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MODELING LARGE SPOT PRICE DEVIATIONS

IN ELECTRICITY MARKETS

CHRISTIAN LAUDAGÉ∗, FLORIAN AICHINGER†,‡, AND SASCHA DESMETTRE‡

Abstract. Increased insecurities on the energy markets have caused massive fluctuations of
the electricity spot price within the past two years. In this work, we investigate the fit of a
classical 3-factor model with a Gaussian base signal as well as one positive and one negative
jump signal in this new market environment. We also study the influence of adding a second
Gaussian base signal to the model. For the calibration of our model we use a Markov Chain
Monte Carlo algorithm based on the so-called Gibbs sampling. The resulting 4-factor model is
then compared to the 3-factor model in different time periods of particular interest and evaluated
using posterior predictive checking. Additionally, we derive closed-form solutions for the price
of futures contracts in our 4-factor spot price model.

We find that the 4-factor model outperforms the 3-factor model in times of non-crises. In
times of crises, the second Gaussian base signal does not lead to a better the fit of the model.
To the best of our knowledge, this is the first study regarding stochastic electricity spot price
models in this new market environment. Hence, it serves as a solid base for future research.

Key words : Multi-factor models, Bayesian calibration, Markov Chain Monte Carlo,
Ornstein-Uhlenbeck processes, Electricity spot price, Electricity Futures, Jump pro-
cesses

JEL classification : C15, C11, C13, Q40, C51, Q41

1. Introduction

Due to the energy crisis, the energy market has become extremely volatile within the last two

Figure 1. EEX price data.

years, causing huge price peaks and large fluctuation of the elec-
tricity spot price. Figure 1 shows EEX spot price data for the last
four years, where a significant increase of the volatility can be ob-
served from the beginning of 2022 onward. In the present study,
we want to investigate how classical models like the 3-Ornstein
Uhlenbeck (OU) model proposed in [7], where the desaisonalized
spot price is modeled as a superposition of a Gaussian OU-process
and a positive and a negative jump OU-process, perform in this
new market environment. We then study the impact of adding a
second Gaussian component to the model, checking whether this
additional degree of freedom allows a better distinction of long
and short term fluctuations and hence produces a better overall
fit. This extended model will be referred to as the 4-OU model.
We are particularly interested in the fit of the respective mod-
els in three different time intervals, namely the pre-crisis period
2018-2021, the time period 2021-2023 when the energy crisis occurred and the total interval
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2 C. LAUDAGÉ, F. AICHINGER, AND S. DESMETTRE

2018-2023. For each of these periods, we fit the 3-OU model as well as the 4-OU model to the
corresponding electricity spot price data using a Markov Chain Monte Carlo algorithm. Model
adequacy is then assessed through posterior predictive checking.

1.1. Related work. The first multi-factor electricity price models have been introduced by
Lucia and Schwartz [12] and Schwartz and Smith [16]. In these models the (log-)spot price
is described as a superposition of two latent stochastic processes: The long term behaviour is
modeled as an arithmetic Brownian motion, the short term behavior as an OU-process. Since
both components are Gaussian, the model can be calibrated using Kalman filter techniques.
However, it turns out that Gaussian processes cannot appropriately describe the spikes, which
frequently occur in observed spot price data. The one factor log-price model of Geman and
Roncoroni [6] generates the characteristic spikes by making the jump direction and intensity
level-dependent: High price levels lead to high jump intensity and downward jumps are more
likely, whereas if the price is low, jumps are rare and upward-directed. In the long run, the
process always fluctuates around a deterministic mean value. The calibration procedure is
mainly based on likelihood estimation. The model of Benth, Kallsen and Meyer-Brandis [3]
incorporates spikes and allows mean reversion to a stochastic base level by modelling the price
as a sum of several OU-processes, some of which are driven by pure jump processes. A method
to calibrate such a model was suggested by Tankov and Meyer-Brandis [13], who investigate a
superposition of two OU-processes, one driven by a Levy jump process, the other driven by a
Brownian motion. To calibrate their model, they came up with the so-called hard thresholding
technique, where first the mean reversion parameters are estimated from the autocorrelation
function and then maximum likelihood methods are applied to filter out the spikes path. The
same approach is used by Hinderks and Wagner [9] for their two-factor model. The downside
of calibrating the mean reversion rates separately is that some parameter interdependencies
are being neglected. Gonzalez et al. [7] propose a superposition model with one Gaussian
OU-process and several jump components, each of which having its own jump size distribution,
jump frequency and mean reversion rate. This additional flexibility allows to distinguish between
different jump patterns caused by different underlying physical origins and simultaneously avoids
the attribution of smaller jumps to the Gaussian process. The model is then calibrated in a
Bayesian framework using Markov Chain Monte Carlo (MCMC) methods, generating samples
from the posterior distributions of the model parameters. In contrast to the MCMC methods
based on time discretization of the involved processes developed in [17] and [8], Gonzalez et al.
propose a MCMC algorithm for exact Bayesian inference and therefore do not have to take into
account any approximation error. Table 1 on the next page provides a more detailed overview of
the different spot price models and the corresponding calibration techniques mentioned above.

1.2. Contribution. Based on the work of Gonzalez et al. [7], we study two superposition
models, a 3-OU model consisting of one Gaussian and two jump OU-processes with different
sign and a 4-OU model, where a second Gaussian component is added to the 3-OU model
(Section 2). To calibrate the 4-OU model, in Section 3, we develop an extension of the MCMC
algorithm presented in [7]. We point out that even in the 4-OU model, the inference performed
by the MCMC algorithm is still exact at the level of distributions, since there is no discretization
involved in the update of the second Gaussian component. The two models are then calibrated
to EEX spot price data within different time periods and are then compared in terms of model
adequacy using posterior predictive checks (Section 5). Our study is the first attempt to calibrate
such models for the extremely volatile data in the period 2021-2023 and can serve as a starting
point for further research in this direction. In Section 6, we also give an explicit formula for the
price of a futures contract in the 4-OU model.
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2. The 4-factor model

In this section, we model the electricity spot price as a superposition of a deterministic
seasonality function and 4 stochastic components, two Gaussian OU-processes and two jump
OU-processes. This model is an extension of the 3-OU model introduced in [7]. The idea to use
two Gaussian components to model long and short-term behavior of the spot price goes back to
the work of [12] and has also been used in [17].

The model setup is as follows: We assume a probability space (Ω,F ,P) with filtration
F = (Ft)t≥0, satisfying the usual conditions. On this probability space, we introduce two
independent F-adapted Brownian motions W Y1 and W Y2 and two compound Poisson processes
Π1 and Π2 with constant jump intensity rates θ1, θ2 and exponentially distributed jump sizes
with parameters β1 and β2 respectively. We model the electricity spot price

Pt = f(t) +Xt (2.1)

as the sum of a deterministic seasonal function f(t) and a stochastic part Xt, where the desea-
sonalized spot price Xt is a superposition of four stochastic processes

X(t) = Y1(t) + Y2(t) + J1(t)− J2(t), (2.2)

with dynamics

dY1(t) = −λ−1
Y1

Y1(t)dt+ σY1dWY1(t), Y1(0) = 0, (2.3)

dY2(t) = −λ−1
Y2

Y2(t)dt+ σY2dWY2(t), Y2(0) = 0, (2.4)

dJ1(t) = −λ−1
J1

J1(t)dt+ dΠ1(t), J1(0) = 0, (2.5)

dJ2(t) = −λ−1
J2

J2(t)dt+ dΠ2(t), J2(0) = 0. (2.6)

The processes Y1 and Y2 admit the explicit solutions

Yi(t) =

∫ t

0
σe

−λ−1
Yi

(t−s)
dWs, i = 1, 2, (2.7)

and they are called Gaussian OU processes since the conditional distribution Yt+s given Yt is
normally distributed with

E[Yi(t+ s)|Yi(t) = y] = ye
−λ−1

Yi
s
, V[Yi(t+ s)|Yi(t) = y] = λYiσ

2
Yi

(
1− e

−2λ−1
Yi

s
)
/2.

In equation (2.3) and (2.4), the long term mean is 0, i.e., the process tends to revert to 0. The
parameter λ−1

Yi
is responsible for the speed of the mean reversion and σYi governs the volatility

of the respective process. The processes J1 and J2, driven by the compound Poisson processes
Π1 and Π2 with interval representation Πi(t) =

∑∞
j=1 ξ

i
j1{t≥τ ij}

, i = 1, 2, where τ ij are the arrival

times of a Poisson process and ξij is the jump size at time τ ij are called jump OU processes and
they have explicit solutions

Ji(t) =
∑

j:0≤τ ij≤t

e
−λ−1

Ji
(t−τ ij )ξij .

