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AN INVERSE SOURCE PROBLEM FOR LINEARLY ANISOTROPIC RADIATIVE
SOURCES IN ABSORBING AND SCATTERING MEDIUM

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. We consider in a two dimensional absorbing and scattering medium, an inverse source
problem in the stationary radiative transport, where the source is linearly anisotropic. The medium has an
anisotropic scattering property that is neither negligible nor large enough for the diffusion approximation
to hold. The attenuating and scattering properties of the medium are assumed known. For scattering
kernels of finite Fourier content in the angular variable, we show how to recover the anisotropic radiative
sources from boundary measurements. The approach is based on the Cauchy problem for a Beltrami-
like equation associated with A-analytic maps. As an application, we determine necessary and sufficient
conditions for the data coming from two different sources to be mistaken for each other.

1. INTRODUCTION

In this work, we consider an inverse source problem for stationary radiative transfer (transport)
[6, 7], in a two-dimensional bounded, strictly convex domain Ω Ă R2, with boundary Γ. The stationary
radiative transport models the linear transport of particles through a medium and includes absorption
and scattering phenomena. In the steady state case, when generated solely by a linearly anisotropic
source f inside Ω, the density upz,θq of particles at z traveling in the direction θ solves the stationary
radiative transport boundary value problem

(1)
θ ¨∇upz,θq ` apz,θqupz,θq ´

ż

S1

kpz,θ,θ1qupz,θ1qdθ1 “ fpz,θq, pz,θq P Ωˆ S1,

u|Γ´
“ 0.

In boundary value problem (1), the function apz,θq is the medium capability of absorption per unit
path-length at z moving in the direction θ called the attenuation coefficient, the function kpz,θ,θ1q
is the scattering coefficient which accounts for particles from an arbitrary direction θ1 which scatter
in the direction θ at a point z, and Γ´ :“ tpζ,θq P Γ ˆ S1 : νpζq ¨ θ ă 0u is the incoming unit
tangent sub-bundle of the boundary, with νpζq being the outer unit normal at ζ P Γ . The attenuation
and scattering coefficients are assumed known real valued functions. The boundary condition in (1)
indicates that no radiation is coming from outside the domain. Throughout, the measure dθ on the unit
sphere S1 is normalized to

ş

S1 dθ “ 1.
The (forward) boundary value problem (1) is known to be well-posed under various assumptions,

e.g in [9, 8, 2, 18], with a general result in [29] showing that, for an open and dense set of coefficients
a P C2pΩ ˆ S1q and k P C2pΩ ˆ S1 ˆ S1q, the boundary value problem (1) has a unique solution
u P L2pΩ ˆ S1q for any f P L2pΩ ˆ S1q. In [14], it is shown that for attenuation merely once
differentiable, a P C1pΩˆS1q and k P C2pΩˆS1ˆS1q, the boundary value problem (1) has a unique
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solution u P LppΩ ˆ S1q for any f P LppΩ ˆ S1q, p ą 1. Moreover, uniqueness result of the forward
problem (1) are also establish in weighted Lp spaces in [11], and in [27, 16] using Carleman estimates.

In our reconstruction method here, some of our arguments require solutions u P C2,µpΩ ˆ S1q,
1
2
ă µ ă 1. We revisit the arguments in [29, 14] and show that such a regularity can be achieved for

sources f P W 3,ppΩˆ S1q, p ą 4; see Theorem A.2 (iii) below.
For a given medium, i.e., a and k both known, we consider the inverse problem of determining the

linear anisotropic source f “ f0 ` θ ¨ F; in particular, recovering the isotropic scalar field f0 and the
vector field F from measurements gf0,F of exiting radiation on Γ,

u|Γ`
“ gf0,F,(2)

where Γ` :“ tpz,θq P ΓˆS1 : νpzq ¨ θ ą 0u is the outgoing unit tangent sub-bundle of the boundary.
For anisotropic sources the problem has non-uniqueness [26, 8, 4, 30]. One of our main result,

Theorem 3.1 shows that from boundary measurement data gf0,F, one can only recover the part of the
linear anisotropic source f “ f0 ` θ ¨ F; in particular, only the solenoidal part Fs of the vector field
F is recovered inside the domain. However, in Theorem 3.2, if one know apriori that the source F
is divergence-free, then from the data gf0,F, one can recover both isotropic field f0 and the vector field
F inside the domain. Moreover, instead of apriori information of the divergence-free source F, if
one has the additional data gf0,0 information along with the data gf0,F, then in Theorem 3.3, one can
recover both sources f0 and F under subcritical assumption of the medium. One of the main crux in
our reconstruction method is the observation that any finite Fourier content in the angular variable of
the scattering kernel splits the problem into an infinite system of non-scattering case and a boundary
value problem for a finite elliptic system. The role of the finite Fourier content has been independently
recognized in [13] and [19].

The inverse source problem above has applications in medical imaging: In a non-scattering (k “ 0)
and non-attenuating (a “ 0) medium the problem is mathematically equivalent to the one occurring in
classical computerizedX-ray tomography (e.g., [5, 21]). In the absorbing non-scattering medium, such
a problem (with only isotropic source f “ f0), appears in Positron/Single Photon Emission Tomogra-
phy [21, 22], and f “ θ ¨F with f0 “ 0, appears in Doppler Tomography [22, 21, 28]. For applications
in scattering media the inverse source problem formulated here is the two dimensional version of the
corresponding three dimensional problem occurring in imaging techniques such as Bioluminescence
tomography and Optical Molecular Imaging, see [31, 15, 17] and references therein.

In this work, except for the results in the appendix, the attenuation coefficient are assumed isotropic
a “ apzq, and that the scattering kernel kpz,θ,θ1q “ kpz,θ ¨ θ1q depends polynomially on the angle
between the directions. Moreover, the functions a, k and the source f are assumed real valued.

In Section 2, we recall some basic properties of A-analytic theory, and in Section 3 we provide
the reconstruction method for the full (part) of the linearly anisotropic source. Our approach is based
on the Cauchy problem for a Beltrami-like equation associated with A-analytic maps in the sense
of Bukhgeim [5]. The A-analytic approach developed in [5] treats the non-attenuating case, and the
absorbing but non-scattering case is treated in [3]. The original idea of Bukhgeim from the absorbing
non-scattering media [5, 3] to the absorbing and scattering media has been extended in [13, 14]. In
here we extend the results in [13, 14] to linear anisotropic sources.

In Section 4, the method used will explain when the data coming from two different linear anisotropic
field sources can be mistaken for each other.

