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Abstract

We discuss the problem of estimating of Radon-Nikodym derivatives. This problem ap-
pears in various applications, such as covariate shift adaptation, likelihood-ratio testing,
mutual information estimation, and conditional probability estimation. To address the
above problem, we employ the general regularization scheme in reproducing kernel Hilbert
spaces. The convergence rate of the corresponding regularized algorithm is established by
taking into account both the smoothness of the derivative and the capacity of the space in
which it is estimated. This is done in terms of general source conditions and the regularized
Christoffel functions. We also find that the reconstruction of Radon-Nikodym derivatives
at any particular point can be done with high order of accuracy. Our theoretical results
are illustrated by numerical simulations.

Keywords: Density ratio, Reproducing kernel Hilbert space, Radon-Nikodym differenti-
ation

1 Introduction

This paper is focused on the use of regularized kernel methods in the context of estimating
the ratio of two probability density functions, which can also be called the Radon-Nikodym
derivative of the corresponding probability measures.

Recently the estimation of Radon-Nikodym derivatives has gained significant attention
due to its potential applications in such tasks as covariate shift adaptation, outlier detec-
tion, divergence estimation, and conditional probability estimation. Here we may refer to
Sugiyama et al. (2012) and references therein. In order to address the above problem, var-
ious kernel-based approaches are available. In particular, several regularization schemes in
reproducing Kernel Hilbert space (RKHS) can be employed Nguyen et al. (2010); Kanamori
et al. (2012); Que and Belkin (2013); Schuster et al. (2020); Gizewski et al. (2022).

As can be seen from the above studies, the convergence of algorithms for Radon-Nikodym
differentiation is influenced not only by the smoothness of the approximated function but
also by the capacity of the approximating space. Though there are several studies that
employed a particular regularization technique, such as Tikhonov–Lavrentiev regularization,
to the best of our knowledge there is no study considering more general regularization
schemes and taking into account both the above-mentioned factors, i.e. smoothness and
capacity. For example, in Kanamori et al. (2012) and Que and Belkin (2013) (see Type I
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setting there) only the capacity of the approximating space has been incorporated into error
estimations, and in Gizewski et al. (2022) and Schuster et al. (2020) only the smoothness
has been considered.

Besides, since in some applications the point values of the Radon-Nikodym derivatives
are of interest, it seems natural to study their approximation in spaces, where pointwise
evaluations are well-defined. However, in Kanamori et al. (2012) and Que and Belkin (2013)
the approximation has been analyzed in the space of integrable functions, where pointwise
evaluations are not well-defined.

In the present paper, we aim to overcome the above limitations. More precisely, we
study general regularization schemes and analyze their accuracy with respect to both the
smoothness of the Radon-Nikodym derivative and the capacity of the RKHS in which it is
estimated. This is done in terms of general source conditions and regularized Christoffel
functions. We then establish accuracy bounds of the corresponding regularized algorithm
in the norm of RKHS and pointwise. Finally, we present some numerical illustrations
supporting our theoretical results.

2 Assumptions and auxiliaries

In the problem of estimation of Radon-Nikodym derivatives, we consider two probability
measures p and q on a space X ⊂ Rd. The information about the measures is only provided
in the form of samples Xp = {x1, x2, . . . , xn} and Xq = {x′1, x′2, . . . , x′m} drawn indepen-
dently and identically (i.i.d) from p and q respectively. Moreover, we assume that there
is a function β : X → [0,∞), which can be viewed as the Radon-Nikodym derivative dq

dp
of the probability measure q(x) with respect to the probability measure p(x), and for any
measurable set A ⊂ X it holds ∫

A
dq(x) =

∫
A
β(x)dp(x).

Our goal is to approximate the Radon-Nikodym derivative β(x) = dq
dp by some function

β̂(x) based on the observed samples. As it has been already explained in Introduction, we
in fact need a strategy that ensures a good pointwise approximation to the derivatives β(x).
Then it seems to be logical to estimate β(x) in the norm of some RKHS, in which pointwise
evaluations are well-defined.

Let HK be a reproducing Kernel Hilbert space with a positive-definite function K :
X × X → R as reproducing kernel. We assume that K is a continuous and bounded
function, such that for any x ∈ X

∥K(·, x)∥HK
= ⟨K(·, x),K(·, x)⟩

1
2
HK

= [K(x, x)]
1
2 ≤ κ0 <∞.

Let L2,ρ be the space of square-integrable functions f : X → R with respect to the proba-
bility measure ρ. We define Jq : HK ↪→ L2,q and Jp : HK ↪→ L2,p as the inclusion operators,
such that for instance, Jq assigns to a function g ∈ HK the same function seen as an element
of L2,q. In the sequel, we distinguish two sample operators

SXqf = (f(x′1), f(x
′
2), . . . , f(x

′
m)) ∈ Rm,

SXpf = (f(x1), f(x2), . . . , f(xn)) ∈ Rn,
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acting from HK to Rm and Rn, where the norms in later spaces are generated by m−1-
times and n−1-times the standard Euclidean inner products, such that, for example, for
u = (u1, u2, . . . , um), w = (w1, w2, . . . , wm) ∈ Rm,

⟨u,w⟩Rm =
1

m

m∑
j=1

ujwj , ∥u∥Rm = ⟨u, u⟩
1
2
Rm =

 1

m

m∑
j=1

u2j

 1
2

.

Then the adjoint operators S∗
Xq

: Rm → HK and S∗
Xp

: Rn → HK are given as

S∗
Xq
u(·) = 1

m

m∑
j=1

K(·, x′j)uj , u = (u1, u2, . . . , um) ∈ Rm,

S∗
Xp
v(·) = 1

n

n∑
i=1

K(·, xi)vi, v = (v1, v2, . . . , vn) ∈ Rn.