The parameters λ−1
J1

and λ−1
J2

in equations (2.5) and (2.6) are the mean reversion speeds of the
respective jump processes. The mean level is again 0.
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3. Calibration

In this section, we explain the calibration of the superposition model introduced in the pre-
vious section. After calibrating the deterministic seasonality function applying least squares
methods, we use a Bayesian approach to calibrate the parameters of the stochastic components.
To this end, we apply MCMC methods to obtain samples from the posterior distributions of the
model parameters. The algorithm we use is based on the algorithm described in [7, Section 3.3],
extended by the update steps for the additional Gaussian component in the 4-OU model.

3.1. Calibration of the seasonality function. We
first calibrate the deterministic seasonality function f . We
assume that f is a superposition of a linear trend and
trigonometric functions modeling half-yearly and quar-
terly seasonal variations of the spot price.

f(t; a1, . . . , a6) = a1 + a2t+ a3 sin(2πt)

+ a4 cos(2πt) + a5 sin(4πt) + a6 cos(4πt).

The parameters a1, . . . , a6 are then obtained by applying
least-squares methods. Finally f gets subtracted from
the data to get the deseasonalized data. An example for
a calibrated seasonality function is shown in Figure 2.

Figure 2. Calibrated
seasonality function for
EEX data from 2018-
2021.

3.2. Calibration of the stochastic part. We calibrate the model parameters λY1 ,σY1 ,λY2 ,σY2 ,
λJ1 ,λJ2 ,θ1,θ2,β1,β2 simultaneously in a Bayesian framework, i.e., our aim is to obtain the joint
posterior distribution

π(λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 , θ1, θ2, β1, β2|χ)

given the deseasonalized spot price data χ. To this end, we use MCMC methods, constructing a
Markov chain whose stationary distribution is the posterior distribution of the model parameters.
For a detailed introduction to the topic see for example [1] and [5]. For our calibration procedure,
we apply Gibbs sampling, i.e., we iteratively generate samples from the distribution of each
variable conditioned on the current values of the other variables. We start with samples(

λ
(0)
Y1

, λ
(0)
Y2

, σ
(0)
Y1

, σ
(0)
Y2

, λ
(0)
J1

, λ
(0)
J2

, θ
(0)
1 , θ

(0)
2 , β

(0)
1 , β

(0)
2

)
from the a-priori distribution of the parameters. Based on a sample(

λ
(k)
Y1

, λ
(k)
Y2

, σ
(k)
Y1

, σ
(k)
Y2

, λ
(k)
J1

, λ
(k)
J2

, θ
(k)
1 , θ

(k)
2 , β

(k)
1 , β

(k)
2

)
,

we then obtain(
λ
(k+1)
Y1

, λ
(k+1)
Y2

, σ
(k+1)
Y1

, σ
(k+1)
Y2

, λ
(k+1)
J1

, λ
(k+1)
J2

, θ
(k+1)
1 , θ

(k+1)
2 , β

(k+1)
1 , β

(k+1)
2

)
via the following algorithm:
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Algorithm 3.1 (Gibbs Sampling). Starting from a given initial state of the chain, the MCMC
algorithm cycles through the following steps:

(1) σ2
Y1

(k+1) ∼ π
(
σ2
Y1

(k+1)|σ(k)
Y2

, λ
(k)
Y1

, λ
(k)
Y2

, λ
(k)
J1

, λ
(k)
J2

, θ
(k)
1 , θ

(k)
2 , β

(k)
1 , β

(k)
2 ,X

)
(2) σ2

Y2

(k+1) ∼ π
(
σ2
Y2

(k+1)|σ(k+1)
Y1

, λ
(k)
Y1

, λ
(k)
Y2

, λ
(k)
J1

, λ
(k)
J2

, θ
(k)
1 , θ

(k)
2 , β

(k)
1 , β

(k)
2 ,X

)
(3) λ

(k+1)
Y1

∼ π
(
λ
(k+1)
Y1

|σ(k+1)
Y1

, σ
(k+1)
Y2

, λ
(k)
Y2

, λ
(k)
J1

, λ
(k)
J2

, θ
(k)
1 , θ

(k)
2 , β

(k)
1 , β

(k)
2 ,X

)
(4) λ

(k+1)
Y2

∼ π
(
λ
(k+1)
Y2

| . . .
)

(5) λ
(k+1)
J1

∼ π
(
λ
(k+1)
J1

| . . .
)

(6) λ
(k+1)
J2

∼ π
(
λ
(k+1)
J2

| . . .
)

(7) θ
(k+1)
1 ∼ π

(
θ
(k+1)
1 | . . .

)
(8) θ

(k+1)
2 ∼ π

(
θ
(k+1)
2 | . . .

)
(9) β

(k+1)
1 ∼ π

(
β
(k+1)
1 |σ(k+1)

Y1
, σ

(k+1)
Y2

, λ
(k+1)
Y1

, λ
(k+1)
Y2

, λ
(k+1)
J1

, λ
(k+1)
J2

, θ
(k+1)
1 , θ

(k+1)
2 , β

(k)
2 ,X

)
(10) β

(k+1)
2 ∼ π

(
β
(k+1)
2 |σ(k+1)

Y1
, σ

(k+1)
Y2

, λ
(k+1)
Y1

, λ
(k+1)
Y2

, λ
(k+1)
J1

, λ
(k+1)
J2

, θ
(k+1)
1 , θ

(k+1)
2 , β

(k+1)
1 ,X

)
3.3. Data augmentation. The Gibbs sampler would yield samples of the posterior distribution
of the parameters, however, in order to calculate densities involved in the Gibbs algorithm, we
need the likelihood l(χ|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 , θ1, θ2, β1, β2) of the data given the parameters,
which for our superposition model cannot be calculated analytically or numerically. Thus, to
overcome this hurdle, we use so-called data augmentation methods (cf. [2], [14]). We point out
that the augmentation method we use is an extension of the procedure described in [7] when
adding a second Gaussian component.
Let χ = {x0, . . . , xN} be the vector of observations of the deseasonalized spot price at times
0 = t0, . . . , tN = T and denote by ∆i = ti−ti−1 the time increment between two observations. In
order to get an explicit expression for the likelihood l(χ|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 , θ1, θ2, β1, β2),
we augment the state space with observations Y2 = {y2,0, . . . , y2,N} of the short-term process
and observations J1 = {j1,0, . . . , j1,N} and J2 = {j2,0, . . . , j2,N} of the jump processes. The
likelihood of the data X given Y2, J1 and J2 becomes independent of λY2 , σY2 , β1, β2, θ1, θ2 and
can be calculated explicitly as

l(X|λY1 , σY1 ,Y2,J1,J2)

=
1

√
2π
∏N

i=1

√
λY1σ

2
Y1

(
1− e

2λ−1
Y1

∆t
)
/2

exp

−1

2

N∑
i=1

(
y1,i − y1,i−1e

−λ−1
Y1

∆t
)2

λY1σ
2
Y1

(
1− e

−2λ−1
Y1

∆t
)
/2

 ,

with y1,i = xi − y2,i − j1,i + j2,i.

Since for N iid random variables ϵi ∼ N (0, 1), i = 1, . . . , N , the transition densities of the
Gaussian OU-process Y2 are given by

Y2(j∆t) = Y2((j − 1)∆t)e
−λ−1

Y2
∆t

+

(
σ2
Y2
λY2

2

(
1− e

−2λ−1
Y2

∆t
))1/2

ϵ2,i, i = 1, . . . , N,

in order to make the parameters independent of the latent variables, instead of treating the pro-
cess Y2(t) itself as missing data, the random vector E = {ϵ2,1, . . . , ϵ2,N} is considered as the hid-
den variable. Similarly the set of pairs Φ1 = {(τ1,j , ξ1,j)}1≤j≤NT1

and Φ2 = {(τ2,j , ξ2,j)}1≤j≤NT2

of jump times and corresponding jump sizes are treated as the missing data instead of J1(t) and
J2(t). The sets Φi can be interpreted as realisations of marked Poisson processes taking values
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in [0, T ]× (0,∞) and their likelihood l(Φi|θi, βi) can be calculated with respect to a dominating
measure (for details see Appendix B). Thus with

y2,0 = 0; y2,i = y2,i−1e
−λ−1

Y2
∆t

+

(
σ2
Y2
λY2

2

(
1− e

−2λ−1
Y2

∆t
))1/2

ϵi, i = 1, . . . , N,

j1,i =

N1
T∑

n=1

e−λ−1
J1 (i·∆t−τ1,n)ξ1,n,1{τ1,n≤i·∆t}, i = 0, . . . , N,

j2,i =

N2
T∑

n=1

e−λ−1
J1 (i·∆t−τ2,n)ξ2,n1{τ2,n≤i·∆t}, i = 0, . . . , N,

we obtain

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)

=
1

√
2π
∏N

i=1

√
λY1σ

2
Y1

(
1− e

2λ−1
Y1

∆t
)
/2

exp

−1

2

N∑
i=1

(
y1,i − y1,i−1e

−λ−1
Y1

∆t
)2

λY1σ
2
Y1

(
1− e

−2λ−1
Y1

∆t
)
/2

 ,

with y1,i = xi − y2,i − j1,i + j2,i.