In the appendix, we revisit the arguments in [29, 14] and remark on the existence and regularity of
the forward boundary value problem. The results in the appendix consider both attenuation coefficient
and scattering kernel in general setting.
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2. INGREDIENTS FROM A-ANALYTIC THEORY

In this section we briefly introduce the properties of A-analytic maps needed later, and introduce
notation. We recall some of the existing results and concepts used in our reconstruction method.

For 0 ă µ ă 1, p “ 1, 2, we consider the Banach spaces:

(3)

Cµ
pΓ ; l1q :“

$

&

%

g “ xg0, g´1, g´2, ...y : sup
ξPΓ

‖gpξq‖l1 ` sup
ξ,ηPΓ
ξ‰η

‖gpξq ´ gpηq‖l1
|ξ ´ η|µ

ă 8

,

.

-

,

YµpΓ q :“

$

&

%

g : sup
ξPΓ

8
ÿ

j“0

xjy2|g´jpξq| ă 8, and sup
ξ,ηPΓ
ξ‰η

8
ÿ

j“0

xjy
|g´jpξq ´ g´jpηq|

|ξ ´ η|µ
ă 8

,

.

-

,

where xjy “ p1` |j|2q1{2. Similarly, we consider CµpΩ; l1q, and CµpΩ; l8q.
For z “ x1`ix2, we consider the Cauchy-Riemann operators B “ pBx1 ` iBx2q {2, B “ pBx1 ´ iBx2q {2.

A sequence valued map Ω Q z ÞÑ vpzq :“ xv0pzq, v´1pzq, v´2pzq, ...y in CpΩ; l8qXC
1pΩ; l8q is called

L2-analytic (in the sense of Bukhgeim [5]), if

(4) Bvpzq ` L2
Bvpzq “ 0, z P Ω,

where L is the left shift operator Lxv0, v´1, v´2, ¨ ¨ ¨ y “ xv´1, v´2, ¨ ¨ ¨ y, and L2 “ L ˝ L.
Bukhgeim’s original theory [5] shows that solutions of (4), satisfy a Cauchy-like integral formula,

vpzq “ Brv|Γ spzq, z P Ω,(5)

where B is the Bukhgeim-Cauchy operator acting on v|Γ . We use the formula in [12], where B is
defined component-wise for n ě 0 by

(6) pBvq´npzq :“
1

2πi

ż

Γ

v´npζq

ζ ´ z
dζ `

1

2πi

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

v´n´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

, z P Ω.

Similar to the analytic maps, the traces of L2-analytic maps on the boundary must satisfy some
constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in
[23]. More precisely, the Bukhgeim-Hilbert transform H is defined component-wise for n ě 0 by

(7) pHgq´npzq “
1

π

ż

Γ

g´npζq

ζ ´ z
dζ `

1

π

ż

Γ

"

dζ

ζ ´ z
´

dζ

ζ ´ z

* 8
ÿ

j“1

g´n´2jpζq

ˆ

ζ ´ z

ζ ´ z

˙j

, z P Γ,

and we refer to [23] for its mapping properties.
Another ingredient, in addition to L2-analytic maps, consists in the one-to-one relation between

solutions u :“ xu0, u´1, u´2, ...y satisfying

Bu` L2
Bu` aLu “ 0,(8)

and the L2-analytic map v “ xv0, v´1, v´2, ...y satisfying (4), via a special function h, see [25, Lemma

4.2] for details. The function h is defined as hpz,θq :“

ż 8

0

apz ` tθqdt´
1

2
pI ´ iHqRapz ¨ θK,θKq,

where Raps,θKq “
ż 8

´8

a
`

sθK ` tθ
˘

dt is the Radon transform of the attenuation a, and Hhpsq “

1

π

ż 8

´8

hptq

s´ t
dt is the classical Hilbert transform [20]. The function h has vanishing negative Fourier
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modes yielding the expansions e´hpz,θq :“
8
ÿ

k“0

αkpzqe
ikθ, ehpz,θq :“

8
ÿ

k“0

βkpzqe
ikθ, for pz,θq P Ωˆ S1.

Using the Fourier coefficients of e˘h, define the sequence valued maps

Ω Q z ÞÑ βpzq :“ xβ0pzq, β1pzq, ..., y Ω Q z ÞÑ αpzq :“ xα0pzq, α1pzq, ..., y,

and define the operators e˘G component-wise for each n ď 0, by

pe´Guqn “ pα ˚ uqn “
8
ÿ

k“0

αkun´k, and peGuqn “ pβ ˚ uqn “
8
ÿ

k“0

βkun´k.(9)

Note the commutating property re˘G, Ls “ 0.

Lemma 2.1. [24, Lemma 4.2] Let a P C1,µpΩq, µ ą 1{2, and e˘G be operators as defined in (9).
(i) If u P C1pΩ, l1q solves Bu`L2

Bu`aLu “ 0, then v “ e´Gu P C1
pΩ, l1q solves Bv`L2Bv “ 0.

(ii) Conversely, if v P C1pΩ, l1q solves Bv ` L2Bv “ 0, then u “ eGv P C1
pΩ, l1q solves Bu `

L2
Bu` aLu “ 0.

3. RECONSTRUCTION OF A SUFFICIENTLY SMOOTH LINEARLY ANISOTROPIC SOURCE

For an isotropic real valued vector field F and real map f0, recall the boundary value problem (1):

(10)
θ ¨∇upz,θq ` apzqupz,θq ´

ż

S1

kpz,θ ¨ θ1qupz,θ1qdθ1 “ f0pzq ` θ ¨ Fpzq
loooooooomoooooooon

fpz,θq

, pz,θq P Ωˆ S1,

u|Γ´
“ 0,

with an isotropic attenuation a “ apzq, and with the scattering kernel kpz,θ,θ1q “ kpz,θ ¨θ1q depend-
ing polynomially on the angle between the directions,

kpz, cos θq “ k0pzq ` 2
M
ÿ

n“1

k´npzq cospnθq,(11)

for some fixed integer M ě 1. Note that, since kpz, cos θq is both real valued and even in θ, the
coefficient k´n is the p´nqth Fourier coefficient of kpz, cosp¨qq. Moreover k´n is real valued, and
knpzq “ k´npzq “

1
2π

şπ

´π
kpz, cos θqeinθdθ.

