇w,(25)

where ∇ stands for either B or B and apply (12) for solutions ∇v of (25) to obtain

}v}20,2 À }w}
2
1,1 ` }v|Γ }

2
1
2
, 3
2
` }Bνv|Γ }21

2
, 1
2
.(26)

An application of the estimate (18) to the last term in (26) concludes the proof of (19). �

3. PROOF OF THEOREM 1.1

The reconstruction method is based on the equivalence with an inverse boundary value problem for
a system of transport equations. We denote by Γ˘ :“ tpx,θq P BΩˆS1 : ˘νpxq ¨θ ą 0u the incoming
(-), respectively outgoing (+), unit tangent sub-bundles of the boundary; where νpxq is the outer unit
normal at x P BΩ. Points px1, x2q in the plane are identified by the complex numbers z “ x1 ` ix2,
and directions θ “ pcos θ, sin θq in the unit sphere S1 by eiθ.
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Proposition 3.1. Let F P Hs
0pΩ;R2q, s ě 1. The system

θ ¨∇u0
pz,θq “ θ ¨ Fpzq, for pz,θq P Ωˆ S1,(27a)

θ ¨∇u1
pz,θq “ u0

pz,θq,(27b)

subject to the boundary conditions

uk|Γ´ “ 0, k “ 0, 1,(27c)

has a unique solution uk P HspΩˆ S1q, s ě 1. In particular uk|ΓˆS1P HspS1;Hs´ 1
2 pΓ qq.

Moreover, xu0|Γ` , u1|Γ`y are in a one-to-one correspondence with the Doppler transforms xD0F, D1Fy
in (1) and (2) via the relations

(28)
u0|Γ`px,θq “ D0Fpx,θq,

u1|Γ`px,θq “ px ¨ θqu0|Γ`px,θq ´D1Fpx,θq.

Proof. From (27a) and (27b), we note that for px,θq P Ωˆ S1,

d

dt

“

u0
px` tθ,θq

‰

“ θ ¨ Fpx` tθq, and
d

dt

“

u1
px` tθ,θq

‰

“ u0
px` tθ,θq.(29)

For px,θq P Ω ˆ S1 an integration along the line through x in the direction of θ in (27a) together
with the zero incoming condition (27c) yield

u0
px,θq “

ż x¨θ

´8

d

dt
u0
pΠθpxq ` tθ,θqdt “

ż x¨θ

´8

θ ¨ FpΠθpxq ` tθqdt.(30)

Similarly, a recursive integration by parts in (27b) together with (27c) yield

u1
px,θq “

ż x¨θ

´8

d

dt
u1
pΠθpxq ` tθ,θqdt “

ż x¨θ

´8

u0
pΠθpxq ` tθ,θqdt

“ px ¨ θqu0
px,θq ´D1Fpx,θq,(31)

where the last equality uses the fact that Fpx` pt´ x ¨ θqθq “ 0 for every px,θq P Γ` and t ą x ¨ θ.
The relations (28) now follow from (30) and (31).

Since F P Hs
0pΩ;R2q, s ě 1, the solution u0 given by (30) preserves the regularity and u0

P

Hs
pΩˆ S1

q, s ě 1. Moreover, by (27b) and (31), u1
P Hs

pΩˆ S1
q, s ě 1. �

In our inverse problem, the solution pu0, u1q of the boundary value problem (27) is unknown in Ω,
since F is unknown. However, their traces

gk “

#

uk|Γ` on Γ`,
0 on Γ´, k “ 0, 1,

(32)

are known on Γ ˆ S1 from the Doppler data via (28).
While unknown, the smoothness assumption on F yield uk P H2pΩˆS1q and gk P H2pS1;H3{2pΓ qq

for k “ 0, 1. Consequently, D0F, D1F P H2pS1;H3{2pΓ qq.
We use the Fourier approach to the transport problem and work with the sequence of the (non-

positive) Fourier coefficients of ukpz, ¨q,

uknpzq “
1

2π

ż π

´π

ukpz,θqe´inθdθ, n ď 0, k “ 0, 1.
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For θ “ arg θ P p´π, πs, the advection operator θ ¨∇ “ e´iθB ` eiθB, where B and B are Cauchy-
Riemann operators in (10). By identifying the Fourier coefficients in the system (27a) and (27b), the
solution uk´n’s solve