To see, why the explicit likelihood of the data is particularly important for the Gibbs sampling,
consider the following factorization which is frequently used within the algorithm:

π(λY1
, σY1

, λY2
, σY2

, λJ1
, λJ2

, θ1, θ2, β1, β2,Φ1,Φ2, E|X ) ∝ l(X|λY1
, σY1

, λY2
, σY2

, λJ1
, λJ2

,Φ1,Φ2, E)
· l(Φ1|θ1, β1) · l(Φ2|θ2, β2) · π(λY1

, σY1
, λY2

, σY2
, λJ1

, λJ2
, θ1, θ2, β1, β2, E).

(3.1)

3.4. Classes of prior distributions. We specify the classes of prior distributions for the
model parameters. As in [7], conjugate priors are chosen whenever it is possible for the sake
of computational efficiency. The starting values for the first MCMC iteration are the starting
values of [7] scaled to the yearly time framework. Here IG(a, b) denotes the inverse Gamma
distribution with shape parameter a and scale parameter b and Ga(a, b) denotes the Gamma
distribution with shape parameter a and scale parameter b.

Parameter Prior distribution Starting value (3OU) Starting value (4OU)

Volatility of 1. Gaussian OU process σY1 IG(1.5, 0.005 · 365) 0.2
√
365 0.1

√
365

Volatility of 2. Gaussian OU process σY2 - - 10
Mean reversion speed of 1. Gaussian OU process λY1 IG(1, 1) 5

365 0.001
Mean reversion speed of 2. Gaussian OU process λY2 IG(1, 1) 1 1
Mean reversion speed of pos. jump process λJ1 IG(1, 1) 5

365
1

365
Mean reversion speed of pos. jump process λJ2 IG(1, 1) 1

365
1

365
Positive jump intensity θ1 Ga(1, 10

365) 0.001 · 365 0.001 · 365
Negative jump intensity θ2 Ga(1, 10

365) 0.001 · 365 0.001 · 365
Positive jump size β1 IG(1, 1) 0.5 0.5
Negative jump size β2 IG(1, 1) 0.5 0.5

Table 2. Prior distributions and starting values for the model parameters. For
the prior distribution of σY2 we refer to Section 3.5.
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3.5. MCMC algorithm for the 4-factor model. We use Gibbs sampling to iteratively gen-
erate samples from the distribution of each variable conditioned on the current values of the
other variables. Compared to the algorithm in [7, Section 3.3], we have additional update steps
for the parameters σ and λ of the second Gaussian OU process and its path (the additional
hidden variable E). The update steps for the jump paths (the hidden variables Φi) have been
developed in [14] and [4] in the context of calibrating volatility models and have first been used
for electricity spot price models in [7]. To ensure that the mixing is of the same order for small

and large values of λ, a transformation of λ to ρ := e−λ−1
is applied in the inference procedure.

Algorithm 3.2 (Augmented Gibbs Sampling). Starting from a given initial state of the chain,
the MCMC algorithm cycles through the following steps:

(1) σ2
Y1

∼ π(σ2
Y1
|λY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ,X )

(2) σ2
Y2

∼ π(σ2
Y2
|λY1 , σY1 , λY2 , λJ1 , λJ2 ,Φ1,Φ2, E ,X )

(3) ρY1 ∼ π(ρY1 |σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ,X )
(4) ρY2 ∼ π(ρY2 |λY1 , σY1 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ,X )
(5) ρJ1 ∼ π(ρJ1 |σY1 , λY1 , λY2 , σY2 , λJ2 ,Φ1,Φ2, E ,X )
(6) ρJ2 ∼ π(ρJ2 , σY1 , λY1 , λY2 , σY2 , λJ1 ,Φ1,Φ2, E ,X )
(7) θ1 ∼ π(θ1|Φ1)
(8) θ2 ∼ π(θ2|Φ2)
(9) β1 ∼ π(β1|Φ1)
(10) β2 ∼ π(β2|Φ2)
(11) E ∼ π(E|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2,X )
(12) Φ1 ∼ π(Φ1|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 , θ1, β1,Φ2, E ,X )
(13) Φ2 ∼ π(Φ2|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 , θ2, β2,Φ1, E ,X )

3.5.1. Detailed update steps. Here we give a detailed instruction for each update step. As de-
scribed in Algorithm 3.1, if a parameter has already been updated within the cycle (1)-(13), then
in the following steps, we condition on its updated value. Whenever it is possible, we directly
sample from the conditional distribution, otherwise, we apply a random walk Metropolis step
using the factorization (3.1) within the Gibbs procedure.

Update σY1 :
With the choice of an IG(aσY1

, bσY1
) distributed prior for σY1 , for the posterior we get

σ2
Y1
|λY1 , λY2 , σY2 , λJ1 , λJ2 ,X , E ,Φ1,Φ2 ∼ IG

aσY1
+

N

2
, bσY1

+
1

λY1

N∑
i=1

(
li − li−1e

−λ−1
Y1

∆i

)2
1− e

−2λ−1
Y1

∆i

 .

Update σY2 :

Generate candidate σ′
Y2

from σ′
Y2
|σY2 ∼ N (σY2 , σ, 0,∞). Perform Metropolis-step with accep-

tance ratio

α(σS
′, σS) = min

1,
l(X|λY1 , σY1 , λY2 , σ

′
Y2
, λJ1 , λJ2 ,Φ1,Φ2, E)π(σ′

Y2
)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)π(σY2)
·
1− Φ(−σY2

σ )

1− Φ(−
σ′
Y2
σ )

 .

Since we do not know the magnitude of σY2 in relation to σY1 , we decided to approximate the

quotient of the a-priori distributions
π(σ′

Y2
)

π(σY2
) with 1. This can, e.g., be justified by the choice of

an inverse gamma distribution IG(1, β) for the a-priori distribution π together with the limiting



MODELING LARGE SPOT PRICE DEVIATIONS 9

result lim
β→∞

π(σ′
Y2

)

π(σY2
) = 1. The same argument holds by using a uniform distribution and considering

the limiting case in which the interval length goes to infinity.

Update ρY1 = e
−λ−1

Y1 :
Generate candidate ρ′Y1

from ρ′Y1
|ρY1 ∼ N (ρY1 , σ, 0, 1). Perform Metropolis-step with accep-

tance ratio

α(ρY1
′, ρY1) = min

1,
l(X|ρ′Y1

, σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)π(ρ′Y1
)

l(X|ρY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)π(ρY1)
·
Φ(

1−ρY1
σ )− Φ(−ρY1

σ )

Φ(
1−ρ′Y1

σ )− Φ(−
ρ′Y1
σ )

 .

Since λY1 has prior distribution IG(aλY1
, bλY1

), Y = e
−λ−1

Y1 has a-priori density

fY (y) =
1

y

bλY1

Γ(aλY1
)
(− ln(y))

aλY1
−1

e
bλY1

ln(y)
.

Update ρY2 = e
−λ−1

Y2 :

Generate candidate ρ′Y2
from ρ′Y2

|ρY2 ∼ N (ρY2 , σ, 0, 1). Perform Metropolis-step with accep-
tance ratio

α(ρY2
′, ρY2) = min

1,
l(X|λY1 , σY1 , ρ

′
Y2
, σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)π(ρ′S)

l(X|λY1 , σY1 , λY2 , ρY2 , λJ1 , λJ2 ,Φ1,Φ2, E)π(ρY2)
·
Φ(

1−ρY2
σ )− Φ(−ρY2

σ )

Φ(
1−ρ′Y2

σ )− Φ(−
ρ′Y2
σ )

 .

Since λY2 is IG(aλY2
, bλY2

) distributed, Y = e
−λ−1

Y2 has density

fY (y) =
1

y

bλY2

Γ(aλY2
)
(− ln(y))

aλY2
−1

e
bλY2

ln(y)
.

Update ρJ1 = e−λ−1
J1 :

Generate candidate ρ′J1 from ρ′J1 |ρJ1 ∼ N (ρJ1 , σ, 0, 1). Perform Metropolis-step with accep-
tance ratio

α(ρJ1
′, ρJ1) = min

1,
l(X|λY1 , σY1 , λY2 , σY2 , ρ

′
J1
, λJ2 ,Φ1,Φ2, E)π(ρ′J1)

l(X|λY1 , σY1 , λY2 , σY2 , ρJ1 , λJ2 ,Φ1,Φ2, E)π(ρJ1)
·
Φ(

1−ρJ1
σ )− Φ(−ρJ1

σ )

Φ(
1−ρ′J1

σ )− Φ(−
ρ′J1
σ )

 .