For the real vector field F “ xF1, F2y, let

f1 :“ pF1 ` iF2q {2,(12)

and for θ “ pcos θ, sin θq P S1, a calculation shows that the linear anisotropic source

fpz,θq “ f0pzq ` θ ¨ Fpzq “ f0pzq ` f1pzqe
iθ
` f1pzqe

´iθ.(13)

We assume that the coefficients a, k0, k´1, ..., k´M P C3pΩq are such that the forward problem (10)
has a unique solution u P LppΩˆS1q for any f P LppΩˆS1q, p ą 1, see Theorem A.1. Moreover, we
assume also an unknown source of a priori regularity f P W 3,ppΩ;Rq, p ą 4, and by Theorem A.2 part
(iii), the solution u P W 3,ppΩ ˆ S1q, p ą 4. Furthermore, the functions a, k and source f are assumed
real valued, so that the solution u is also real valued.

Let upz,θq “
ř8

´8
unpzqe

inθ be the formal Fourier series representation of the solution of (10)
in the angular variable θ “ pcos θ, sin θq. Since u is real valued, the Fourier modes tunu occurs
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in complex-conjugate pairs u´n “ un, and the angular dependence is completely determined by the
sequence of its nonpositive Fourier modes

Ω Q z ÞÑ upzq :“ xu0pzq, u´1pzq, u´2pzq, ...y.(14)

For the derivatives B, B in the spatial variable, the advection operator θ ¨ ∇ “ e´iθB ` eiθB. By
identifying the Fourier coefficients of the same order, the equation (10) reduces to the system:

Bu1pzq ` Bu´1pzq ` rapzq ´ k0pzqsu0pzq “ f0pzq,(15)

Bu0pzq ` Bu´2pzq ` rapzq ´ k´1pzqsu´1pzq “ f1pzq,(16)

Bu´npzq ` Bu´n´2pzq ` rapzq ´ k´n´1pzqsu´n´1pzq “ 0, 1 ď n ďM ´ 1,(17)

Bu´npzq ` Bu´n´2pzq ` apzqu´n´1pzq “ 0, n ěM,(18)

where f1 as in (12).
By Hodge decomposition [26], any vector field F “ xF1, F2y P H1pΩ;R2q decomposes into a

gradient field and a divergence-free (solenoidal) field :

(19) F “ ∇ϕ` Fs, ϕ|BΩ “ 0, divFs
“ 0,

where ϕ P H2
0 pΩ;Rq and Fs “ xF s

1 , F
s
2 y P H

1
divpΩ;R2q :“ tFs P H1pΩ;R2q : divFs “ 0u.

Note that for f1 in (12), we have

4Bf1 “ divF` i curlF.(20)

Using 4BBf1 “ ∆f1, we have ∆F1 “ Bx1 divF ´ Bx2 curlF, and ∆F2 “ Bx2 divF ` Bx1 curlF.
Moreover, for f s1 “ pF

s
1 ` iF s

2 q {2, the Hodge decomposition (19) can be rewritten as

(21) f1 “ B̄ϕ` f
s
1 , ϕ|BΩ “ 0, RepBf s1 q “ 0.

The following result show that from the knowledge of boundary data, one can only recover the part
of the linear anisotropic source f ; in particular, only the solenoidal part Fs of the vector field source F
can be recovered inside Ω.

Theorem 3.1. Let Ω Ă R2 be a strictly convex bounded domain, and Γ be its boundary. Consider the
boundary value problem (10) for some known real valued a, k0, k´1, ..., k´M P C3pΩq such that (10) is
well-posed. If scalar and vector field sources f0 and F are real valued, W 3,ppΩ;Rq and W 3,ppΩ;R2q-
regular, respectively, with p ą 4, then the data gf0,F defined in (2), uniquely determine the solenoidal
part Fs in Ω. Moreover, u ´ u0 is also uniquely determined in Ω, where u is the solution of (10) and
u0 is the zeroth Fourier mode of u in the angular variable.

Proof. Let u be the solution of the boundary value problem (10) and let u “ xu0, u´1, u´2, ...y be the
sequence valued map of its non-positive Fourier modes. Since the scalar field f0 P W

3,ppΩ;Rq, p ą 4,
and isotropic vector field F P W 3,ppΩ;R2q, p ą 4, then the anisotropic source f “ f0 ` θ ¨ F belong
to W 3,ppΩ ˆ S1q for p ą 4. By applying Theorem A.2 (iii), we have u P W 3,ppΩ ˆ S1q, p ą 4.
Moreover, by the Sobolev embedding [1], W 3,ppΩ ˆ S1q Ă C2,µpΩ ˆ S1q with µ “ 1 ´ 2

p
ą 1

2
, we

have u P C2,µpΩˆ S1q, and thus, by [23, Proposition 4.1 (ii)], the sequence valued map u P YµpΓ q.
Since F P W 3,ppΩ;R2q, p ą 4, then by compact imbedding of Sobolev spaces [1], F P H1pΩ;R2q.

By Hodge decomposition (19), field F “ ∇ϕ` Fs, with ϕ|Γ “ 0, and divFs “ 0.
We note from (18) that the shifted sequence valued map LMu “ xu´M , u´M´1, u´M´2, ...y solves

BLMupzq ` L2
BLMupzq ` apzqLM`1upzq “ 0, z P Ω.(22)

Let v :“ e´GLMu. By Lemma 2.1, the system (22) becomes Bv ` L2Bv “ 0, i.e v is L2 analytic.
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By (2), the data u|Γ`
“ g determines the sequence valued map LMu on Γ. By Proposition 9 (iii),

and the convolution formula (9), traces LMu|Γ determines the traces v P YµpΓ q on Γ.
Since v|Γ is the boundary value of an L2-analytic function in Ω, then [23, Theorem 3.2 (i)] yields

rI ` iHsv|Γ“ 0,(23)

where H is the Bukhgeim-Hilbert transform in (7).
From v on Γ , we use the Bukhgeim-Cauchy Integral formula (6) to construct the sequence valued

map v inside Ω:

vpzq “ Brv|Γ spzq, z P Ω,(24)

By [24, Proposition 2.3] and [23, Theorem 3.2 (ii)], the constructed sequence valued map v P C1,µpΩ; l1qX
CµpΩ; l1q X C

2pΩ; l8q is L2-analytic in Ω.
From the convolution formula (9), we construct the sequence valued map

LMu :“ eGv.(25)

Thus, determining u´n inside Ω for n ěM . In particular, we recover modes u´M´1, u´M P C2pΩq.
Recall that the modes u´1, u´2, ¨ ¨ ¨ , u´M , u´M´1 satisfy

Bu´M`j “ ´Bu´M`j´2 ´ rpa´ k´M`j´1qu´M`j´1s , 1 ď j ďM ´ 1,(26a)

u´M`j|Γ “ g´M`j.(26b)

By applying 4B to (26a), the mode u´M`1 (for j “ 1) is then the solution to the Dirichlet problem
for the Poisson equation

∆u´M`1 “ ´4B2u´M´1 ´ 4B rpa´ k´Mqu´M s ,(27a)
u´M`1|Γ “ g´M`1,(27b)

where the right hand side of (27) is known.
We solve repeatedly (27) for j “ 2, ...,M ´ 1 in (26), to recover the modes

u´M`1, u´M`2, ¨ ¨ ¨ , u´1, in Ω.(28)

From determined LMu “ xu´M , u´M´1, u´M´2, ...y in (25) and modes u´M`1, u´M`2, ¨ ¨ ¨ , u´1 in
(28), the sequence Lu “ xu´1, u´2, ...y is determined in Ω. Thus u´ u0 is determined in Ω.