In the literature, various RKHS-based approaches are available for a Radon-Nikodym
derivative estimation. Here we may refer to Kanamori et al. (2012) and to references
therein. As it can be seen from Que and Belkin (2013), and also from Gizewski et al.
(2022), conceptually, under the assumption that β ∈ HK , several of the above approaches
can be derived from a regularization of an operator equation, which can be written in our
terms as

J∗
pJpβ = J∗

q Jq1. (1)

Because of the compactness of the operator J∗
pJp, its inverse (J

∗
pJp)

−1 cannot be a bounded
operator in HK , which makes the equation (1) ill-posed. Here, 1 is the constant function
that takes the value 1 everywhere, and almost without loss of generality, we assume that
1 ∈ HK , because otherwise the kernel K1(x, x

′) = 1 +K(x, x′) will, for example, be used
to generate a suitable RKHS containing all constant functions.

Since there is no direct access to the measures p and q, the equation (1) is inaccessible
as well, but the samples Xp and Xq allow us to access its empirical version

S∗
Xp
SXpβ = S∗

Xq
SXq1. (2)

A regularization of equation (2) may serve as a starting point for several approaches of
estimating the Radon - Nikodym derivative β. For example, as it has been observed in
Kanamori et al. (2012); Gizewski et al. (2022), the known kernel mean matching (KMM)
method Huang et al. (2006) can be viewed as the regularization of (1) by the method
of quasi (least-squares) solutions, originally proposed by Valentin Ivanov (1963) and also
known as Ivanov regularization (see, e.g., Oneto et al. (2016) and Page and Grünewälder
(2019) for its use in the context of learning). At the same time, from Theorem 1 of Kanamori
et al. (2012) it follows that the kernelized unconstrained least-squares importance fitting
(KuLSIF) proposed in Kanamori et al. (2012) is in fact the application of the Lavrentiev
regularization scheme to the empirical version (2) of the equation (1), that is in KuLSIF we
have

β̂ = βλX = (λI + S∗
Xp
SXp)

−1S∗
Xq
SXq1. (3)
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As we have already mentioned in Introduction, early bounds of the accuracy of Radon-
Nikodym numerical differentiation have relied only on the capacity of the approximating
space. For example, in Nguyen et al. (2010); Kanamori et al. (2012) the capacity of the
underlying space HK has been measured in terms of the so-called bracketing entropy, and
in Kanamori et al. (2012) the value of the regularization parameter λ in KuLSIF (2) has
been chosen depending on that capacity measure. Note that, in such approach, there is
no possibility of incorporating into the regularization the information about other factors,
such as the smoothness of the approximated derivative β, which, as we know from Gizewski
et al. (2022), also influences the regularization accuracy. Therefore, in the present study, we
follow Pauwels et al. (2018) and employ the concept of the so-called regularized Christoffel
function that allows direct incorporation of the regularization parameter λ into the definition
of a capacity measure. Consider the function

Cλ(x) =
〈
K(·, x), (λI + J∗

pJp)
−1K(·, x)

〉
HK

=
∥∥∥(λI + J∗

pJp)
− 1

2K(·, x)
∥∥∥2
HK

(4)

Note that in Pauwels et al. (2018) the reciprocal of Cλ(x), i.e.
1

Cλ(x)
, was called the regular-

ized Christoffel function, but for the sake of simplicity, we will keep the same name also for
(4). Note also that in the context of supervised learning where usually only one probability
measure, say p, is involved, the expected value

N (λ) =

∫
X
Cλ(x)dp(x)

of Cλ(x), called the effective dimension, has been proven to be useful Caponnetto and
De Vito (2007). This function is used as a capacity measure of HK .

At the same time, if more than one measure appears in the supervised learning context,
as is for example the case in the analysis of Nyström subsampling Rudi et al. (2015); Lu
et al. (2019), then the C-norm of the regularized Christoffel function

N∞(λ) := sup
x∈X

Cλ(x) (5)

is used in parallel with the effective dimension N (λ). This gives a hint that N∞(λ) could
also be a suitable capacity measure for analysing the accuracy of Radon-Nikodym numerical
differentiation.

We will need the following statement.

Lemma 1 Let b0 > 0 be such that |β(x)| ≤ b0 for any x ∈ X. Then with probability at
least 1− δ we have

∥∥∥(λI + J∗
pJp)

− 1
2 (S∗

Xp
SXpβ − S∗

Xq
SXq1)

∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)√
N∞(λ)

√
b0
n

+
1

m
.

The proof of Lemma 1 is based on Lemma 4 of Huang et al. (2006), which we formulate in
our notations as follows
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Lemma 2 (Huang et al. (2006)) Let ϕ be a map from X into HK such that ∥ϕ(x)∥HK
≤ R

for all x ∈ X. Then with probability at least 1− δ it holds∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(x′j)−
1

n

n∑
i=1

β(xi)ϕ(xi)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)
R

√
b20
n

+
1

m
.

Now we can return to Lemma 1.
Proof We define a map ϕ : X → HK as ϕ(x) = (λI + J∗

pJp)
− 1

2K(·, x), x ∈ X. It is clear
that

∥ϕ(x)∥HK
=
∥∥∥(λI + J∗

pJp)
− 1

2K(·, x)
∥∥∥
HK

=
√
Cλ(x) ≤

√
N∞(λ).

Therefore, for the map ϕ the condition of the above Lemma 2 is satisfied with R = N∞(λ).
Then directly from that lemma, we have

∥∥∥(λI + J∗
pJp)

− 1
2 (S∗

Xp
SXpβ − S∗

Xq
SXq1)

∥∥∥
HK

=

∥∥∥∥∥∥ 1n
n∑

i=1

β(xi)ϕ(xi)−
1

m

m∑
j=1

ϕ(x′j)

∥∥∥∥∥∥
HK

≤

(
1 +

√
2 log

2

δ

)(√
b20
n

+
1

m

)√
N∞(λ).