Since λJ1 is IG(aλJ1
, bλJ1

) distributed, Y = e
−λ−1

J1 has density

fY (y) =
1

y

bλJ1

Γ(aλJ1
)
(− ln(y))

aλJ1
−1

e
bλJ1

ln(y)
.

Update ρJ2 = e
−λ−1

J2 :

Generate candidate ρ′J2 from ρ′J2 |ρJ2 ∼ N (ρJ2 , σ, 0, 1). Perform Metropolis-step with accep-
tance ratio

α(ρJ2
′, ρJ2) = min

1,
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , ρ

′
J2
,Φ1,Φ2, E)π(ρ′J2)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , ρJ2 ,Φ1,Φ2, E)π(ρJ2)
·
Φ(

1−ρJ2
σ )− Φ(−ρJ2

σ )

Φ(
1−ρ′J2

σ )− Φ(−
ρ′J2
σ )

 .

Since λJ2 is IG(aλJ2
, bλJ2

) distributed, Y = e
−λ−1

J2 has density
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fY (y) =
1

y

bλJ2

Γ(aλJ2
)
(− ln(y))

aλJ2
−1

e
bλJ2

ln(y)

Update θ1:

With the choice of an Ga(aθ1, bθ1) distributed prior for θ1, for the posterior we get

θ1|Φ1 ∼ Ga
(
aθ1 +N1

T , bθ1 + T
)
.

Update θ2:

With the choice of an Ga (aθ2 , bθ2) distributed prior for θ2, for the posterior we get

θ2|Φ2 ∼ Ga
(
aθ2 +N2

T , bθ2 + T
)
.

Update β1

With the choice of an IG(aβ1 , bβ1) distributed prior for β1, for the posterior we get

β1|Φ1 ∼ IG

aβ1 +N1
T , bβ1 +

N1
T∑

i=1

ξ1i

 .

Update β2:

With the choice of an IG(aβ2 , bβ2) distributed prior for β2, for the posterior we get

β2|Φ2 ∼ IG

aβ2 +N2
T , bβ2 +

N2
T∑

i=1

ξ2i

 .

Update E :

Generating values step: For n ∈ {1, . . . , N} randomly choose indices i1, . . . , in ∈ {1, . . . , N}
and define I := {i1, . . . , in}, Î := {1, . . . , N} \ I. Generate candidate E ′ by setting ϵ′i = ϵi for

i ∈ Î and drawing ϵ′i ∼ N (0, 1) for i ∈ I. Since

q(E ′|E) = 1

N

1(
N
n

) ∏
i∈I

1√
2π

exp
(
− (ϵ′i)

2

2

)
we have

π(E ′)

π(E)
· q(E|E

′)

q(E|E ′)
= 1.

Thus for the Metropolis-step, the acceptance ratio is given by

α(E ′, E) = min

{
1,

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ′)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)

}
.

Permutation step: For n ∈ {1, . . . , N} randomly choose indices i1, . . . , in ∈ {1, . . . , N} and

define I := {i1, . . . , in}, Î := {1, . . . , N}\I. Let π : I → I be a permutation. Generate candidate

E ′ by setting ϵ′i = ϵi for i ∈ Î and ϵ′i = ϵπ(i) for i ∈ I. Here q(E ′|E) = 1
N

1

(Nn)
1
n! and again we have

π(E ′)

π(E)
· q(E|E

′)

q(E|E ′)
= 1.

Thus for the Metropolis-step, the acceptance ratio is given by

α(E ′, E) = min

{
1,

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ′)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)

}
.
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Multiplicative update: For n ∈ {1, . . . , N} randomly choose indices i1, . . . , in ∈ {1, . . . , N}
and define I := {i1, . . . , in}, Î := {1, . . . , N} \ I. Generate candidate E ′ by setting ϵ′i = ϵi for

i ∈ Î and ϵ′i = ξiϵi with ξi ∼ N (1, c2) for i ∈ I. We have

q(E ′|E) = 1

N

1(
N
n

) ∏
i∈I

1√
2πϵic

exp
(
− (ϵ′i − ϵi)

2

2ϵ2i c
2

)
and

π(E) =
N∏
i=1

1√
2π

exp
(
− (ϵi)

2

2

)
.

Thus for the Metropolis-step, the acceptance ratio is given by

α(E ′, E) = min

{
1,

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E ′)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ1,Φ2, E)
π(E ′)

π(E)
q(E|E ′)

q(E ′|E)

}
.

Update Φ1:

Birth-and-death step: Choose birth-move with probability p ∈ (0, 1). Generate (τ1, ξ1), where
τ1 ∼ U([0, T ]) and ξ1 ∼ Ex(β1). Proposal transition kernel q(Φ1,Φ1 ∪ {(τ1, ξ1)}) has density

q(Φ1,Φ1 ∪ {(τ1, ξ1)}) = β−1
1 exp(−(β−1

1 − 1)ξ1)

with respect to the product of Lebesgue-measure on [0, T ] and Ex(1) measure on (0,∞).

Choose death-move with probability 1 − p. Select a randomly selected point (τ1i, ξ1i) being
removed from Φ1 (if Φ1 is not empty). The proposal transition kernel with respect to the
counting measure is

q(Φ1,Φ1 \ {(τ1i, ξ1i)}) =
1

N1
T

,

where N1
T is the number of points in Φ1 before the death-move.

The acceptance ratio for birth-move from Φ1 to Φ1 ∪ {(τ1, ξ1)} is then given by

α(Φ1,Φ1 ∪ {(τ1, ξ1)}) = min{1, r(Φ1, (τ1, ξ1))}

and the acceptance ratio for the death-move from Φ1 to Φ1 \ {(τ1i, ξ1i) is

α(Φ1,Φ1 \ {(τ1i, ξ1i)) = min

{
1,

1

r(Φ1 \ {(τ1i, ξ1i)}, (τ1i, ξ1i))

}
,

where

r(Φ̂1, (θ1, β1)) =
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2, E)
π(Φ̂1 ∪ {(τ1, ξ1)|θ1, β1})

π(Φ̂1|θ1, β1})

× 1− p

p

1

(N1
T + 1)q(Φ̂1, Φ̂1 ∪ {(θ1, ξ1)})

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2, E)
1− p

p

T

N̂1
T + 1

θ1.

Local displacement move: Assume that the jump times are ordered, i.e., τ1,1 < · · · < τ1,N1
T
.

Choose randomly one of the jump times, say τ1,j , and generate a new jump time uniformly on

[τ1,j−1, τ1,j+1]. Displace and resize the point (τ1,j , ξ1,j) to (τ1, ξ1), where ξ1 = e−λ−1
J1 (τ1−τ1,j)ξ1,j .

Perform Metropolis-step with acceptance ratio α(Φ1,Φ
′
1) = min{1, r(Φ1,Φ

′
1)}, where
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r(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
e−β−1

1 ξ1

e−β−1
1 ξ1,j

e−λJ1(τ1−τ1,j).

Multiplicative jump size update For each jump (τ1,j , ξ1,j) propose a new jump size ξ′1,j =

ξ1,jϕ1,j , where log(ϕ1,j) ∼ N (0, c21) are i.i.d. random variables. The variance c21 is chosen inversely
proportional to the current number of jumps. Perform Metropolis-step with acceptance ratio 1

α(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
exp

{
−(β−1

1 −1)
N1

T∑
i=1

(ξ′1,i − ξ1,i)
} N1

T∏
i=1

ξ′1,i
ξ1,i

.

Update Φ2:

Birth-and-death step: Choose birth-move with probability p ∈ (0, 1). Generate (τ2, ξ2), where
τ2 ∼ U([0, T ]) and ξ2 ∼ Ex(β2). Proposal transition kernel q(Φ2,Φ2 ∪ {(τ2, ξ2)}) has density

q(Φ2,Φ2 ∪ {(τ2, ξ2)}) = β−1
2 exp(−(β−1

2 − 1)ξ2)

with respect to the product of Lebesgue-measure on [0, T ] and Ex(1) measure on (0,∞).

Choose death-move with probability 1 − p. Select a randomly selected point (τ2i, ξ2i) being
removed from Φ2 (if Φ2 is not empty). The proposal transition kernel with respect to the
counting measure is

q(Φ2,Φ2 \ {(τ2i, ξ2i)}) =
1

N2
T

,

where N2
T is the number of points in Φ2 before the death-move.