Bu0
0pzq ` Bu

0
´2pzq “ f1pzq,(33)

Bu0
´npzq ` Bu

0
´n´2pzq “ 0, n ě 1,(34)

Bu1
´npzq ` Bu

1
´n´2pzq “ u0

´n´1pzq, n P Z,(35)

and

uk´n|Γ“ gk´n,(36)

where

f1 :“
1

2
pF1 ` iF2q.(37)

The existence of the solution to the boundary value problem (33) - (36) is postulated by the forward
problem.

For k “ 0, 1, let uk be the sequence valued map of the Fourier coefficients of the solution uk and gk

be its corresponding trace on the boundary:

ukpzq “ xuk0pzq, u
k
´1pzq, u

k
´2pzq, u

k
´3pzq, ¨ ¨ ¨ y, z P Ω,(38)

gk “ xgk0 , g
k
´1, g

k
´2, g

k
´3, ¨ ¨ ¨ y :“ uk|Γ .(39)

Since uk P H2pS1;H2pΩqq, uk P l2,2pN;H2pΩqq and gk P l2,2pN;H
3
2 pΓ qq.

In the sequence valued map notation the boundary value problem (33) - (36) becomes

BLu0
` L2

BLu0
“ 0,(40a)

Bu1
` L2

Bu1
“ Lu0,(40b)

subject to

gk “ uk|Γ , for k “ 0, 1,(40c)

where Lu0 “ xu0
´1, u

0
´2, u

0
´3, ¨ ¨ ¨ y is the shifted sequence valued map.

Since Lu0 is L2-analytic, the Bukhgeim-Cauchy Integral formula (68) determines the sequence Lu0

inside Ω from its boundary values:

Lu0
“ BpLg0

q.(41)

Componentwise, for n ě 1,

u0
´npzq “

1

2πi

ż

Γ

g0
´npζq

ζ ´ z
dζ `

1

2πi

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

g0
´n´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

, z P Ω.(42)

Applying Theorem 2.1 ( for v “ u0 and w “ 0 therein) to the boundary value problem (40a) and
(40c), and using estimate (11) yields

›

›Lu0
›

›

2

p,1
À
›

›Lg0
›

›

2

p` 1
2
, 1
2

, for 0 ď p ď 1.(43)

Next, we show that the additional momentum data g1 recovers the real valued mode u0
0.

Since the modes xu0
´1, u

0
´2, u

0
´3, ¨ ¨ ¨ y are now recovered in Ω by (42), the right hand side of the non-

homogenous Bukhgeim Beltrami system (35) is known. The solution of (35) is given by the explicit
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Pompeiu-like formula (75) for the pB ´ L2Bq operator; see the Appendix B for a derivation. In the
reconstruction, we recover the mode u1

´1 from the first component of (75), namely

(44)

u1
´1pzq :“

1

2πi

ż

Γ

g1
´1pζq

ζ ´ z
dζ `

1

2πi

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

g1
´1´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

´
1

π

8
ÿ

j“0

ż

Ω

u0
´2´2jpζq

ζ ´ z

ˆ

ζ ´ z

ζ ´ z

˙j

dξdη, ζ “ ξ ` iη, z P Ω.

The Fourier mode u0
0 is determined by

u0
0pzq :“ 2Re Bu1

´1pzq, z P Ω,(45)

with the estimate
›

›u0
0

›

›

2

H1pΩq
À
›

›u1
´1

›

›

2

H2pΩq
À
›

›u1
›

›

2

0,2
.(46)

Applying Theorem 2.2 part (b) to the boundary value problem (40b)-(40c), and using (19) yields
›

›u1
›

›

2

0,2
À
›

›Lu0
›

›

2

1,1
`
›

›Lg0
›

›

2
3
2
, 1
2

`
›

›g1
›

›

2
3
2
, 3
2

.(47)