3 General regularization scheme and general source conditions

All of the available regularization methods have the potential to be employed for the reg-
ularization of equation (2). In particular, we will use a general regularization scheme to
construct a family of approximate solutions βλX of (1) as follow

βλX = gλ(S
∗
Xp
SXp)S

∗
Xq
SXq1, (6)

where {gλ} is a family of operator functions parametrized by a regularization parameter
λ > 0.

3.1 General regularization scheme

Recall (see, e.g., Definition 2.2 in Lu and Pereverzyev (2013)) that regularization schemes
can be indexed by parametrized functions gλ : [0, c] → R, λ > 0. The only requirements are
that there are positive constants γ0, γ− 1

2
, γ−1 for which

sup
0<t≤c

|1− tgλ(t)| ≤ γ0,

sup
0<t≤c

√
t|gλ(t)| ≤

γ− 1
2√
λ
,

sup
0<t≤c

|gλ(t)| <
γ−1

λ
.

(7)
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Here and in the sequel, we adopt the convention that c denotes a generic positive coefficient,
which can vary from appearance to appearance and may only depend on basic parameters
such as p, q, κ0, b0, and others introduced below.

The qualification of a regularization scheme indexed by gλ is the maximal s > 0 for
which

sup
0<t≤c

ts|1− tgλ(t)| ≤ γsλ
s, (8)

where γs does not depend on λ. Following Definition 2.3 of Lu and Pereverzyev (2013) we
also say that the qualification s covers a non-decreasing function φ : [0, c] → R, φ(0) = 0,
if the function t → ts

φ(t) is non-decreasing for t ∈ (0, c]. Note that the higher qualification
is the more rapidly increasing functions can be covered, and in this way, as it can be seen
below, the more smoothness of approximated solutions can be utilized in the regularization.

Observe that the Lavrentiev regularization used in KuLSIF (3) is indexed by gλ(t) =
(λ + t)−1 and has qualification s = 1. The qualification of this regularization scheme can
be increased if one employs the so-called iteration idea, according to which regularized
algorithms need to be repeated such that, for example, the approximate Radon-Nikodym
derivative βλX = βλ,lX obtained in the previous l-th step plays the role of an initial guess for

the next approximation βλX = βλ,l+1
X . In this regularization the approximation (6) can be

obtain iteratively as follows

βλ,0X = 0,

βλ,lX = (λI + S∗
Xp
SXp)

−1(S∗
Xq
SXq1+ λβλ,l−1

X ), l ∈ N.

After k such iterations we obtained the approximation βλX = βλ,kX that can be represented
in the form (6) with

gλ(t) = gλ,k(t) =
1− λk

(λ+t)k

t
.

The regularization indexed by gλ,k(t) has the qualification k that can be taken as large
as desired. Moreover, for gλ(t) = gλ,k(t) the requirements (7), (8) are satisfied with γ0 =

1, γ− 1
2
= k

1
2 , γ−1 = k, γk = 1.

For the sake of shortness, we introduce the residual function

rλ(t) := 1− tgλ(t),

for which (7), (8) give the bounds rλ(t) ≤ γ0 and |tsrλ(t)| ≤ γsλ
s.

3.2 General source conditions

As mentioned in the previous section, the equation (1) is inaccessible, but the result Mathé
and Hofmann (2008) of the regularization theory tells us that there is always a continuous,
strictly increasing function φ : [0, ∥J∗

pJp∥HK
] → R that obeys φ(0) = 0 and allows the

representation of the solution of (1) in terms of the so-called source condition:

β = φ(J∗
pJp)νq, νq ∈ HK . (9)
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The function φ above is usually called the index function. Moreover, for every ϵ > 0 one
can find such φ that (9) holds true for νq with

∥νq∥HK
≤ (1 + ϵ)∥β∥HK

.

Note that since the operator J∗
pJp is not accessible, there is a reason to restrict ourselves

to consideration of such index functions φ, which allow us to control perturbations in the
operators involved in the definition of source conditions. A class of such index functions
has been discussed in Mathé and Pereverzev (2003); Bauer et al. (2007), and here we follow
those studies. Namely, we consider the class F = F(0, c) of index functions φ : [0, c] →
R+ allowing splitting φ(t) = ϑ(t)ψ(t) into monotone Lipschitz part ϑ, ϑ(t) = 0, with the
Lipschitz constant equal to 1, and an operator monotone part ψ,ψ(0) = 0.

Recall that a function ψ is operator monotone on [0, c] if for any pair of self-adjoint
operators U, V with spectra in [0, c] such that U ≤ V (i.e. V − U is an non-negative
operator) we have ψ(U) ≤ ψ(V ).

Examples of operator monotone index functions are ψ(t) = tν , ψ(t) = log−ν
(
1
t

)
, ψ(t) =

log−ν
(
log 1

t

)
, 0 < ν ≤ 1, while an example of a function φ from the above defined class F

is φ(t) = tr log−ν
(
1
t

)
, r > 1, 0 < ν ≤ 1, since it can be splitted in a Lipschitz part ϑ(t) = tr

and an operator monotone part ψ(t) = log−ν
(
1
t

)
.

We will need the result of Proposition 3.1 in Pereverzyev (2022), which we formulate in
our notations as follows

Lemma 3 (Pereverzyev (2022)) Let φ : [0, c] → R, φ(0) = 0, be any non-decreasing index
function. If the qualification s of the regularization indexed by a family {gλ} covers the
function φ, then for any λ ∈ (0, c] it holds

sup
t∈[0,c]

|rλ(t)φ(t)| ≤ γ0,sφ(λ),

where γ0,s = max{γ0, γs}, and γ0, γs are the coefficients appearing in (7) and in (8).