Since u0, u´1, u´2 P C
2pΩq, we can take 4B on both sides of the equation (16) to get

∆u0 ` 4B2u´2 ` 4Bpra´ k´1su´1q “ 4Bf1 “ divF` i curlF,(29)

where in the last equality we use (20).
Moreover, since u0 is real valued and divF “ ∆ϕ, by equating the real part in (29) yields the

boundary value problem:

∆pu0 ´ ϕq “ ´4Re
“

B
2u´2 ` Bpra´ k´1su´1q

‰

,(30a)
pu0 ´ ϕq|Γ “ g0,(30b)

where the right hand side of (30) is known.
Thus, real valued function pu0 ´ ϕq is recovered in Ω, by solving the Dirichlet problem for the above
Poisson equation (30).

Even though u0 is not determined, the function pu0 ´ ϕq is uniquely determined in Ω. Moreover,
modes u´1 and u´2 are also uniquely determined in Ω. Furthermore, using expression of f1 from (16)
and f s1 “ f1 ´ B̄ϕ from (21), we define

f s1 :“ Bpu0pzq ´ ϕpzqq ` Bu´2pzq ` rapzq ´ k´1pzqsu´1pzq, z P Ω,(31)
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with f s1 satisfying RepBf s1 q “ 0.
Thus, the solenoidal part Fs “ x2Re f s1 , 2 Im f s1y, of the vector field F is recovered in Ω. �

If we know apriori that the vector field F is incompressible (i.e divergenceless), then we can recon-
struct both scalar field source f0 and vector field source F in Ω.

Theorem 3.2. Let Ω Ă R2 be a strictly convex bounded domain, and Γ be its boundary. Consider the
boundary value problem (10) for some known real valued a, k0, k´1, ..., k´M P C3pΩq such that (10)
is well-posed. If the unknown scalar field source f0 and divergenceless vector field sources F are real
valued, W 3,ppΩ;Rq and W 3,ppΩ;R2q-regular, respectively, with p ą 4, then the data gf0,F defined in (2)
uniquely determine both f0 and F in Ω.

Proof. Let u be the solution of the boundary value problem (10) and let u “ xu0, u´1, u´2, ...y be
the sequence valued map of its non-positive Fourier modes, Since the isotropic scalar and vector field
f0 P W

3,ppΩ;Rq, and F P W 3,ppΩ;R2q respectively for p ą 4, then the anistropic source f “ f0 ` θ ¨
F P W 3,ppΩ ˆ S1q and by applying Theorem A.2 (iii), we have u P W 3,ppΩ ˆ S1q. By the Sobolev
embedding [1], W 3,ppΩ ˆ S1q Ă C2,µpΩ ˆ S1q with µ “ 1 ´ 2

p
ą 1

2
, we have u P C2,µpΩ ˆ S1q, and

thus, by [23, Proposition 4.1 (ii)], u P YµpΓ q.
Since F P W 3,ppΩ;R2q, p ą 4, then by compact imbedding of Sobolev spaces [1], F P H1pΩ;R2q.

By Hodge decomposition (19), field F “ ∇ϕ` Fs, with ϕ|Γ “ 0, and divFs “ 0.
If we know apriori that the vector field F is incompressible (i.e divergenceless ∇ ¨ F “ 0). Then

4ϕ “ divF “ 0 and ϕ|BΩ “ 0 implies ϕ ” 0 inside Ω. Thus, vector field F “ Fs inside Ω.
By Theorem 3.1, the data u|Γ`

“ gf0,F uniquely determine the solenoidal field Fs “ F in Ω by
equation (31) with ϕ ” 0, and the sequence valued map Lu “ xu´1, u´2, ...y in Ω. Moreover, the real
valued mode u0 is also then recovered (with ϕ ” 0 ) in Ω, by solving the Dirichlet problem for the
Poisson equation (30).

Thus, from modes u´1 and u0, the scalar field f0 is also recovered in Ω by

f0 :“ 2RerBu´1s ` ra´ k0su0.(32)

�

In the radiative transport literature, the attenuation coefficient a “ σa`σs, where σa represents pure
loss due to absorption and σspzq “ 1

2π

ş2π

0
kpz, θqdθ “ k0pzq is the isotropic part of scattering kernel.

We consider the subcritical region:

σa :“ a´ k0 ě δ ą 0, for some positive constant δ.(33)

Remark 3.1. In addition to the hypothesis to Theorem 3.1, if we assume that coefficients a, k0 satisfies
(33), then in the region tz P Ω : f0pzq “ 0u, one can recover explicitly the entire vector field
F “ x2Re f1, 2 Im f1y. Indeed, the equation (15) gives u0 “ ´2RepBu´1q{σa and, following (16), the
vector field F can be recovered by the formula

(34) f1 “ Bu´2 ` ra´ k´1su´1 ´ 2B

ˆ

RepBu´1q

σa

˙

.

Next, we show that one can also determine both scalar field f0 and vector field F, if one has the
additional data gf0,0 (or g0,F) information, instead of F being incompressible as in Theorem 3.2.

Theorem 3.3. Let Ω Ă R2 be a strictly convex bounded domain, and Γ be its boundary. Consider the
boundary value problem (10) for some known real valued a, k0, k´1, ..., k´M P C3pΩq such that (10) is
well-posed. If the unknown scalar field source f0 and vector field source F are real valued, W 3,ppΩ;Rq
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and W 3,ppΩ;R2q-regular, respectively, with p ą 4, and coefficients a, k0 satisfying (33), then the data
gf0,F and gf0,0 defined in (2) uniquely determine both f0 and F in Ω.