From mode u0
´2 in (42) and mode u0

0 in (45), we use (33) to recover

f1pzq :“ Bu0
´2pzq ` Bu

0
0pzq, z P Ω,(48)

and define the vector field

Fpzq :“ x2Re f1pzq, 2 Im f1pzqy.(49)

Furthermore, the following estimate holds:

(50)

}F}2L2pΩq À
›

›u0
´2

›

›

2

H1pΩq
`
›

›u0
0

›

›

2

H1pΩq

À
›

›Lu0
›

›

2

0,1
`
›

›u0
0

›

›

2

H1pΩq

À
›

›Lu0
›

›

2

0,1
`
›

›u1
›

›

2

0,2

À
›

›Lu0
›

›

2

0,1
`
›

›Lu0
›

›

2

1,1
`
›

›Lg0
›

›

2
3
2
, 1
2

`
›

›g1
›

›

2
3
2
, 3
2

À
›

›Lg0
›

›

2
1
2
, 1
2

`
›

›Lg0
›

›

2
3
2
, 1
2

`
›

›g1
›

›

2
3
2
, 3
2

À
›

›Lg0
›

›

2
3
2
, 1
2

`
›

›g1
›

›

2
3
2
, 3
2

À
›

›D0F
›

›

2
3
2
, 1
2

`
›

›D1F
›

›

2
3
2
, 3
2

where the third inequality uses (46), the fourth inequality uses (47), and the fifth inequality uses (43).
�

4. NUMERICAL IMPLEMENTATION

In this section we present the reconstruction results obtained by the numerical implementation of
the proof of Theorem 1.1. The Doppler data is simulated for two specific vector fields sharing the
same solenoidal part, while the reconstruction from both noiseless and noisy data is performed for
each vector field. The domain Ω is the unit disk centered at the origin and its boundary Γ is the unit
circle.

Starting from a vector field F, the data is computed by numerical integration in (1) and (2) via the
composite mid-point rule along lines. The data is calculated at 1,440 boundary points x P Γ of equal
angular spacing, and at about 720 equiangular outgoing directions θ P S1 (satisfying x ¨ θ ą 0).
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To avoid an inverse crime, the reconstruction algorithm uses a different numerical path: each com-
ponent of the vector field is recovered as a piecewise constant approximation on a (1,750 elements)
triangular partition of Ω. We use (42) to compute the values of u0

´n at the vertices of the partition,
yielding a piecewise linear approximation to u0

´n. More precisely, if u0
´n « ax1` bx2` c on a triangle

τ , then Bu0
´n|τ «

1

2
pa ´ biq as a piecewise constant approximation required in (48). In contrast, the

mode u1
´1 is computed at each centroid by (44). More precisely, at the centroid c of each triangle τ ,

u1
´1pc` λq «u

1
´1pcq ` Bx1u

1
´1pcqλ1 ` Bx2u

1
´1pcqλ2

`
1

2
B

2
x1x1

u1
´1pcqλ

2
1 ` B

2
x1x2

u1
´1pcqλ1λ2 `

1

2
B

2
x2x2

u1
´1pcqλ

2
2

for small λ “ pλ1, λ2q. We write τ1, τ2, . . . , τK the triangles sharing vertices or edges with τ . Then
substituting λ “ c ´ ck, k “ 1, 2, . . . , K to the expansion, we obtain K linear constraints with five
unknowns Bx1u

1
´1pcq, Bx2u

1
´1pcq, B

2
x1x1

u1
´1pcq, B

2
x1x2

u1
´1pcq, and B2

x2x2
u1
´1pcq required in (48) with (45)

to find Bu0
0. The least square method leads a unique solution to them on each τ . Note that the singularity

of the integrand of the final term in (44) is removable and a conoventional numerical integral rule can
be applied.

Throughout this section, the series in (42) and (44) are truncated up to 256 Fourier modes. The
truncation index not only controls the accuracy, but also plays a regularizing role in stability.

In the examples below, the relative errors between the reconstructed vector field Frecon and the exact
F are in the L2 sense :

}Frecon ´ F}rel “
}Frecon ´ F}2

}F}2
.(51)

Similarly, the relative error in the data is in the L2 sense.
All numerically reconstructed results are calculated in the double precision arithmetic on AMD

EPYC 7643 with 96 threads OpenMP parallel computations.