To estimate the regularized Christoffel functions we slightly generalize a source condition
for kernel sections K(·, x) that has been used in various contexts in Lu et al. (2019) and De
Vito et al. (2014).

Assumption 4 (Source condition for kernel) There is an operator concave index function
ξ : [0,

∥∥J∗
pJp
∥∥] → [0,∞) and ξ2 is covered by qualification s = 1 such that, for all x ∈ X,

K(·, x) = ξ(J∗
pJp)vx, ∥vx∥HK

≤ c,

where c does not depend on x.

We mention the following consequence of Assumption 4.

Lemma 5 Under Assumption 4,

N∞(λ) ≤ c
ξ2(λ)

λ
.
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Proof This simply follows from

N∞(λ) = sup
x∈X

∥∥∥(λI + J∗
pJp)

− 1
2K(·, x)

∥∥∥2
HK

= sup
x∈X

∥∥∥(λI + J∗
pJp)

− 1
2 ξ(J∗

pJp)vx

∥∥∥2
HK

≤ sup
x∈X

∥vx∥2HK
sup

t∈[0,||J∗
pJp||]

|(λ+ t)−
1
2 ξ(t)|2

≤ c sup
t

|(λ+ t)−1ξ2(t)|

≤ cλ−1 sup
t

∣∣∣∣ (1− t(λ+ t)−1
)
ξ2(t)

∣∣∣∣
≤ cλ−1 sup

t
|rλ(t)ξ2(t)|

≤ c
ξ2(λ)

λ
,

where in the last inequality we have used Lemma 3, Assumption 4, and the fact that the
Lavrentiev regularization indexed by gλ(t) = (λ+ t)−1 has the qualification s = 1.

Remark 6 In Pauwels et al. (2018), the asymptotic behavior of the regularized Christoffel
functions Cλ(x) as λ → 0 has been analyzed for translation invariant kernels K(x, t) =
K(x− t). Our Lemma 5 can be viewed as an extension of that analysis based on the general
source conditions on the kernel sections Kx(·) = K(·, x) ∈ HK .

4 Error estimates in RKHS

In this section, we discuss error estimates between β and βλX for RKHS norm. To this end,
we consider an auxiliary regularized approximation β̄λ defined as follows

β̄λ = gλ(S
∗
Xp
SXp)S

∗
Xp
SXpβ. (10)

Then we decompose the error bound into two parts:∥∥∥β − βλX

∥∥∥
HK

≤
∥∥∥β − β̄λ

∥∥∥
HK

+
∥∥∥β̄λ − βλX

∥∥∥
HK

. (11)

We call the first term on the right-hand side of (11) the approximation error, and the second
term the noise propagation error.

Following Lu et al. (2020), we introduce the functions

Bn,λ :=
2κ0√
n

(
κ0√
nλ

+
√

N (λ)

)
, (12)

Υ(λ) :=

(
Bn,λ√
λ

)2

+ 1, (13)

which will be useful in the subsequent analysis.
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Moreover, we need the following estimates from Lu et al. (2020) that are valid with
probability at least 1− δ and can be written in our notations as

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

≤ 4κ20√
n
log

2

δ
, (14)∥∥∥(λI + J∗

pJp)
−1/2(J∗

pJp − S∗
Xp
SXp)

∥∥∥
HK→HK

≤ Bn,λ log
2

δ
, (15)

Ξ :=
∥∥∥(λI + J∗

pJp)(λI + S∗
Xp
SXp)

−1
∥∥∥
HK→HK

≤ 2

(Bn,λ log
2
δ√

λ

)2

+ 1

 . (16)

Proposition 7 (Approximation error bound).

1. If β meets source condition (9), where φ is an operator monotone index function, then

∥∥∥β − β̄λ
∥∥∥
HK

≤ c(γ0 + γ−1)Ξφ(λ), 0 < λ ≤ κ0.

2. If β meets source condition (9), where φ = ϑψ ∈ F(0, c) with c is large enough and if

the qualification of the regularization gλ covers ϑ(t)t
3
2 , then

∥∥∥β − β̄λ
∥∥∥
HK

≤ cΞφ(λ) + ψ(κ0)γ0

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

.

Proof The Proposition 7 can be proved by repeating line by line the argument of the proof
of Proposition 4.3 in Lu et al. (2020), where the items denoted there as T , Tx, f

† and f̄λx
should be substituted by J∗

pJp, S
∗
Xp
SXp , β, and β̄

λ, respectively.

Proposition 8 (Noise propagation error bound). Let βλX, β̄
λ be defined by (3), (10). Then

with probability at least 1− δ it holds

∥∥∥β̄λ − βλX

∥∥∥
HK

≤ c
(
γ2− 1

2

+ γ2−1

) 1
2
Ξ

1
2

1√
λ

(
m− 1

2 + n−
1
2

)√
N∞(λ)

(
log

1
2
1

δ

)
.

Proof From (16) and well-known Cordes inequality we have

∥∥∥(λI + J∗
pJp)

1/2(λI + S∗
Xp
SXp)

−1/2
∥∥∥
HK→HK

≤ Ξ1/2. (17)
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Then using (7) and Lemma 1, we can continue∥∥∥β̄λ − βλX

∥∥∥
HK

≤
∥∥∥gλ(S∗

Xp
SXp)(S

∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤
∥∥∥gλ(S∗

Xp
SXp)(λI + S∗

Xp
SXp)

1
2

∥∥∥
HK

∥∥∥(λI + S∗
Xp
SXp)

− 1
2 (λI + J∗

pJp)
1
2

∥∥∥
HK

×

×
∥∥∥(λI + J∗

pJp)
− 1

2 (S∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤ sup
0<t≤c

|gλ(t)(λ+ t)
1
2 |Ξ

1
2

∥∥∥(λI + J∗
pJp)

− 1
2 (S∗

Xp
SXpβ − S∗

XT
SXT

1)
∥∥∥
HK

≤(γ2− 1
2

+ γ2−1)
1
2

1√
λ
Ξ

1
2

(
1 +

√
2 log

2

δ

)(√
b20
n

+
1

m

)√
N∞(λ)

≤c
(
γ2− 1

2

+ γ2−1

) 1
2 1√

λ
Ξ

1
2

(
m− 1

2 + n−
1
2

)√
N∞(λ)

(
log

1
2
1

δ

)
.