Proof. Let u be the solution of the boundary value problem (10) and let u “ xu0, u´1, u´2, ...y be the
sequence valued map of its non-positive Fourier modes. Since the scalar field f0 P W

3,ppΩ;Rq, p ą 4,
and isotropic vector field F P W 3,ppΩ;R2q, p ą 4, then the anisotropic source f “ f0 ` θ ¨ F belong
to W 3,ppΩ ˆ S1q for p ą 4. By applying Theorem A.2 (iii), we have u P W 3,ppΩ ˆ S1q, p ą 4.
Moreover, by the Sobolev embedding, W 3,ppΩ ˆ S1q Ă C2,µpΩ ˆ S1q with µ “ 1 ´ 2

p
ą 1

2
, we have

u P C2,µpΩˆ S1q, and thus, by [23, Proposition 4.1 (ii)], the sequence valued map u P YµpΓ q.
We consider the boundary value problems

θ ¨∇v ` av ´Kv “ f0, subject to v|Γ´
“ 0, v|Γ`

“ gf0,0, and(35)

θ ¨∇w ` aw ´Kw “ θ ¨ F, subject to w|Γ´
“ 0, w|Γ`

“ rg :“ gf0,F ´ gf0,0.(36)

Then u “ v ` w satisfy the boundary value problem (10).
We consider first the boundary value problem (35), and reconstruct the scalar field f0 from the given

boundary data gf0,0 as follows.
If
ÿ

nPZ

vnpzqe
inθ is the Fourier series expansion in the angular variable θ of a solution v of boundary

value problem (35), then, by identifying the Fourier modes of the same order, (35) reduces to the
system:

Bv´1pzq ` Bv´1pzq ` rapzq ´ k0pzqsv0pzq “ f0pzq,(37)

Bv´npzq ` Bv´n´2pzq ` rapzq ´ k´n´1pzqsv´n´1pzq “ 0, 0 ď n ďM ´ 1,(38)

Bv´npzq ` Bv´n´2pzq ` apzqv´n´1pzq “ 0, n ěM.(39)

Let v “ xv0, v´1, v´2, ...y be the sequence valued map of its non-positive Fourier modes. By The-
orem 3.1, the data gf0,0, uniquely determine the sequence Lv “ xv´1, v´2, ...y in Ω. Moreover, as (38)
holds also for n “ 0 (f1 “ 0 in this case), the mode v0 is also determined in Ω by solving the Dirichlet
problem for the Poisson equation

∆v0 “ ´4B2v´2 ´ 4B rpa´ k´1qv´1s ,(40a)
v0|Γ “ g0,(40b)

where the right hand side of (40) is known.
Thus, using modes v0 and v´1, the isotropic scalar source f0 is recovered in Ω by

f0pzq :“ 2Re pBv´1pzqq ` papzq ´ k0pzqq v0pzq, z P Ω.(41)

Next, we consider the boundary value problem (36), and reconstruct the vector field F from the
given boundary data rg “ gf0,F ´ gf0,0 as follows.

If
ÿ

nPZ

wnpzqe
inθ is the Fourier series expansion in the angular variable θ of a solution w of the

boundary value problem (36), then (36) reduces to the system:

Bw´1pzq ` Bw´1pzq ` rapzq ´ k0pzqsw0pzq “ 0,(42)

Bw0pzq ` Bw´2pzq ` rapzq ´ k´1pzqsw´1pzq “ pF1pzq ` iF2pzqq {2,(43)

Bw´npzq ` Bw´n´2pzq ` rapzq ´ k´n´1pzqsw´n´1pzq “ 0, 1 ď n ďM ´ 1,(44)

Bw´npzq ` Bw´n´2pzq ` apzqw´n´1pzq “ 0, n ěM.(45)
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Let w “ xw0, w´1, w´2, ...y be the sequence valued map of its non-positive Fourier modes. By
Theorem 3.1, the data rg “ gf0,F ´ gf0,0, uniquely determine the sequence Lw “ xw´1, w´2, ...y in Ω.

Using the subcriticality condition (33): σa “ a´ k0 ą 0, we define via (42):

w0pzq :“ ´
2Re Bw´1pzq

apzq ´ k0pzq
“ ´

2Re Bw´1pzq

σapzq
, z P Ω.(46)

Using determined modes w´1, w´2 in Lw and mode w0 from (42), the real valued vector field
F “ x2Re f1, 2 Im f1y is recovered in Ω by

f1pzq :“ Bw0pzq ` Bw´2pzq ` rapzq ´ k´1pzqsw´1pzq, z P Ω.(47)

�

4. WHEN CAN THE DATA COMING FROM TWO SOURCES BE MISTAKEN FOR EACH OTHER ?

In this section we show when the data coming from two different linear anisotropic field sources can
be mistaken for each other.

In the Theorem 4.1 below the data are assuming the same attenuation a and scattering coefficient k.

Theorem 4.1. (i) Let a P C3pΩq, k P C3pΩ ˆ S1q be real valued, with σa “ a ´ k0 ą 0, and

f0, rf0 P W
3,ppΩq, p ą 4 be real valued with pf0 ´

rf0q{σa P C0pΩq. Then F :“ rF`∇

˜

f0 ´
rf0

σa

¸

is a

real valued vector field such that the data gf0,F coming from the linear anisotropic source f0 ` θ ¨ F,
is the same as data g

rf0,F̃
coming from a different linear anisotropic source rf0 ` θ ¨ rF :

g
f0,rF`∇

ˆ

f0´ rf0
σa

˙ “ g
rf0,rF

.

(ii) Let a, k0, k´1, ..., k´M P C3pΩq be real valued with σa “ a ´ k0 ą 0. Assume that there are
real valued linear anisotropic sources f “ f0 ` θ ¨ F and rf “ rf0 ` θ ¨ rF, with isotropic fields
f0, rf0 P W

3,ppΩq, p ą 4, and vector fields F, rF P W 3,ppΩ;R2q, p ą 4. If the data gf0,F of the linear
anisotropic source f equals the data g

rf0, rF
of the linear anisotropic source rf . Then

F “ rF`∇

˜

f0 ´
rf0

σa

¸

.

Proof. (i) Assume g
rf0,rF

is the data of some real valued anisotropic source rf “ rf0 ` θ ¨ rF, i.e., it is the
trace on Γ ˆ S1 of solution w to the stationary transport boundary value problem:

(48)
θ ¨∇w ` aw ´Kw “ rf,

w|ΓˆS1 “ g
rf0,rF

,

where the operator rKwspz,θq :“

ż

S1

kpz,θ ¨ θ1qwpz,θ1qdθ1, for z P Ω and θ P S1.