Example 1. We consider first the vector field

Fpxq “ ∇
`

sinπ|x|2
˘

` Fs
pxq,(52)

where the solenoidal part

(53) Fs
pxq “

ˆ

2x1x2 cos |x|2 ` cosp6x1x2q ´ 6x1x2 sinp6x1x2q

´ sin |x|2 ´ 2x2
1 cos |x|2 ` 6x1x2 sinp6x1x2q

˙

;

see Figure 2.
Example 1(a) - Noiseless data: For the vector field F in (52), the simulated data pD0F, D1Fq is

illustrated in Figure 1, where crosses (ˆ) depict a few boundary nodes x P Γ , while the red and blue
curves are tx ` |DjFpx,θq|θ ; θ P S1, x ¨ θ ą 0u, j “ 0, 1. Also, for illustration purposes, the radial
direction is shrunk by 1{5-th.

Note that D0F and D1F are not always positive. To differentiate the sign, the positive and negative
parts are drawn in red, respectively in blue. Since only outgoing signals are measured (while the
incoming flow is zero at the boundary) signals are depicted outside Ω only.

The numerically reconstructed result shown in Figure 3 has an relative error of 18.1%. The total
elapsed time in the reconstruction is approximately 10 seconds.

Example 1(b) - Perturbed data within the range: To illustrate the stability estimate in Theorem
1.1, we first consider the case of data perturbed within the range. To generate such a data we solve the
forward problem by (1) and (2) for a perturbed vector field Fε “ F ` ε, for some smooth vector field
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∂Ω

x=(1,0)

θ

| D
0 F(

x,
θ)

 |

FIGURE 1. Simulated data for F in (52): D0F (left) with its magnification at x “
p1, 0q (middle), and D1F (right). The crosses (ˆ) are some data collection points at
the boundary, while the red and blue curves represent DjFpx,θq, j “ 0, 1 in polar
coordinates

`

|DjFpx,θq|,θ
˘

centered at the respective boundary point x P Γ . The
radial direction is shrunk by 1{5-th for illustration purposes.
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FIGURE 2. Exact vector field F “ xF1, F2y in (52) (left), its first component F1 (mid-
dle) and its second component F2 (right).
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FIGURE 3. Numerical reconstruction from noiseless data: The vector field F0,recon

(left), its first component F1 (middle) and its second component F2 (right).

ε in Ω. Figure 4 below shows the reconstruction Fε,recon from this data. In this example, the relative
error in the data for D0F is 5.52% and for D1F is 4.48%, while the relative error in the reconstruction
is 30.0% error.

Example 1(c) - Noisy data : To assess the robustness of the method, we consider the same vector
field as in (52), where the data is corrupted with an additive random error. Specifically, D0F now
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FIGURE 4. Numerical reconstruction from perturbed data within the range (5.52%
relative error in D0F and 4.48% in D1F). The reconstructed field Fε,recon “ xF1, F2y

(left) and its components F1 (middle) and F2 (right) has 30.0% relative error.

contains about 5.88% relative error, while D1F contains 4.34% relative error, which are at the same
level as in the previous example; see Figure 5 for an illustration.

FIGURE 5. Noisy data D0F (left) with 5.88% error and D1F (right) with 4.34% error.

The reconstructed vector field Frecon shown in Figure 6, contains approximately 54.6% relative error.
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FIGURE 6. Numerical reconstruction from noisy data (5.88% relative error in D0F
and 4.34% in D1F). The reconstructed field Frecon “ xF1, F2y (left) and its components
F1 (middle) and F2 (right) has 54.6% relative error.

Example 2. We consider next the vector field

Fpxq “ ∇
ˆ

arctan
x2

2` x1

˙

` Fs
pxq(54)
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with the same solenoidal part Fs as in (53).