The acceptance ratio for birth-move from Φ2 to Φ2 ∪ {(τ2, ξ2)} is then given by

α(Φ2,Φ2 ∪ {(τ2, ξ2)}) = min{1, r(Φ2, (τ2, ξ2))}

and the acceptance ratio for the death-move from Φ2 to Φ2 \ {(τ2i, ξ2i) is

α(Φ2,Φ2 \ {(τ2i, ξ2i)) = min

{
1,

1

r(Φ2 \ {(τ2i, ξ2i)}, (τ2i, ξ2i))

}
,

where

r(Φ̂2, (θ2, β2)) =
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂2 ∪ {(τ2, ξ2)}, λJ2 ,Φ1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂2, λJ2 ,Φ1, E)
π(Φ̂2 ∪ {(τ2, ξ2)|θ2, β2})

π(Φ̂2|θ2, β2})

× 1− p

p

1

(N2
T + 1)q(Φ̂2, Φ̂2 ∪ {(θ2, ξ2)})

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂2 ∪ {(τ2, ξ2)}, λJ2 ,Φ1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2, E)
1− p

p

T

N̂2
T + 1

θ2.

Local displacement move: Assume that the jump times are ordered, i.e. τ2,1 < · · · < τ2,N2
T
.

Choose randomly one of the jump times, say τ2,j , and generate a new jump time uniformly on

[τ2,j−1, τ2,j+1]. Displace and resize the point (τ2,j , ξ2,j) to (τ2, ξ2), where ξ2 = e−λ−1
J2 (τ2−τ2,j)ξ2,j .

Perform Metropolis-step with acceptance ratio α(Φ2,Φ
′
2) = min{1, r(Φ2,Φ

′
2)}, where

r(Φ2,Φ
′
2) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ
′
2,Φ1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
e−β−1

2 ξ2

e−β−1
2 ξ2,j

e−λJ2(τ2−τ2,j).

1The acceptance ratio depends on the chosen reference measure, see Appendix B.
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Multiplicative jump size update For each jump (τ2,j , ξ2,j) propose a new jump size ξ′2,j =

ξ2,jϕ2,j , where log(ϕ2,j) ∼ N (0, c22) are i.i.d. random variables. The variance c22 is chosen
inversely proportional to the current number of jumps. Perform Metropolis-step with acceptance
ratio

α(Φ2,Φ
′
2) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ
′
2,Φ1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
exp

{
−(β−1

2 −1)
N2

T∑
i=1

(ξ′2,i − ξ2,i)
} N2

T∏
i=1

ξ′2,i
ξ2,i

.

4. Posterior predictive check

We assess the adequacy of the latent variables involved in our models by calculating p-values
for the trajectories of the posterior distribution of the hidden variables, which we obtain through-
out our MCMC procedure. As demonstrated in [7], this allows us to perform posterior predictive
checks in the sense of [15]. Let m be the total number of iterations of the MCMC algorithm and
n be the number of iterations within the burn-in period. For each iteration n < k ≤ m calculate
p-values in the following way:

4.1. p-values for the Gaussian OU-process Y1. For N i.i.d. random variables ϵ1,j ∼ N (0, 1),

j = 1, . . . , N , the transition densities of the Gaussian OU-process Y
(k)
1 are given by

Y
(k)
1 (tj) = Y

(k)
1 (tj−1)e

−
(
λ
(k)
Y1

)−1
∆j+


(
σ
(k)
Y1

)2
λ
(k)
Y1

2

(
1− e

−2
(
λ
(k)
Y1

)−1
∆j

)
1/2

ϵ
(k)
1,j , j = 1, . . . , N.

Take the realisations
(
y
(k)
1,0 , . . . , y

(k)
1,N

)
of Y

(k)
1 obtained in the MCMC step and calculate noise

data

ϵ
(k)
1,j =

(
y
(k)
1,j − y

(k)
1,j−1e

−
(
λ
(k)
Y1

)−1
∆j

)
(
σ
(k)
Y1

)2
λ
(k)
Y1

2

(
1− e

−2
(
λ
(k)
Y1

)−1
∆j

)
−1/2

, j = 1, . . . , N.

Use the noise data
{
ϵ
(k)
1,j

}
j=1,...,N

as input for a Kolmogorov-Smirnov test for the standard

normal distribution, yielding the corresponding p-value p
(k)
Y1

.

4.2. p-values for the Gaussian OU-process Y2. Subject the components
{
ϵ
(k)
2,j

}
j=1,...,N

of

the hidden variable E(k) obtained in the k-th step of the MCMC algorithm to a Kolmogorov-

Smirnov test for the standard normal distribution, yielding the corresponding p-value p
(k)
Y2

.

4.3. p-values for the jump processes. For the jump data Φ
(k)
i , i ∈ {1, 2} sampled from the

Markov chain in the k-th iteration we have

Φ
(k)
i =

{(
τ
(k)
i,j , ξ

(k)
i,j

)}
0≤j≤N

(k)
Ti

.

Subject the jump sizes
{
ξ
(k)
i,j

}
j=0,...,NTi

to a Kolmogorov-Smirnov test for the exponential distri-

bution with mean β
(k)
i to get the p-value p

(k)
ξi

. For the jump locations
{
τ
(k)
i,j

}
j=1,...,NTi

calculate
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the set of inter-arrival times
{
∆τ

(k)
i,j

}
j=1,...,NTi

with ∆τ
(k)
i,j = τ

(k)
i,j −τ

(k)
i,j−1. Perform a Kolmogorov-

Smirnov test for the exponential distribution with mean
(
θ
(k)
i

)−1
on the set of inter-arrival times{

∆τ
(k)
i,j

}
j=1,...,NTi

to obtain the p-value p
(k)
θi

.

4.4. Calculation of posterior predictive p-values. For each iteration step k, n < k ≤ m,
we obtain 6 p-values {

p
(k)
Y1

, p
(k)
Y2

, p
(k)
ξ1

, p
(k)
θ1

, p
(k)
ξ2

, p
(k)
θ2

}
.

The posterior predictive p-values {pY1 , pY2 , pξ1 , pθ1 , pξ2 , pθ2} are now obtained by calculating the
mean values

{pY1 , pY2 , pξ1 , pθ1 , pξ2 , pθ2} =


m∑

k=n+1

p
(k)
Y1

m− n
,

m∑
n+1

p
(k)
Y2

m− n
,

m∑
n+1

p
(k)
ξ1

m− n
,

m∑
n+1

p
(k)
θ1

m− n
,

m∑
n+1

p
(k)
ξ2

m− n
,

m∑
n+1

p
(k)
θ2

m− n

 .

5. Evaluation of the model fit

In this section, we compare the fit of the 3-factor and 4-factor model for three different time
periods, namely the pre-crisis period 2018-2021, the crisis 2021-23 and the whole interval 2018-
2023. In contrast to the studies carried out in [7], our price data exhibits negative jumps in
every time period we investigate. This is the reason why our model features a negative stochastic
jump component. The generalization to a model with multiple jump components as described
in [7] is straight forward, but was not considered in our study for the sake of computational
tractability. To the best of our knowledge, this is the first attempt to fit the superposition
model for the extremely volatile data in the period 2021-2023 and can be considered as starting
point for future research.

5.1. Posterior properties of the parameters. We start with an overview of the posterior
properties of the model parameters obtained from the MCMC procedure described in Section 3.5.
Later in this section, we present a more detailed analysis of our calibration results.

Fast convergence of the MCMC algorithm is heavily dependent on finding appropriate paths
of the latent variables, and hence it is important to update the latent variables in an efficient
way. In Table 4, we provide details on the number of update steps, we used within every iteration
of the algorithm.

5.2. Model fit for different time periods. We now analyse the calibration results within
the respective time intervals, providing posterior sample paths of the latent variables as well as
simulations based on the calibrated parameters (Table 3). Model adequacy is then assessed by
calculating the posterior predictive p-values as described in Section 4.