Using the subcriticality condition (33): σa “ a´k0 with σa ą 0, and isotropic real valued functions
ψ and σa, we note:

(49)

„

K
ψ

σa



pz,θq “

ż

S1

kpz,θ ¨ θ1q

„

ψ

σa



pz,θ1qdθ1

“
ψpzq

σapzq

ż

S1

kpz,θ ¨ θ1qdθ1 “
ψpzq

σapzq
k0pzq,
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where second equality use the fact that both ψ and σa are angularly independent functions.

Let u :“ w ` pf0 ´
rf0q{σa and F :“ rF`∇

˜

f0 ´
rf0

σa

¸

. Then

θ ¨∇u` au´Ku “ θ ¨∇

˜

w `
f0 ´

rf0

σa

¸

` a

˜

w `
f0 ´

rf0

σa

¸

´K

˜

w `
f0 ´

rf0

σa

¸

“ θ ¨∇w ` aw ´Kw ´
ˆ

a

σa

˙

rf0 `

ˆ

k0

σa

˙

rf0 `

ˆ

a

σa

˙

f0 ´

ˆ

k0

σa

˙

f0 ` θ ¨∇

˜

f0 ´
rf0

σa

¸

“

ˆ

1´
a

σa
`
k0

σa

˙

rf0 `

ˆ

a´ k0

σa

˙

f0 ` θ ¨

˜

rF`∇

˜

f0 ´
rf0

σa

¸¸

“ f0 ` θ ¨ F “ f,

where the second equality uses the linearty of K and (49), the third equality uses (48), and the last
equality uses the definition of F. Moreover, since f0 ´

rf0{σa vanishes on Γ , we get

gf0,F “ u|ΓˆS1“ w|ΓˆS1`
f0 ´

rf0

σa

∣∣∣∣∣
Γ

“ w|ΓˆS1“ g
rf0,rF

.

(ii) For isotropic scalar fields f0, rf0 P W 3,ppΩq, p ą 4, and vector fields F “ xF1, F2y, rF “

xĂF1,ĂF2y P W
3,ppΩ;R2q, p ą 4, the real valued linear anisotropic sources f “ f0 ` θ ¨ F P W 3,ppΩ ˆ

S1q, p ą 4, and rf “ rf0 ` θ ¨ rF P W 3,ppΩˆ S1q, p ą 4.
Let the data gf0,F equals data g

rf,rF i.e.

g
rf,rF “ g “ gf0,F.

Consider the corresponding boundary value problems

θ ¨∇u` au´Ku “ f(50a)

θ ¨∇w ` aw ´Kw “ rf,(50b)

respectively, subject to

u|ΓˆS1“ g “ w|ΓˆS1 .(50c)

Since f, rf P W 3,ppΩˆ S1q, p ą 4, Theorem A.2 (iii), yields solutions u,w P W 3,ppΩˆ S1q, p ą 4.
Moreover, by the Sobolev embedding, u,w P C2,µpΩˆ S1q with µ “ 1´ 2

p
ą 1

2
.

The corresponding sequences of non-positive Fourier modes tu´nuně0 of u satisfy

Bu´1pzq ` Bu´1pzq ` rapzq ´ k0pzqsu0pzq “ f0pzq,(51)

Bu0pzq ` Bu´2pzq ` rapzq ´ k´1pzqsu´1pzq “ pF1pzq ` iF2pzqq {2,(52)

Bu´npzq ` Bu´n´2pzq ` rapzq ´ k´n´1pzqsu´n´1pzq “ 0, 1 ď n ďM ´ 1,(53)

Bu´npzq ` Bu´n´2pzq ` apzqu´n´1pzq “ 0, n ěM,(54)
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whereas the non-positive Fourier modes tw´nuně0 of w satisfy

Bw´1pzq ` Bw´1pzq ` rapzq ´ k0pzqsw0pzq “ rf0pzq,(55)

Bw0pzq ` Bw´2pzq ` rapzq ´ k´1pzqsw´1pzq “
´

ĂF1pzq ` iĂF2pzq
¯

{2,(56)

Bw´npzq ` Bw´n´2pzq ` rapzq ´ k´n´1pzqsw´n´1pzq “ 0, 1 ď n ďM ´ 1,(57)

Bw´npzq ` Bw´n´2pzq ` apzqw´n´1pzq “ 0, n ěM.(58)

Since the boundary data g is the same u|ΓˆS1 “ w|ΓˆS1 , we also have the sequence valued map

g :“ w|Γ“ u|Γ .(59)

Moreover, by [23, Proposition 4.1 (ii)], the sequence g P YµpΓ q with µ ą 1
2
.

Claim 4.1. The above systems subject to boundary condition (59) yields

u´n “ w´n, for all n ě 1,(60)

inside Ω.

Proof of Claim 4.1. We first show that the systems (54) and (58) subject to (59) yields

u´npzq “ w´npzq, z P Ω, for all n ěM.(61)

From (54) and (58), the shifted sequence valued maps LMu “ xu´M , u´M´1, ...y and LMw “

xw´M , w´M´1, ...y, respectively, solves

BLMu` L2
BLMu` aLM`1u “ 0, and BLMw ` L2

BLMw ` aLM`1w “ 0.(62)

From g in (59), we use the Bukhgeim-Cauchy Integral formula (6) to construct the sequence valued
map v and w inside Ω:

v :“ B
`

LMe´Gg
˘

, ρ :“ B
`

LMe´Gg
˘

,(63)

where e´G is the operator in (9).
By [24, Proposition 2.3] and [23, Theorem 3.2 (ii)], v,ρ P C1,µpΩ; l1q X C

µpΩ; l1q X C
2pΩ; l8q are

L2-analytic in Ω:

Bv ` L2
Bv “ 0, and Bρ` L2

Bρ “ 0,(64)

and also coincide at the boundary Γ. By uniqueness of L2-analytic functions with a given trace, they
coincide inside:

vpzq “ ρpzq, for z P Ω.(65)

Using the operator eG in (9), we construct the sequence valued map

LMupzq :“ eGvpzq, and LMwpzq :“ eGvpzq “ eGρpzq z P Ω,(66)

and conclude that (61) holds.
Moreover, by Lemma 2.1, the sequences LMu andLMw in (66) satisfies (62).
Next, we show that the systems (53) and (57) subject to boundary condition (59) yield

u´n “ w´n, for all 1 ď n ďM ´ 1,(67)

inside Ω.
Define the function

ψ´jpzq :“ u´jpzq ´ w´jpzq, for z P Ω, and j ě 1.(68)
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Since the boundary data g is the same, equation (50c) yields