FIGURE 7. Simulated noiseless data D0F (left) and D1F (right) for F in (54). The
crosses (ˆ) are some data collection points at the boundary, while the red and blue
curves represent DjFpx,θq, j “ 0, 1 in polar coordinates

`

|DjFpx,θq|,θ
˘

centered at
the respective boundary point x P Γ .
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FIGURE 8. Exact vector field F “ xF1, F2y in (54) (left), its first component F1 (mid-
dle) and its second component F2 (right).
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FIGURE 9. Numerically reconstructed vector field from noiseless Doppler data: vector
field F0,recon “ xF1, F2y (left) and its components F1 (middle) and F2 (right).

Example 2(a) - Noiseless data: The vector field in (54) is depicted in Figure 8, while its corre-
sponding simulated Doppler data is shown in Figure 7. The numerically reconstructed vector field and
its components are exhibited in Figure 9 having 31.1% relative error.
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Example 2(b) - Perturbed data within the range: In this case, the generated perturbed data Fε

depicted in Figure 10 has 5.02% relative error in D0F and 6.04% relative error in D1F. The numerical
reconstruction of Fε,recon in Figure 11 has 45.9% relative error.

FIGURE 10. Data D0Fε (left) with 5.02% error and D1Fε (right) with 6.04% error,
which is considered as measurement data with noise in range
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FIGURE 11. Numerical reconstruction from perturbed data within the range (5.02%
relative error in D0F and 6.04% in D1F). The reconstructed field Fε,recon “ xF1, F2y

(left) and its components F1 (middle) and F2 (right) has 45.9% relative error.

Example 2(c) - Noisy data: We consider the same vector field as in (54), however the data is
corrupted with additive random errors: 6.03% relative error in D0F, and 5.04% in D1F.

The numerical reconstruction results are shown in Figure 12. The reconstructed vector field Frecon

has 71.3% relative error.
In Table 1 below, we summarize the level of error obtain in the examples. The reconstruction error

in Example 1(b) (30.0%), respectively, Example 2(b) (45.9%) obtained from the perturbed data within
the range reflects the instability of our method due to twice differentiation. The reconstruction error in
Example 1(c) (54.6%), respectively, Example 2(c) (71.3%) obtained from (an additive random error)
noisy data is also due to the ill-posedness (non-existence) specific to inverting data outside the range.
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FIGURE 12. Numerical reconstruction from noisy data (6.03% relative error in D0F
and 5.04% in D1F). The reconstructed field Frecon “ xF1, F2y (left) and its components
F1 (middle) and F2 (right) has 71.3% relative error.

TABLE 1. Differences between perturbed data in the range and additive random noise.

Relative Example 1 (b) Example 1 (c) Example 2 (b) Example 2 (c)
error in Perturbed data Random noise Perturbed data Random noise

in the range in the range

D0F 5.52% 5.88% 5.02% 6.03%

D1F 4.48% 4.34% 6.04% 5.04%

Reconstruction 30.0% 54.6% 45.9% 71.3%

APPENDIX A. A HIERACHY OF NORMS INDUCED BY THE LEFT TRANSLATION

For sequence valued maps with elements in a Banach space pB, } ¨ }q, we introduce here a hierarchy
of norms compatible with the left translation operator.

Recall the notation }v} À }w} , whenever }v} ď C }w} for some constant C ą 0 independent of v
and w. We also denote }v} « }w} if }v} À }w} À }v}.

We define inductively the spaces l2,
p
2 pN;Bq, for p ě 0 integer as follows:

l2,0pN;Bq is the space of sequences u with

}u}0 :“

˜

8
ÿ

j“0

}uj}
2

¸
1
2

ă 8,(55)

while for p ě 1, we define

l2,
p
2 pN;Bq :“

!

u “ xu0, u´1, u´2, ¨ ¨ ¨ y : }u} p
2
ă 8

)

,(56)

where

}u} p
2

:“

˜

8
ÿ

n“0

}Lnu}2p´1
2

¸
1
2

.(57)

The following result shows the equivalence of the norm in (57) with the weighted l2-norms.
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Lemma A.1. Let pB, } ¨ }q be a Banach space, and u P l2,
p
2 pN;Bq, for some p ě 0 integer. Then

}u}2p
2
“

8
ÿ

j“0

ˆ

j ` p

p

˙

}uj}
2
«

8
ÿ

j“0

p1` jqp }uj}
2 ,(58)

where
ˆ

j ` p

p

˙

“
pj ` pq!

j!p!
.