The next proposition summaries of Proposition 7 and 8.

Proposition 9 If β meets source condition (9), where φ is an operator monotone index
function, then with probability at least 1− δ it holds

∥∥∥β − βλX

∥∥∥
HK

≤ c

(
Υ(λ)φ(λ) +

1√
λ
[Υ(λ)]

1
2 (m− 1

2 + n−
1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

If β meets source condition (9), where φ = ϑψ ∈ F(0, c) with c is large enough, and if

the qualification of the regularization gλ covers ϑ(t)t
3
2 then with probability at least 1− δ the

total error allows for the bound

∥∥∥β − βλX

∥∥∥
HK

≤ c

(
Υ(λ)φ(λ) + n−

1
2 +

1√
λ
[Υ(λ)]

1
2 (m− 1

2 + n−
1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

Proof We first prove the results for β meets source condition (9), where φ is an operator
monotone index function. Using the error estimates in Proposition 7 and 8, and (12) - (16),
we have

∥∥∥β − βλX

∥∥∥
HK

≤c(γ0 + γ−1)

(Bn,λ log
2
δ√

λ

)2

+ 1

φ(λ)
+
(
γ2− 1

2

+ γ2−1

)1/2 1√
λ

√√√√(Bn,λ log
2
δ√

λ

)2

+ 1

(
log

1
2
1

δ

)(
m− 1

2 + n−
1
2

)√
N∞(λ)

≤c
(
Υ(λ)φ(λ) +

1√
λ
[Υ(λ)]

1
2 (m− 1

2 + n−
1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

10



On regularized Radon-Nikodym differentiation

Similarly, if β meets source condition (9), with φ = ϑψ ∈ F(0, c) and the qualification of

the regularization gλ covers ϑ(t)t
3
2 , we have

∥∥∥β − βλX

∥∥∥
HK

≤c

(Bn,λ log
2
δ√

λ

)2

+ 1

φ(λ) + ψ(κ0)γ0
4κ20√
n
log

2

δ

+ c
1√
λ

√√√√(Bn,λ log
2
δ√

λ

)2

+ 1

(
log

1
2
1

δ

)(
m− 1

2 + n−
1
2

)√
N∞(λ)

≤c
(
Υ(λ)φ(λ) + n−

1
2 +

1√
λ
[Υ(λ)]

1
2 (m− 1

2 + n−
1
2 )
√
N∞(λ)

)(
log

2

δ

)2

.

We will also need the following statement proven in Lu et al. (2020) as Lemma 4.6.

Lemma 10 Lu et al. (2020) There exists a λ∗ satisfying N (λ∗)/λ∗ = n. For λ∗ ≤ λ ≤ κ0,
there holds

Bn,λ ≤ 2κ0√
n

(√
2κ0 +

√
N (λ)

)
. (18)

This yields

Υ(λ) ≤ 1 + (4κ20 + 2κ0)
2 (19)

and also

Bn,λ

(
Bn,λ +

√
λ
)
≤ (1 + 4κ0)

4min

{
λ,

√
κ0
n

}
, (20)

for n large enough.

For λ > λ∗ we can make the statement of Proposition 9 more transparent.

Theorem 11 Let K satisfies Assumption 4, and λ ≥ λ∗. Then under the assumptions of
Proposition 9, with probability at least 1− δ, it holds∥∥∥β − βλX

∥∥∥
HK

≤ c

(
φ(λ) + (m− 1

2 + n−
1
2 )
ξ(λ)

λ

)(
log

2

δ

)2

.

Consider θφ,ξ(t) =
φ(t)t
ξ(t) and λ = λm,n = θ−1

φ,ξ(m
− 1

2 + n−
1
2 ), then∥∥∥β − βλX

∥∥∥
HK

≤ cφ
(
θ−1
φ,ξ(m

− 1
2 + n−

1
2 )
)
log2

1

δ
.

Remark 12 As we already mentioned, the accuracy of the approximation (6) in RKHS
has also been estimated in Theorem 2 of Gizewski et al. (2022). In our terms, the result of
Gizewski et al. (2022) can be written as follows:∥∥∥β − βλX

∥∥∥
HK

≤ cφ
(
θ−1
φ (m− 1

2 + n−
1
2 )
)
log

1

δ
. (21)

11
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where θφ(t) = φ(t)t. To simplify the comparison of Theorem 11 and (21), let us consider
the case when β meets the source condition (9) with φ(t) = tη, η ≥ 1

2 . In this case the
bound (21) can be reduced to

∥∥∥β − βλX

∥∥∥
HK

= O
(
(m− 1

2 + n−
1
2 )

η
η+1

)
. (22)

It is noteworthy that the error bound established in Theorem 2 of Gizewski et al. (2022) does
not take into consideration the capacity of HK . Such an additional factor can be accounted in
terms of Assumption 4 . Assume that K satisfies Assumption 3.2 with ξ(t) = tς , 0 < ς ≤ 1

2 ,

then for λ = λm,n = θ−1
φ,ξ(m

− 1
2 + n−

1
2 ), the bound in Theorem 11 gives

∥∥∥β − βλX

∥∥∥
HK

= O
(
(m− 1

2 + n−
1
2 )

η
η+1−ς

)
,

that is better than the order of accuracy given by (22). Then one can conclude that the
bound in Theorem 11 obtained by our argument generalizes, specifies, and refines the results
of Gizewski et al. (2022).