ψ´j|Γ “ 0, for j ě 1.(69)

From (61), we note that

ψ´j ” 0, in Ω, for j ěM.(70)

By subtracting system (57) from (53), and using (68) and (69), yields the boundary value problem

Bψ´M`j “ ´Bψ´M`j´2 ´ rpa´ k´M`j´1qψ´M`j´1s , 1 ď j ďM ´ 1,(71a)

ψ´M`j|Γ “ 0.(71b)

Note that for j “ 1 in (71), the right hand side of (71a) contains modes ψ´M´1 and ψ´M which
are both zero inside Ω by (70). Thus, for j “ 1, the mode ψ´M`1 satisfy the Cauchy problem for the
B-equation,

BΨ “ 0, in Ω,(72a)
Ψ “ 0, on Γ.(72b)

The unique solution of the above Cauchy problem is Ψ ” 0. Therefore, resulting ψ´M`1 ” 0.
We then solve repeatedly (71) starting for j “ 2, ...,M ´ 1, where the right hand side of (71a) in

each step is zero, yielding the Cauchy problem (72) for each subsequent modes, and thus, resulting in
the recovering of the modes ψ´M`1 “ ψ´M`2 “ ¨ ¨ ¨ψ´2 “ ψ´1 ” 0 in Ω. Hence, establishing (67).

From (61) and (67), we establish (60), and thus Claim 4.1. �

By subtracting (55) from (51), and using (60) yields pa´k0qpu0´w0q “ f0´
rf0. Using σa “ a´k0

with σa ą 0, yields

u0 ´ w0 “
f0 ´

rf0

σa
.(73)

Moreover, by subtracting (56) from (52), and using (60) yields

2Bpu0 ´ w0q “ pF1 ´ĂF1q ` ipF2 ´ĂF2q.

Since both u0 and w0 are real valued we have from (73):

F´ rF “ ∇pu0 ´ w0q “ ∇

˜

f0 ´
rf0

σa

¸

.

�

Remark 4.1. Note that in Theorem 4.1(i), the assumption on scattering kernels of finite Fourier content
in the angular variable is not assumed, and the result holds for a general scattering kernels which
depends polynomially on the angle between the directions.

ACKNOWLEDGMENT

The work of D. Omogbhe and K. Sadiq were supported by the Austrian Science Fund (FWF), Project
P31053-N32 and by the FWF Project F6801–N36 within the Special Research Program SFB F68
“Tomography Across the Scales”.



AN INVERSE SOURCE PROBLEM FOR LINEARLY ANISOTROPIC RADIATIVE SOURCES 13

APPENDIX A. SOME REMARKS ON THE REGULARITY OF THE FORWARD PROBLEM

In this section, we revisit the arguments in [29, 14], and remark on the well posedness in LppΩˆS1q

of the boundary value problem (1).
The results in appendix consider both attenuation coefficient and scattering kernel in general setting.

Adopting the notation in [29, 14], we consider the operators

rT´1
1 gspx,θq “

ż 0

´8

e´
ş0
s apx`tθ,θqdtgpx` sθ,θqds, and rKgspx,θq “

ż

S1

kpx,θ,θ1qgpx,θ1qdθ1,

where the intervening functions are extended by 0 outside Ω.
Using the above operators, the boundary value problem (1) can be rewritten as

pI ´ T´1
1 Kqu “ T´1

1 f, u|Γ´
“ 0.(74)

If the operator I ´ T´1
1 K is invertible, then the problem (74) is uniquely solvable, and has the form

u “ pI ´ T´1
1 Kq´1T´1

1 f . By using the formal expansion

(75) u “ T´1
1 f ` T´1

1 KT´1
1 f ` T´1

1 pKT´1
1 KqrI ´ T´1

1 Ks´1T´1
1 f.

We recall some results in [14].

Proposition A.1. [14, Proposition 2.1] Let a P C1pΩ ˆ S1q and k P C2pΩ ˆ S1 ˆ S1q. Then the
operator

KT´1
1 K : LppΩˆ S1

q ÝÑ W 1,p
pΩˆ S1

q is bounded, 1 ă p ă 8.(76)

Theorem A.1. [14, Theorem 2.1] Let p ą 1, a P C1pΩˆ S1q, and k P C2pΩˆ S1 ˆ S1q. At least one
of the following statements is true.

(i) I ´ T´1
1 K is invertible in LppΩˆ S1q.

(ii) there exists ε ą 0 such that I ´ T´1
1 pλKq is invertible in LppΩˆ S1q, for any 0 ă |λ´ 1| ă ε.

For our main Theorems, we require u P W 3,ppΩˆ S1q, p ą 4 and such a regularity can be achieved
for sources f P W 3,ppΩ ˆ S1q, p ą 4; see Theorem A.2 (iii) below. We refer to [14, Theorem 2.2] for
part (i) and (ii) of Theorem A.2, and we include the proof here.

The regularity of the solution u of (1) increases with the regularity of f as follows.

Theorem A.2. Consider the boundary value problem (1) with a P C3pΩ ˆ S1q. For p ą 1, let
k P C3pΩ ˆ S1 ˆ S1q be such that I ´ T´1

1 K is invertible in LppΩ ˆ S1q, and let u P LppΩ ˆ S1q in
(75) be the solution of (1).

(i) If f P W 1,ppΩˆ S1q, then u P W 1,ppΩˆ S1q.
(ii) If f P W 2,ppΩˆ S1q, then u P W 2,ppΩˆ S1q.

(iii) If f P W 3,ppΩˆ S1q, then u P W 3,ppΩˆ S1q.

Proof. (i) We consider the regularity of the solution u of (1) term by term as in (75). It is easy to
see that the operator T´1

1 preserve the space W 1,ppΩ ˆ S1q, and also the operator K preserve the
space W 1,ppΩˆ S1q, so that the first two terms, T´1

1 f and T´1
1 KT´1

1 f , both belong to W 1,ppΩˆ S1q.
Moreover, pI ´ T´1

1 Kq´1T´1
1 f P LppΩˆ S1q, and now, by using Proposition A.1, the last term is also

belong in W 1,ppΩˆ S1q.
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(ii) We define the following operators

(77)
T´1

0 upx,θq :“

ż 0

´8

upx` tθ,θqdt, Kξjupx,θq :“

ż

S1

Bk

Bξj
px,θ,θ1qupx,θ1qdθ1,

rT´1
0,j upx,θq :“

ż 0

´8

upx` tθ,θqtjdt, Kηiξjupx,θq :“

ż

S1

B2k

BηiBξj
px,θ,θ1qupx,θ1qdθ1,

where ηi “ txi, θiu and ξj “ txj, θju for i, j “ 1, 2.
It is easy to see that T´1

0 , rT´1
0,j , Kξj and Kηiξj preserve W 1,ppΩˆ S1q.