Proof. We first show the equality in (58) by induction in p.
The case p “ 0 holds by definition (55).
Assume next that the equality in (58) holds for some fixed p:

}u}2p
2
“

8
ÿ

j“0

ˆ

j ` p

p

˙

}uj}
2 .(59)

By definition (57),

}u}2p`1
2
“

8
ÿ

n“0

}Lnu}2p
2
“

8
ÿ

m“0

8
ÿ

n“0

ˆ

m` p

p

˙

}um`n}
2 .(60)

By changing the index j “ m` n, for m ě 0, (j ´ n ě 0, and n ď j) we get

8
ÿ

m“0

8
ÿ

n“0

ˆ

m` p

p

˙

}um`n}
2
“

8
ÿ

j“0

j
ÿ

n“0

ˆ

j ´ n` p

p

˙

}uj}
2
“

8
ÿ

j“0

}uj}
2

j
ÿ

n“0

ˆ

j ´ n` p

p

˙

.(61)

Note that for fixed j, by changing the index k “ j ´ n` p, and using Pascal’s recurrence,

(62)

j
ÿ

n“0

ˆ

j ´ n` p

p

˙

“

j`p
ÿ

k“p

ˆ

k

p

˙

“

j`p
ÿ

k“p

ˆ

k ` 1

p` 1

˙

´

j`p
ÿ

k“p

ˆ

k

p` 1

˙

“

j`p`1
ÿ

k“p`1

ˆ

k

p` 1

˙

´

j`p
ÿ

k“p

ˆ

k

p` 1

˙

“

ˆ

j ` p` 1

p` 1

˙

,

where in the last equality we use a telescoping argument. Thus, using (62) and (61), the expression in
(60) yields

}u}2p`1
2
“

8
ÿ

j“0

ˆ

j ` p` 1

p` 1

˙

}uj}
2 .

The equivalence of the norm in (58) follows from the inequalities

1

p!
p1` jqp ď

ˆ

j ` p

p

˙

ď p1` jqp.

�

The following result recalls the extension of the resolvent of the left translation operator L from
outside the unit disc to the unit circle.
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Lemma A.2. Let a P l2, c P l2,1 be sequences, L be the left translation operator, and λ P C with
|λ| ě 1. If a, c satisfy

pλ´ Lqa “ c,(63)

then there exists an M ą 0 independent of λ such that

}a}l2 ďM }c}l2,1 .(64)

For the proof of the estimate (64), we refer to [25, Lemma 3.1.1, Step 1].

APPENDIX B. AN EXPLICIT POMPEIU FORMULA FOR L2-ANALYTIC MAPS

In here, we derive the Pompeiu type formula corresponding to A-analytic maps, which is used in the
reconstruction method.

Bukhgeim’s original theory in [3] considers the sequence valued maps

Ω Q z ÞÑ upzq :“ xu0pzq, u´1pzq, u´2pzq, ¨ ¨ ¨ y,(65)

and solution of the Beltrami-like equation

Bupzq ` L2
Bupzq “ 0, z P Ω,(66)

where Lupzq “ Lpu0pzq, u´1pzq, u´2pzq, ¨ ¨ ¨ q :“ pu´1pzq, u´2pzq, ¨ ¨ ¨ q denotes the left translation.
These solutions are called L2-analytic.

Similar to classical analytic maps, the solution of (66) satisfy a Cauchy-like integral formula,

upzq “ Bru|Γ spzq, z P Ω,(67)

where B is the Bukhgeim-Cauchy operator acting on u|Γ defined component-wise [5] for n ě 0 by

pBuq´npzq :“
1

2πi

ż

Γ

u´npζq

ζ ´ z
dζ `

1

2πi

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

u´n´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

, z P Ω.(68)

We next give the solution of the Bukhgeim-Beltrami system, which leads to Bukhgeim-Pompeiu
formula.