Recall that the bounds in Theorem 11 are valid for λ > λ∗. Using Lemma 5 and 10 one
can prove that λ = λm,n also satisfies the above inequality. The corresponding proof can be
easily recovered from Figure 1.

Figure 1: Relation between λ∗ and λm,n.

12



On regularized Radon-Nikodym differentiation

5 Error bounds for the pointwise evaluation

In this section, we discuss the error between point values of β(x) and βλX(x) for any x ∈ X.
In view of the reproducing property of K we have

|β(x)− βλX(x)| =
∣∣ 〈Kx, β − βλX

〉
HK

∣∣ = ∣∣ 〈K(·, x), β − βλX

〉
HK

∣∣
=
∣∣ 〈ξ(J∗

pJp)vx, β − βλX

〉
HK

∣∣
≤ c

∥∥∥ξ(J∗
pJp)(β − βλX)

∥∥∥
HK

. (23)

Similarly, we obtain

|β(x)− β̄λ(x)| ≤ c
∥∥∥ξ(J∗

pJp)(β − β̄λ)
∥∥∥
HK

,

|β̄λ(x)− βλX(x)| ≤ c
∥∥∥ξ(J∗

pJp)(β̄
λ − βλX)

∥∥∥
HK

,

that allows for the following decomposition of the error bound

|β(x)− βλX(x)| ≤ c

(∥∥∥ξ(J∗
pJp)(β − β̄λ)

∥∥∥
HK

+
∥∥∥ξ(J∗

pJp)(β̄
λ − βλX)

∥∥∥
HK

)
. (24)

In the following propositions, we estimate the terms on the right-hand side of (24).

Proposition 13 Let Assumption 4 be satisfied. Assume also that β and the regularization
indexed by gλ meet the conditions of Proposition 7. Then∥∥∥ξ(J∗

pJp)(β − β̄λ)
∥∥∥
HK

≤ cξ(λ)

(
Ξ

3
2φ(λ) + (γ0 + γ 1

2
)Ξ

1
2ψ(κ0)

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

)
.

for φ ∈ F(0, c), while for an operator monotone index function φ we have∥∥∥ξ(J∗
pJp)(β − β̄λ)

∥∥∥
HK

≤ c(γ0 + γ 3
2
)Ξ

3
2 ξ(λ)φ(λ).

Proof The analysis below is based on a modification of arguments developed in Lu et al.

(2020) for estimating the L2,p-norm of any function f ∈ L2,p in terms of
∥∥∥(J∗

pJp)
1
2 f
∥∥∥
HK

.

For the reader’s convenience, we present this modification in detail.

First of all, directly from Lemma A.1 Lu et al. (2020), it follows that, if gλ is any
regularization with qualification 1, then∥∥∥rλ(S∗

Xp
SXp)(λI + S∗

Xp
SXp)

1
2

∥∥∥
HK→HK

≤
√
(γ20 + γ21

2

)λ
1
2 . (25)

If gλ has qualification at least 3/2 then∥∥∥rλ(S∗
Xp
SXp)(λI + S∗

Xp
SXp)

3
2

∥∥∥
HK→HK

≤
√
8(γ20 + γ23

2

)λ
3
2 . (26)

13
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If β meets source condition (9), then for any λ > 0∥∥∥ξ(J∗
pJp)(β − β̄λ)

∥∥∥
HK

=
∥∥∥ξ(J∗

pJp)(I − gλ(S
∗
Xp
SXp)S

∗
Xp
SXp)β

∥∥∥
HK

=
∥∥∥ξ(J∗

pJp)(I − gλ(x
∗SXp)S

∗
Xp
SXp)φ(J

∗
pJp)v

∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)(λI + J∗
pJp)

− 1
2

∥∥∥
HK→HK

∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)φ(J

∗
pJp)v

∥∥∥
HK

. (27)

Now we are going to estimate each component on the right-hand side of (27). From the
proof of Lemma 5, we have∥∥∥ξ(J∗

pJp)(λI + J∗
pJp)

− 1
2

∥∥∥
HK→HK

≤ c
ξ(λ)√
λ
. (28)

Observe also that∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)φ(J

∗
pJp)v

∥∥∥
HK

≤
∥∥∥(λI + J∗

pJp)
1
2 rλ(S

∗
Xp
SXp)(λI + J∗

pJp)
∥∥∥
HK→HK

∥∥(λI + J∗
pJp)

−1φ(J∗
pJp)v

∥∥
HK

.

Moreover, using (16) and the bounds (17) and (26), we get∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)(λI + J∗

pJp)
∥∥∥
HK→HK

≤
∥∥∥(λI + J∗

pJp)
1
2 (λI + S∗

Xp
SXp)

− 1
2 (λI + S∗

Xp
SXp)

1
2 rλ(S

∗
Xp
SXp)(λI + J∗

pJp)
∥∥∥
HK→HK

≤ Ξ
1
2

∥∥∥(λI + S∗
Xp
SXp)

1
2 rλ(S

∗
Xp
SXp)(λI + S∗

Xp
SXp)(λI + S∗

Xp
SXp)

−1(λI + J∗
pJp)

∥∥∥
HK→HK

≤ Ξ
1
2

∥∥∥(λI + S∗
Xp
SXp)

1
2 rλ(S

∗
Xp
SXp)(λI + S∗

Xp
SXp)

∥∥∥
HK→HK

Ξ

=
∥∥∥rλ(S∗

Xp
SXp)(λI + S∗

Xp
SXp)

3
2

∥∥∥
HK→HK

Ξ
3
2

≤ cΞ
3
2λ

3
2

(
γ0 + γ 3

2

)
.