By evaluating the radiative transport equation in (1) at x` tθ and integrating in t from ´8 to 0, the
boundary value problem (1) with zero incoming fluxes is equivalent to the integral equation:

u` T´1
0 pauq ´ T´1

0 Ku “ T´1
0 f.(78)

According to part (i), for f P W 1,ppΩˆS1q, the solution u P W 1,ppΩˆS1q, and so uxj P L
ppΩˆS1q.

In particular uxj solves the integral equation:

uxj ` T
´1
0 pauxjq ´ T

´1
0 Kuxj “ ´T

´1
0 paxjuq ` T

´1
0 Kxju` T

´1
0 fxj .(79)

Moreover, since a P C2pΩˆ S1q, k P C2pΩˆ S1 ˆ S1q, and f P W 2,ppΩˆ S1q, the right-hand-side of
(79) lies in W 1,ppΩˆ S1q. By applying part (i) above, we get that the unique solution to (79)

uxj P W
1,p
pΩˆ S1

q, j “ 1, 2.(80)

For f P W 1,ppΩ ˆ S1q, also according to part (i), uθj P L
ppΩ ˆ S1q. In particular uθj is the unique

solution of the integral equation

uθj ` T
´1
0 pauθjq “ ´

rT´1
0,1 pauxjq ´ T

´1
0 paθjuq ´

rT´1
0,1 paxjuq ` T

´1
0 Kθju`

rT´1
0,1Kxju` T

´1
0 fθj ,

(81)

which is of the type (78) with K “ 0. Moreover, since f P W 2,ppΩ ˆ S1q, and, according to (80),
uxj P W

1,ppΩ ˆ S1q, j “ 1, 2, the right-hand-side of (81) lies in W 1,ppΩ ˆ S1q. Again, by applying
part (i), we get

uθj P W
1,p
pΩˆ S1

q, j “ 1, 2.

Thus, u P W 2,ppΩˆ S1q.
(iii) For f P W 2,ppΩˆ S1q, according to part (ii), uxj , uθj P W

1,ppΩˆ S1q, and uxixj P L
ppΩˆ S1q.

In particular uxixj is the unique solution of the integral equation
(82)
uxixj ` T

´1
0 pauxixjq ´ T

´1
0 pKuxixjq “ T´1

0 fxixj ´ T
´1
0 paxjuxiq ´ T

´1
0 paxixjuq ` T

´1
0 pKxjuxiq

` T´1
0 pKxixjuq ´ T

´1
0 paxiuxjq ´ T

´1
0 pKxiuxjq.

Moreover, since a P C3pΩˆ S1q, k P C3pΩˆ S1 ˆ S1q, and f P W 3,ppΩˆ S1q, the right-hand-side of
(82) lies in W 1,ppΩˆ S1q. By applying part (i) above, we get that the unique solution to (82)

uxixj P W
1,p
pΩˆ S1

q, i, j “ 1, 2.(83)
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For f P W 2,ppΩˆ S1q, also according to part (ii), uxj , uθj P W
1,ppΩˆ S1q, and uθiθj P L

ppΩˆ S1q.
In particular uθiθj is the unique solution of the integral equation

uθiθj ` T
´1
0 pauθiθjq “ T´1

0 pfθiθjq ´
rT´1

0,2 paxiuxjq ´
rT´1

0,1 paxiuθjq ´
rT´1

0,1 paθiuxjq

´ T´1
0 paθiuθjq ´

rT´1
0,2 paxjuxiq ´

rT´1
0,1 paxjuθiq ´

rT´1
0,2 paxixjuq

´ rT´1
0,1 paxjθiuq ´

rT´1
0,1 paθjuxiq ´ T

´1
0 paθjuθiq ´

rT´1
0,1 paθiθjuq

´ rT´1
0,1 pKθjuxiq ´ T

´1
0 pKθiθjuq ´

rT´1
0,2 pKuxixjq ´

rT´1
0,1 pKθiuxjq,(84)

which is of the type (78) with K “ 0.
Moreover, since f P W 3,ppΩ ˆ S1q, and, according to (83), uxixj P W

1,ppΩ ˆ S1q, j “ 1, 2, the
right-hand-side of (84) lies in W 1,ppΩˆ S1q. Again, by applying part (i), we get

uθiθj P W
1,p
pΩˆ S1

q, i, j “ 1, 2.(85)

For f P W 2,ppΩ ˆ S1q, also according to part (ii), uxiuθj P L
ppΩ ˆ S1q. In particular uxiθj is the

unique solution of the integral equation

uxiθj ` T
´1
0 pauxiθjq ´ T

´1
0 pKuxjθiq “ T´1

0 pfxjθiq ´
rT´1

0,1 paxiuxjq ´ T
´1
0 paθiuxjq

´ T´1
0 paxjθiuq ´

rT´1
0,1 paxjuxiq ´ T

´1
0 puθiaxjq

` rT´1
0,1 pKxjuxiq ` T

´1
0 pKθiuxjq ` T

´1
0 pKxjθiuq,(86)

which is of the type (78). Moreover, since a P C3pΩˆS1q, k P C3pΩˆS1ˆS1q, and f P W 3,ppΩˆS1q,
the right-hand-side of (86) lies in W 1,ppΩˆ S1q. Again, by applying part (i), we get

uxiθj P W
1,p
pΩˆ S1

q, i, j “ 1, 2.(87)

From (83), (85), and (87), we get u P W 3,ppΩˆ S1q.
�

We remark that for Theorem A.2 part (i) we only need a P C1pΩ ˆ S1q and k P C2pΩ ˆ S1 ˆ S1q,
and we only require a P C2pΩ ˆ S1q and k P C2pΩ ˆ S1 ˆ S1q for Theorem A.2 part (ii). Moreover,
in a similar fashion, one can show that under sufficiently increased regularity of a and k, the solution
u of (1) belong to u P Wm,ppΩˆ S1q for Z Q m ě 1, provided f P Wm,ppΩˆ S1q.
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