5.2.1. 2018-21 spot price data: We calibrate the 3-factor model and the 4-factor model for the
spot-price data in the time interval 2018-2021. As can be seen in Figure 3, the long term
behavior of the spot price is modeled by a Gaussian OU-process in both the 3-factor and the
4-factor model. The main difference is that in the 4-factor model, the additional Gaussian OU
component accounts for a large part of the short term deviations which had previously been
modeled by the jump process thus leading to much sparser jump paths (cf. Fig. 3). This is in
line with the lower jump intensity rates observed in the 4-factor model (cf. Table 3). The high
p-value of the second OU-process indicates a good fit and better adequacy of the 4-factor model
in this time period.
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2018-21 2021-23 2018-23

3-OU 4-OU 3-OU 4-OU 3-OU 4-OU

Parameter Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

σY1 42.74 9.518 116.94 11.112 357.87 47.435 1.4319 0.3030 79.45 6.4217 124.81 9.2750
σY2 - - 22.051 6.7 - - 305.89 0.2160 - - 70.533 7.8973
λY1 0.2018 3.0381 0.0053 0.0009 0.0099 0.0536 0.0372 0.0167 27.47 771.5 0.0046 0.00077
λY2 - - 1.882 29.056 - - 0.9700 0.004 - - 2.4157 0.8809
λJ1 0.0057 0.00099 0.0079 0.0026 0.0347 0.0061 0.0202 0.000029 0.0164 0.0017 0.0138 0.0014
λJ2 0.0020 0.00023 0.0016 0.00028 0.0739 0.0144 0.0039 9.297857e-06 0.0026 0.0003 0.0019 0.00017
θ1 333.86 82.143 129.84 80.131 178.61 41.323 207.29 10.790 - - - -
θ2 336.26 59.495 86.999 30.244 132.44 31.951 131.03 8.5646 - - - -
β1 4.019 0.5241 4.816 0.1306 37.123 4.8553 29.093 1.5189 - - - -
β2 7.359 0.8767 13.547 3.1564 24.943 3.7563 38.703 2.6341 - - - -

θ
(1)
1 - - - - - - - - 205.56 37.208 6.5369 9.1030

θ
(1)
2 - - - - - - - - 130.35 28.011 92.919 21.170

β
(1)
1 - - - - - - - - 5.240 0.587 5.7285 295.55

β
(1)
2 - - - - - - - - 13.385 2.081 17.586 2.9266

θ
(2)
1 - - - - - - - - 373.34 40.119 368.85 47.868

θ
(2)
2 - - - - - - - - 614.17 59.46 510.08 61.584

β
(2)
1 - - - - - - - - 29.330 2.443 31.157 2.9279

β
(2)
2 - - - - - - - - 26.523 2.805 30.997 3.5207

Table 3. Posterior properties of the model parameters in different time periods.
We present the mean and the standard deviation (SD) for all model parameters.

2018-21 2021-23 2018-23

3-OU 4-OU 3-OU 4-OU 3-OU 4-OU

Number of Iterations 10 Mio. 10 Mio. 10 Mio. 10 Mio. 10 Mio. 10 Mio.
Burn-In-Period 9 Mio. 9 Mio. 9 Mio. 9 Mio. 9 Mio. 9 Mio.
Number of Loops for Birth-Death step 5 5 5 1 5 5
Number of Loops for Multiplicative Update 5 5 5 1 5 5
Number of Loops for Latent OU-Variable - 30 - 200 - 30
Number of New Increments per Loop - 100 - 1 - 1
Number of Permutations Increments per Loop - 100 - 2 - 2
Runtime (days) 3.9958 3.3188 4.0901 5.4426 - 8.2958

Table 4. Information about the updates of the hidden variables.

5.2.2. 2021-23 spot price data. When calibrating the 4-factor model to the 2021-23 spot price
data, it turns out, that the additional Gaussian OU-process is completely insignificant from the
modeling point of view (cf. Fig. 6). Thus it is sufficient to calibrate the 3-factor model for
the 2021-23 spot price data. As can be seen in Figure 4, the Gaussian OU-process is used to
model the long term behavior of the price process, but extreme deviations from the long term
mean are now incorporated into the jump processes. A comparison of the average jump sizes
in Table 3 for the period 2018-21 with those in 2021-23 confirms this observation. In Figure 5,
we showcase the samples generated from the MCMC algorithm for some model parameters. We
note that the simulated paths in Figure 3 exhibit the same characteristics as the observed data
in this time period and the confidence intervals fit the range of the historic data very well.

5.2.3. 2018-23 spot price data. The calibration of the 3-factor and 4-factor model to the whole
2018-23 data yields very low p-values for the jump processes, due to the different jump patterns
occurring before and after the start of the energy crisis (cf. Fig. 8). We therefore considered a
change-point model, where we have different jump intensities and jump sizes in the respective
time intervals (cf. Figure 7). This specification allows a better fit of the jump processes, however,
the convergence of the MCMC algorithm is quite slow due the additional parameters. A detailed
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(a) Data and Gaussian residu-
als after removal of the jumps

(b) Sample path of the jump
process in the 3-factor model

(c) Boxplot for the p-values in
the 3-factor model

(d) Data and Gaussian residu-
als after removal of the jumps

(e) Sample path of the jump
process in the 4-factor model

(f) Boxplot for the p-values in
the 4-OU model

Figure 3. Fit of the 3-factor model (top) and 4-factor model (bottom) in the
time period 2018-21.

explanation of the jump update procedure in the change point model is presented in Appendix A.
Of course, one could think of more advanced models for the spot price on the whole interval
2018-23, for example by introducing stochastic jump intensity rates. However, this would make
the MCMC algorithm even more complicated and thus more time-consuming.

5.3. Conclusion. For the pre-crisis data 2018-21, our results suggest that the addition of a
second Gaussian component can improve model adequacy, whereas for the crisis data 2021-23
the 4-factor model is hard to calibrate and leads to overfitting. For the whole period 2018-23,
the data of 2018-2021 dominates calibration of the Gaussian components, while the behavior in
2021-2023 is mainly explained by jump processes. The very different behavior of the spot price
in the time periods 2018-21 and 2021-23 makes it hard to fit the model to the whole data.

6. Futures prices

In this section, we give an explicit formula for the price of a futures contract with maturity
T in the 4-factor model. In our model, there are six sources of uncertainty, two of them are
generated by the diffusion factors of the respective Gaussian OU processes and two generated
by each of the jump processes, namely jump-intensity risk and jump-size risk. We assume that
the market price of risk arising from the diffusion of the Gaussian OU processes is constant,
moreover we make the simplifying assumption that all the jump risk premia are captured by
jump-size risk (cf. [18]). Thus, if θ∗ denotes the jump-intensity under the risk neutral measure,
we assume that θ∗ = θ. Therefore, under the risk neutral measure Q, the spot price process is



MODELING LARGE SPOT PRICE DEVIATIONS 17

(a) Data and Gaussian residuals after removal
of the jumps (b) Sample path of the jump process

(c) Boxplot of the p-values

(d) One simulated path and quantiles for 10000
simulations (dark to light red: 25-75%, 5-95%,
1-99%)

Figure 4. Fit of the 3-factor model in the time period 2021-23.

of the form
Pt = f(t) + Y1(t) + Y2(t) + J1(t)− J2(t), (6.1)

with
dY1(t) = (−λ−1

Y1
Y1(t)− ϕY1)dt+ σY1dW

Q
Y1
(t), (6.2)

dY2(t) = (−λ−1
Y2

Y2(t)− ϕY2)dt+ σY2dW
Q
Y2
(t), (6.3)

dJ1(t) = −λ−1
J1

J1(t)dt+ dΠ1(θ1, β
∗
1), (6.4)

dJ2(t) = −λ−1
J2

J2(t)dt+ dΠ2(θ2, β
∗
2), (6.5)

where ϕL and ϕS are the risk premia for the long term and short term uncertainty and β∗
1 , β

∗
2

are the risk neutral jump size parameters. The following result provides an explicit formula for
the price of a futures contract in the 4-factor model.



18 C. LAUDAGÉ, F. AICHINGER, AND S. DESMETTRE

(a) Volatility σY1 (b) Positive jump size β1 (c) Positive jump intensity θ1

Figure 5. Samples from the posterior distribution for different parameters in
the 3-factor model (2021-23).

Theorem 6.1. If the electricity spot price P is modelled by the 4-factor model (6.1) with risk
neutral dynamics (6.2)-(6.5), the price of a future contract on the spot price with maturity T at
time t is given as

F (t, T, P ) = EQ[PT |Ft]

= f(T ) + Y1(t)e
−λ−1

Y1
(T−t) − ϕY1

λ−1
Y1

(1− e
−λ−1

Y1
(T−t)

) + Y2(t)e
−λ−1

Y2
(T−t) − ϕY2

λ−1
Y2

(1− e
−λ−1

Y2
(T−t)

)

+ J1(t)e
−λ−1

J1
(T−t)

+
θ1
β∗
1

λJ1(1− e
−λ−1

J1
(T−t)

)− J2(t)e
−λ−1

J2
(T−t) − θ2

β∗
2

λJ2(1− e
−λ−1

J2
(T−t)

).

Proof: By the linearity of the conditional expectation, we obtain

EQ[PT |Ft] = f(T ) + EQ[Y1(T )|Ft] + EQ[Y2(T )|Ft] + EQ[J1(T )|Ft]− EQ[J2(T )|Ft].

Under the risk neutral measure Q, equation (6.2) has the solution

Y1(T ) = Y1(t)e
−λ−1

Y1
(T−t) − ϕY1

λ−1
Y1

(1− e
−λ−1

Y1
(T−t)

) + σY1

∫ T

t
e
−λ−1

Y1
(T−s)

dWQ
Y1
(s).