Besides, using the same argument as in the proof of Lemma 5, for an operator monotone
index function φ we have∥∥(λI + J∗

pJp)
−1φ(J∗

pJp)v
∥∥
HK

≤ c
φ(λ)

λ
∥v∥HK

. (29)

Thus, ∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)φ(J

∗
pJp)v

∥∥∥
HK

≤ c
(
γ0 + γ 3

2

)
Ξ

3
2λ

1
2φ(λ).

Substituting (28) and the above estimate into (27), we obtain the second bound of the
proposition.

Now we turn to proving the first bound and assume that β meets (9) with φ = ϑψ.
Then we have∥∥∥ξ(J∗

pJp)(β − β̄λ)
∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)rλ(S
∗
Xp
SXp)ϑ(S

∗
Xp
SXp)ψ(J

∗
pJp)v

∥∥∥
HK

+
∥∥∥ξ(J∗

pJp)rλ(S
∗
Xp
SXp)(ϑ(J

∗
pJp)− ϑ(S∗

Xp
SXp))ψ(J

∗
pJp)v

∥∥∥
HK

.

(30)
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Further, we estimate separately each term on the right-hand side of (30). By using (28)
and (29), the first term is estimated as follows:∥∥∥ξ(J∗

pJp)rλ(S
∗
Xp
SXp)ϑ(S

∗
Xp
SXp)ψ(J

∗
pJp)v

∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)(λI + J∗
pJp)

− 1
2

∥∥∥
HK→HK

∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)ϑ(S

∗
Xp
SXp)ψ(J

∗
pJp)v

∥∥∥
HK

×
∥∥(λI + J∗

pJp)
−1ψ(J∗

pJp)v
∥∥
HK

≤ c
ξ(λ)√
λ

∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)ϑ(S

∗
Xp
SXp)(λI + J∗

pJp)
∥∥∥
HK→HK

ψ(λ)

λ
∥v∥HK

≤ c
ξ(λ)ψ(λ)

λ
3
2

Ξ
1
2

∥∥∥(λI + S∗
Xp
SXp)

1
2 rλ(S

∗
Xp
SXp)ϑ(S

∗
Xp
SXp)(λI + S∗

Xp
SXp)

∥∥∥
HK→HK

Ξ

≤ c
ξ(λ)ψ(λ)

λ
3
2

Ξ
3
2ϑ(λ)λ

3
2

≤ cξ(λ)φ(λ)Ξ
3
2 , (31)

and with the use of (25) we can estimate the second term in (30) as∥∥∥ξ(J∗
pJp)rλ(S

∗
Xp
SXp)(ϑ(J

∗
pJp)− ϑ(S∗

Xp
SXp))ψ(J

∗
pJp)v

∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)(λI + J∗
pJp)

− 1
2 (λI + J∗

pJp)
1
2 rλ(S

∗
Xp
SXp)(ϑ(J

∗
pJp)− ϑ(S∗

Xp
SXp))ψ(J

∗
pJp)v

∥∥∥
HK

≤ c
ξ(λ)√
λ

∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)

∥∥∥
HK→HK

∥∥∥(ϑ(J∗
pJp)− ϑ(S∗

Xp
SXp))

∥∥∥
HK→HK

≤ c
ξ(λ)√
λ

∥∥∥(λI + J∗
pJp)

1
2 rλ(S

∗
Xp
SXp)

∥∥∥
HK→HK

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

ψ(κ0) ∥v∥HK

≤ c
ξ(λ)√
λ
Ξ

1
2

∥∥∥(λI + S∗
Xp
SXp)

1
2 rλ(S

∗
Xp
SXp)

∥∥∥
HK→HK

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

≤ cξ(λ)Ξ
1
2

(
γ0 + γ 1

2

)∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

. (32)

Substituting (31) and (32) into (30), we obtain

∥∥∥ξ(J∗
pJp)(β − β̄λ)

∥∥∥
HK

≤ cξ(λ)

(
Ξ

3
2φ(λ) + (γ0 + γ 1

2
)Ξ

1
2

∥∥∥J∗
pJp − S∗

Xp
SXp

∥∥∥
HK→HK

)
.

Proposition 14 Assume that Assumption 4 be satisfied. Then it holds

∥∥∥ξ(J∗
pJp)(β̄

λ − βλX)
∥∥∥
HK

≤ c
ξ(λ)√
λ
Ξ(γ−1+γ0+1)

∥∥∥(λI + J∗
pJp)

− 1
2 (S∗

Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

.
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Proof Using (9), (16) and (28), we derive∥∥∥ξ(J∗
pJp)(β̄

λ − βλX)
∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)gλ(S
∗
Xp
SXp)(S

∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤
∥∥∥ξ(J∗

pJp)(λI + J∗
pJp)

− 1
2

∥∥∥
HK→HK

×

×
∥∥∥(λI + J∗

pJp)
1
2 gλ(S

∗
Xp
SXp)(S

∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤ c
ξ(λ)√
λ

∥∥∥(λI + J∗
pJp)

1
2 gλ(S

∗
Xp
SXp)(λI + J∗

pJp)
1
2

∥∥∥
HK→HK

×

×
∥∥∥(λI + J∗

pJp)
− 1

2 (S∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤ c
ξ(λ)√
λ
Ξ

1
2

∥∥∥gλ(S∗
Xp
SXp)(λI + S∗

Xp
SXp)

∥∥∥
HK

Ξ
1
2×

×
∥∥∥(λI + J∗

pJp)
− 1

2 (S∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤ c
ξ(λ)√
λ
Ξ sup

t

∣∣gλ(t)(λ+ t)
∣∣ ∥∥∥(λI + J∗

pJp)
− 1

2 (S∗
Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

≤ c
ξ(λ)√
λ
Ξ(γ−1 + γ0 + 1)

∥∥∥(λI + J∗
pJp)

− 1
2 (S∗

Xq
SXq1− S∗

Xp
SXpβ)

∥∥∥
HK

.