Solution of the Bukhgeim-Beltrami system :

Bu´npzq ` Bu´n´2pzq “ v´n´1pzq, n P Z.(69)

Assume that Ω is bounded convex set with C1 boundary, and for n ě 0, let

σ´npz, ϕq “
8
ÿ

j“0

u´n´2jpzqe
´ipn`2jqϕ,

and σ´n P C1pΩq XCpΩq. Let z P Ω and ζ P Ω, we write the parametrization ζpϕq “ z` lpϕqeiϕ. For
n ě 0, we have

σ´npζ, ϕq ´ σ´npz, ϕq “

ż l

0

Bσ´n
Bt

pz ` teiϕ, ϕqdt “

ż l

0

´

Bσ´n
Bz

e´iϕ `
Bσ´n
Bz

eiϕ
¯

dt

“

ż l

0

˜

8
ÿ

j“0

Bu´n´2j

Bz
e´ipn`2j`1qϕ

`

8
ÿ

j“0

Bu´n´2j

Bz
eip´n´2j`1qϕ

¸

dt

“

ż l

0

Bu´n
Bz

e´ipn´1qϕdt`

ż l

0

8
ÿ

j“0

´

Bu´n´2j ` Bu´n´2j´2

¯

e´ipn`2j`1qϕdt.(70)
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We obtain the Fourier coefficients u´n in Ω for n ě 0 as follows:

u´npzq “
1

2π

ż 2π

0

σ´npz, ϕqe
inϕdϕ

“
1

2π

ż 2π

0

σ´npζ, ϕqe
inϕdϕ´

1

2π

ż 2π

0

ż lpϕq

0

Bu´n
Bz

1

te´iϕ
tdtdϕ

´
1

2π

ż 2π

0

ż lpϕq

0

8
ÿ

j“0

´

Bu´n´2j ` Bu´n´2j´2

¯

e´2ijϕ 1

teiϕ
tdtdϕ

“
1

2π

ż 2π

0

8
ÿ

j“0

u´n´2jpζqe
´2ijϕdϕ´

1

2π

ż

Ω

Bu´n
Bz

1

ζ ´ z
dA(71)

´
1

2π

ż

Ω

8
ÿ

j“0

´

Bu´n´2j ` Bu´n´2j´2

¯

e´2ijϕ 1

ζ ´ z
dA

where dA is the element of the area, and in the second equality we use (70).
From ζ “ z ` lpϕqeiϕ we get

e´2iϕ
“
ζ ´ z

ζ ´ z
, dϕ “

1

2i

˜

1

ζ ´ z
dζ ´

1

ζ ´ z
dζ

¸

,(72)

and by the conjugate form of the Cauchy- Pompeiu formula (e.g. see [28]), we have

1

2π

ż

Ω

Bu´n
Bz

1

ζ ´ z
dA “

1

2
u´npzq `

1

4πi

ż

BΩ

u´npζq
1

ζ ´ z
.(73)

Substituting (72), (73) and (69) into (71) yields an explicit form of the Bukhgeim-Pompeiu formula
[3], defined component-wise for n ě 0 by

(74)

u´npzq “
1

2πi

ż

Γ

u´npζq

ζ ´ z
dζ `

1

2πi

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

u´n´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

´
1

π

8
ÿ

j“0

ż

Ω

v´n´2j´1pζq
1

ζ ´ z

ˆ

ζ ´ z

ζ ´ z

˙j

dξdη, ζ “ ξ ` iη.

The following (75) is the Bukhgeim-Pompeiu formula, given in [3], and in an explicit form, defined
component-wise for n ě 0 by

u´npzq “ pBu|Γ q´npzq ` pT Lvq´npzq, z P Ω,(75)

where B is the Bukhgeim-Cauchy operator in (68), and T is an operator defined component-wise for
n ě 0 by

pT vq´npzq :“ ´
1

π

8
ÿ

j“0

ż

Ω

v´n´2jpζq
1

ζ ´ z

ˆ

ζ ´ z

ζ ´ z

˙j

dξdη, ζ “ ξ ` iη, z P Ω.(76)

�
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