Thus we get

EQ
t [Y1(T )] := EQ[Y1(T )|Ft] = Y1(t)e

−λ−1
Y1

(T−t) − ϕY1

λ−1
Y1

(1− e
−λ−1

Y1
(T−t)

).

Analogously we have

EQ
t [Y2(T )] = Y2(t)e

−λ−1
Y2

(T−t) − ϕY2

λ−1
Y2

(1− e
−λ−1

Y2
(T−t)

).

Let N(t, T ) denote the number of jumps of the Poisson process in the interval (t, T ) and let
τ∗1 < · · · < τ∗N(t,T ) be the jump arrival times with corresponding jump sizes ξ∗1 , . . . , ξ

∗
N(t,T ). Then

we have

JT = Jte
−λ−1

J (T−t) +

N(t,T )∑
i=1

e−λ−1
J (T−τ∗i )ξ∗i ,

where the jump sizes are exponentially distributed with parameter β∗ and the jump intensity
θ∗ = θ does not change under the risk neutral measure. For the conditional expectation we get

E
Q
t [JT ] = EQ

t

[
Jte

−λ−1
J (T−t)+

N(t,T )∑
i=1

e−λ−1
J (T−τ∗i )ξ∗i

]
= Jte

−λ−1
J (T−t)+EQ

t

[N(t,T )∑
i=1

e−λ−1
J (T−τ∗i )ξ∗i

]
,

and since
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(a) Data and Gaussian residuals after removal
of the jumps (b) Sample path of the second OU-process

(c) Boxplot of the p-values

(d) One simulated path and quantiles for 10000
simulations (dark to light red: 25-75%, 5-95%,
1-99%)

Figure 6. Fit of the 4-factor model in the time period 2021-23.

EQ
t [JT ]− Jte

−λ−1
J (T−t) = EQ

t

[N(t,T )∑
i=1

e−λ−1
J (T−τ∗i )ξ∗i

]
= e−λ−1

J TEQ
t

[N(t,T )∑
i=1

eλ
−1
J τ∗i ξ∗i

]

= e−λ−1
J TEQ

t

[
EQ
[N(t,T )∑

i=1

eλ
−1
J τ∗i ξ∗i |N(t, T )

]]
= e−λ−1

J TEQ
t

[N(t,T )∑
i=1

EQ[eλ
−1
J τ∗i ξ∗i ]

]

= e−λ−1
J TEQ

t

[N(t,T )∑
i=1

EQ[eλ
−1
J τ∗i ]EQ[ξ∗i ]

]
= e−λ−1

J T 1

β∗E
Q
t

[N(t,T )∑
i=1

EQ[eλ
−1
J τ∗i ]

]
,

and
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(a) Gaussian residuals (b) Jumps

Figure 7. 4-factor model with change point. The jump parameters are cal-
ibrated separately for the different jump regimes before and after the change
point. The change point is given by the dashed vertical line.

(a) Boxplot of p-values fot the model without
change point

(b) Boxplot of p-values fot the model with
change point

Figure 8. Fit of the 4-factor model in the time period 2018-23.

N(t,T )∑
i=1

EQ
[
eλ

−1
J τ∗i

]
= EQ

[N(t,T )∑
i=1

eλ
−1
J τ∗i |N(t, T )

]
= N(t, T )EQ

[
eλ

−1
J τ
]

where τ ∼ U(t, T ) and the last equality follows by the fact that τ∗1 , . . . , τ
∗
N(t,T ) are the jump

times of a Poisson process with N(t, T ) jumps in the interval (t, T ), i.e., they are distributed
like the order statistics of N(t, T ) independent random variables that are uniformly distributed
on the interval (t, T ). Hence we end up with
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EQ
t [JT ]− Jte

−λ−1
J (T−t) = e−λ−1

J T 1

β∗E
Q
t

[
N(t, T )EQ[eλ

−1
J τ ]

]
= e−λ−1

J T 1

β∗E
Q
t [N(t, T )]EQ[eλ

−1
J τ ]

= e−λ−1
J T 1

β∗ θ(T − t)
1

T − t

∫ T

t
eλ

−1
J sds =

θ

β∗λJ(1− e−λ−1
J (T−t)).

Thus

EQ
t [JT ] = Jte

−λ−1
J (T−t) +

θ

β∗λJ(1− e−λ−1
J (T−t)).
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Appendix A: Jump update with change point

In this appendix, we give a detailed explanation for the update steps of the jump processes
in case that jump sizes and intensity change over time. We assume that there are two different
jump regimes on the interval [0, T ], the change point is denoted by TC . In the interval [0, TC ],

the jump arrival times have intensity θ
(1)
1 and the jump size is β

(1)
1 , whereas in the interval

(TC , T ], the jump intensity is θ
(2)
1 and the size is β

(2)
1 .

Update θ1
(1):

With the choice of an Ga(a
θ
(1)
1

, b
θ
(1)
1

) distributed prior for θ
(1)
1 , for the posterior we get

θ
(1)
1 |Φ1 ∼ Ga

(
a
θ
(1)
1

+N1
TC

, b
θ
(1)
1

+ T 1
C

)
.

Update θ1
(2):

With the choice of an Ga(a
θ
(2)
1

, b
θ
(2)
1

) distributed prior for θ
(2)
1 , for the posterior we get

θ
(2)
1 |Φ1 ∼ Ga

(
a
θ
(2)
1

+ (N1
T −N1

TC
), b

θ
(2)
1

+ (T − T 1
C)
)
.

Update β1
(1)

With the choice of an IG(a
β
(1)
1

, b
β
(1)
1

) distributed prior for β
(1)
1 , for the posterior we get

β
(1)
1 |Φ1 ∼ IG

a
β
(1)
1

+N1
TC

, b
β
(1)
1

+

N1
TC∑

i=1

ξ1i

 .

Update β1
(2)
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With the choice of an IG(a
β
(2)
1

, b
β
(2)
1

) distributed prior for β
(2)
1 , for the posterior we get

β
(2)
1 |Φ1 ∼ IG

a
β
(2)
1

+ (N1
T −N1

TC
), b

β
(2)
1

+

N1
T∑

N1
TC

+1

ξ1i

 .

Update Φ1

Birth-and-death step:
Choose birth-move with probability p ∈ (0, 1). Generate (τ1, ξ1) by the following procedure.

With probability

θ
(1)
1 TC

θ
(1)
1 TC + θ

(2)
1 (T − TC)

draw τ1 ∼ U([0, TC ]) and ξ1 ∼ Ex(β1
1),

θ
(2)
1 (T − TC)

θ
(1)
1 TC + θ

(2)
1 (T − TC)

draw τ1 ∼ U((TC , T ]) and ξ1 ∼ Ex(β2
1).

The proposal transition kernel q(Φ1,Φ1 ∪ {(τ1, ξ1)}) thus has density

q(Φ1,Φ1 ∪ {(τ1, ξ1)}) =


(β

(1)
1 )−1 exp(−((β

(1)
1 )−1 − 1)ξ1)

θ
(1)
1

θ
(1)
1 TC+θ

(2)
1 (T−TC)

, τ1 ∈ [0, TC ]

(β
(2)
1 )−1 exp(−((β

(2)
1 )−1 − 1)ξ1)

θ
(2)
1

θ
(1)
1 TC+θ

(2)
1 (T−TC)

, τ1 ∈ (TC , T ]

with respect to the product of Lebesgue-measure on [0, T ] and Ex(1) measure on [0,∞).

Choose death-move with probability 1 − p. Select a randomly selected point (τ1i, ξ1i) being
removed from Φ1 (if Φ1 is not empty). The proposal transition kernel with respect to the
counting measure is

q(Φ1,Φ1 \ {(τ1i, ξ1i)}) =
1

N1
T

,

where N1
T is the number of points in Φ1 before the death-move.

Acceptance ratio for birth-move from Φ1 to Φ1 ∪ {(τ1, ξ1)} is

α(Φ1,Φ1 ∪ {(τ1, ξ1)}) = min{1, r(Φ1, (τ1, ξ1))}.

Acceptance ratio for the death-move from Φ1 to Φ1 \ {(τ1i, ξ1i) is

α(Φ1,Φ1 \ {(τ1i, ξ1i)) = min{1, 1

r(Φ1 \ {(τ1i, ξ1i)}, (τ1i, ξ1i))
}

where
Case τ1 ∈ [0, TC ]:

r(Φ̂1, (τ1, ξ1))

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2,B)
π(Φ̂1 ∪ {(τ1, ξ1)|θ(1)1 , θ

(2)
1 , β

(1)
1 , β

(2)
1 })

π(Φ̂1|θ(1)1 , θ
(2)
1 , β

(1)
1 , β

(2)
1 })

× 1− p

p

1

(N1
T + 1)q(Φ̂1, Φ̂1 ∪ {(θ1, ξ1)})

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2,B)
1− p

p

θ
(1)
1 TC + θ

(2)
1 (T − TC)

N̂1
T + 1

.
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Case τ1 ∈ (TC , T ]:

r(Φ̂1, (τ1, ξ1))

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2,B)
π(Φ̂1 ∪ {(τ1, ξ1)|θ(1)1 , θ

(2)
1 , β

(1)
1 , β

(2)
1 })

π(Φ̂1|θ(1)1 , θ
(2)
1 , β

(1)
1 , β

(2)
1 })

× 1− p

p

1

(N1
T + 1)q(Φ̂1, Φ̂1 ∪ {(θ1, ξ1)})

=
l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1 ∪ {(τ1, ξ1)}, λJ2 ,Φ2,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , Φ̂1, λJ2 ,Φ2,B)
1− p

p

θ
(1)
1 TC + θ

(2)
1 (T − TC)

N̂1
T + 1

.

Multiplicative jump size update
For each jump (τ1,j , ξ1,j) propose a new jump size ξ′1,j = ξ1,jϕ1,j , where log(ϕ1,j) ∼ N (0, c21)

are i.i.d. random variables. The variance c21 is chosen inversely proportional to the current
number of jumps. Perform Metropolis-step with acceptance ratio

α(Φ1,Φ
′
1) = min

{
1,

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1,B)

N1
T∏

i=1

ξ′1,i
ξ1,i

× exp
{
− ((β

(1)
1 )−1 − 1)

N1
C∑

i=1

(ξ′1,i − ξ1,i)
}
exp

{
− ((β

(2)
1 )−1 − 1)

N1
T∑

i=N1
C+1

(ξ′1,i − ξ1,i)
}}

.

Local displacement move
Assume that the jump times are ordered, i.e. τ1,1 < · · · < τ1,N1

T
. Choose randomly one of the

jump times, say τ1,j , and generate a new jump time τ1 uniformly on [τ1,j−1, τ1,j+1]. Displace

and resize the point (τ1,j , ξ1,j) to (τ1, ξ1), where ξ1 = e−λ−1
J1 (τ1−τ1,j)ξ1,j . Perform Metropolis-step

with acceptance ratio α(Φ1,Φ
′
1) = min{1, r(Φ1,Φ

′
1)}, where

Case τ1, τ1,j ∈ [0, TC ]:

r(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1,B)
e−(β

(1)
1 )−1ξ1

e−(β
(1)
1 )−1ξ1,j

e−λJ1(τ1−τ1,j),

Case τ1 ∈ [0, TC ], τ1,j ∈ (TC , T ]:

r(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1,B)
θ
(1)
1

θ
(2)
1

e−(β
(1)
1 )−1ξ1

e−(β
(2)
1 )−1ξ1,j

e−λJ1(τ1−τ1,j),

Case τ1 ∈ (TC , T ], τ1,j ∈ [0, TC ]:

r(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1,B)
θ
(2)
1

θ
(1)
1

e−(β
(2)
1 )−1ξ1

e−(β
(1)
1 )−1ξ1,j

e−λJ1(τ1−τ1,j),

Case τ1, τ1,j ∈ (TC , T ]:

r(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1,B)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1,B)
e−(β

(2)
1 )−1ξ1

e−(β
(2)
1 )−1ξ1,j

e−λJ1(τ1−τ1,j).
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Appendix B: Poisson Processes

Let Π be a Poisson process on [0, T ] with constant intensity θ. For each point τ of the random
set Π, we associate an Ex(β) distributed random variable ξτ (the mark of τ), taking values in
R+. The pair (τ, ξτ ) can then be regarded as a random point in the product space [0, T ]× R+.
Then by the Marking Theorem [10], the random set

Π∗ = {(τ, ξτ )|τ ∈ Π}
is a Poisson process on [0, T ]× R+ and its intensity measure is given by

Λ(C) =

∫ ∫
(t,x)∈C

θ(dt)pξ(dx) =

∫ ∫
(t,x)∈C

θ
1

β
e
− 1

β
x
dtdx.

Thus the sets Φ1 = {(τ1,j , ξ1,j)}1≤j≤NT1
and Φ2 = {(τ2,j , ξ2,j)}1≤j≤NT2

of jump times and corre-
sponding jump sizes can be interpreted as realisations of marked Poisson processes taking values
in [0, T ] × R+. We are now interested in the likelihood l(Φi|θi, βi) with respect to a so called
dominating measure. Let therefore X = [0, T ] × R+ and denote by M the set of σ-finite mea-
sures defined on (X ,B(X ) and by M0 the subspace of integer-valued point measures X =

∑
i ϵxi ,

where xi ∈ X and ϵx is the point mass located in x. By B(M0) we denote the smallest σ-algebra
of subsets of M with respect to which all mappings

ΠB : M0 → {0, 1, 2, . . . ,∞} with ΠB(X) = X(B), B ∈ B(X ),

are measurable. Let now Π0 be a Poisson process taking values in X with constant intensity θ0
on [0, T ] and Ex(β0) distributed jump sizes. Then Π0 induces a measure P0 on (M0,B(M0))
via

P0(X ∈ M0 : X(B) = x) = P(ω ∈ Ω : Π0(ω)(B) = x).

The measure P0 will now be our reference measure on B(M0) and will be referred to as the
dominating measure. For convenience, the dominating measure is often chosen as the one induced
by a Poisson process with unit intensity on [0, T ] and exponential jump sizes with parameter 1,
however, the choices of θ0 and β0 can also be different [14]. For another Poisson process Π taking
values in X with constant intensity θ on [0, T ] and Ex(β) distributed jump sizes, the density of
P with reference to the dominating measure P0 can now be calculated by [11, Theorem 1.3] as

dP

dP0
(X) = exp

(∫
X
ln(S(x))X(dx)−

∫
X
(S(x)− 1)Λ0(dx)

)
, X ∈ M0

where

S(x) :=
dΛ

dΛ0
((x1, x2)) =

θ

θ0

β0
β

exp

(
−
(
1

β
− 1

β0

)
x2

)
.

Thus for a set Φ = {(τ1, ξ1), . . . , (τNT
, ξNT

)}, τi ∈ [0, T ], ξi ∈ R+ we can now calculate the
likelihood of Φ with respect to the dominating measure as

l(Φ|θ, β) = dP

dP0
(Φ) = exp

(∫
X
ln(S(x))Φ(dx)−

∫
X
(S(x)− 1)Λ0(dx))

)
= exp

(
NT∑
i=1

ln(S(τi, ξi))−
(∫

X
Λ(dx)−

∫
X
Λ0(dx)

))

=

NT∏
i=1

S(τi, ξi) exp (Λ0(X )− Λ(X ))

=

NT∏
i=1

θ

θ0

β0
β

exp

(
−
(
1

β
− 1

β0

)
ξi

)
· exp (θ0T − θT )

=

(
θ

θ0

)NT
(

β

β0

)−NT

exp

(
−
(
1

β
− 1

β0

) NT∑
i=1

ξi

)
· exp (−(θ − θ0)T ) .
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If the dominating measure is chosen as a Poisson process with unit intensity on [0, T ] and
exponential jump sizes with parameter 1 (cf. [7, Section 3.1]), Φ has likelihood

l(Φ|θ, β) = = θNT β−NT exp

(
−
(
1

β
− 1

) NT∑
i=1

ξi

)
· exp (−(θ − 1)T ) .

Note: The acceptance ratio in the multiplicative update step of the jump process

α(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
l(Φ′

1|β1, θ1)
l(Φ1|β1, θ1)

q(Φ1,Φ
′
1)

q(Φ′
1,Φ1)

.

in Section 3.5 depends on the chosen reference measure. If the jump size parameter of the
Poisson process inducing the dominating measure is 1, the acceptance ratio is given as

α(Φ1,Φ
′
1) =

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ
′
1, E)

l(X|λY1 , σY1 , λY2 , σY2 , λJ1 , λJ2 ,Φ2,Φ1, E)
exp

{
−(β−1

1 −1)
N1

T∑
i=1

(ξ′1,i − ξ1,i)
} N1

T∏
i=1

ξ′1,i
ξ1,i

,

whereas, if the jump size parameter is changed to (arbitrarily large) c, the term
l(Φ′

1|β1,θ1)
l(Φ1|β1,θ1)

evaluates to exp
{
−(β−1

1 −c−1)
N1

T∑
i=1

(ξ′1,i − ξ1,i)
}
, where c−1 can be arbitrarily close to 0.
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