Now we can combine (24) with Propositions 13, 14 and with Lemma 1. Then the same
argument as in the proof of Proposition 9 gives us the following statement.

Theorem 15 Under the assumption of Propositions 13 and 14, for λ > λ∗ with probability
at least 1− δ, for all x ∈ X, we have

|β(x)− βλX(x)| ≤ cξ(λ)

(
φ(λ) + (m− 1

2 + n−
1
2 )
ξ(λ)

λ

)(
log

2

δ

)2

,

and for λ = λm,n = θ−1
φ,ξ(m

− 1
2 + n−

1
2 ),

|β(x)− βλX(x)| ≤ cξ(λm,n)φ(λm,n) log
2 1

δ
.

Remark 16 Let us consider the same index functions φ(t) = tη and ξ(t) = tς as in Remark

12, where the accuracy of order O
(
(m− 1

2 + n−
1
2 )

η
η+1−ς

)
has been derived for (6). Under the

same assumptions, Theorem 15 guarantees the accuracy of order O
(
(m− 1

2 + n−
1
2 )

η+ς
η+1−ς

)
.

This illustrates that the reconstruction of the Radon-Nikodym derivative at any particular
point can be done with much higher accuracy than its reconstruction as an element of RKHS.
But let us stress that the above high order of accuracy is guaranteed when the qualification
s of the used regularization scheme is higher than that of the Lavrentiev regularization or
KuLSIF (3).
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6 Numerical illustrations

In our examples, we simulate inputs Xp = (x1, x2, . . . , xn) to be sampled from the normal
distribution p ∼ N(2, 5), while the inputs Xq = (x′1, x

′
2, . . . , x

′
m) are sampled from the

normal distribution q ∼ N(µq, 0.5) with µq = {2, 3, 4}. In this case, the Radon-Nikodym

derivative β = dq
dp is known to be

β(x) =
√
10e

(x−2)2−10(x−µq)
2

10 .

In the algorithms described in Section 3, we choose the kernel as

K(x, x′) = 1 + e−
(x−x′)2

2 ,

which is a combination of a universal Gaussian kernel with a constant such that the corre-
sponding space HK contains all constant functions.

We are going to illustrate that to achieve high order of accuracy for reconstruction of
the Radon-Nikodym derivative at any particular point, as it is guaranteed by Theorem
15, one needs to employ a regularization with the qualification that is higher than 1. For
doing this we use a particular case of the general regularization scheme (6), namely the iter-
ated Lavrentiev regularization, to compute the values of the approximate Radon-Nikodym
derivative βλX = (βλ1 , β

λ
2 , · · · , βλn) with βλi = βλX(xi).

Recall that the k times iterated Lavrentiev regularization is indexed by the functions

gλ(t) = gλ,k(t) =

(
1− λk

(λ+ t)k

)
t−1, (33)

and has the qualification s = k.
For gλ(t) = gλ,k(t) the vector of values of the approximate Radon-Nikodym derivative

βλX = βλ,kX given by (6), (33) is the k-th term of the sequence

βλ,lX,0 = 0,

βλ,lX = (nλI+K)−1
(
nλβλ,l−1

X + F̄
)
, l = 1, 2, . . . , k. (34)

where I is n by n identity matrix, K = (K(xi, xj))
n
i,j=1, and F̄ = (Fi)

n
i=1 with Fi =

n
m

∑m
j=1K(xi, x

′
j).

The algorithm (34) has been implemented with m = n = 100 and k = {1, 2, 3, 5, 10}.
The regularization parameter λ is chosen by the so-called quasi-optimality criterion (see,
e.g., Bauer and Reiß (2008), Kindermann et al. (2018)), λ̄ ∈ {λι = λ0ϱ

ι, ι = 1, 2, . . . , w}, ϱ <
1 such that for λ̄ = λι0 ,∥∥∥βλι0

X − β
λι0−1

X

∥∥∥
Rn

= min
{∥∥∥βλι

X − β
λι−1

X

∥∥∥
Rn
, ι = 1, 2, . . . , w

}
.

Taking into consideration Theorem 15 and Figure 1, one can expect that λ̄ ≈ λm,n >

(m− 1
2 + n−

1
2 ). Therefore, for n = m = 100 it is natural to look for λ̄ within interval
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(a) (b)

(c)

Figure 2: Mean-square deviation in examples with (a) Xq ∼ N(2, 0.5), (b) Xq ∼ N(3, 0.5),
and (c) Xq ∼ N(4, 0.5).

[0.1, 0.9], and in our experiments we choose λ0 = 0.9, ϱ = 9

√
1
9 , and w = 9, such that

λι ∈ [0.1, 0.9].

The performance of each implementation has been measured in terms of the mean-square
deviation (MSD).

MSD = n−1
n∑

i=1

(
β(xi)− βλ,kX (xi)

)2
.

A summary of the performance over 20 simulations of (xi)
n
i=1, (x

′
j)

m
j=1 in all cases µq =

{2, 3, 4} is presented in the form of box plots in Figure 2. It can be clear seen that in our
examples the considered realization of the iterated Laventiev regularization outperforms its
original version (k = 1). This supports a conclusion from Theorem 15 suggesting the use of
high qualification regularization for pointwise evaluation of Radon-Nikodym derivation.

The performance of the algorithm (34) for a particular simulation is displayed in Figure

3. In this figure, the exact values β are shown by the line, and the βλ,1X (xi), β
λ,2
X (xi), β

λ,3
X (xi),

18
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βλ,5X (xi), and βλ,10X (xi) are denoted correspondingly by green triangles, red squares, cyan
diamonds, yellow stars, and blue crosses.

(a) (b)

(c)

Figure 3: The performance of the algorithm for a particular simulation with (a) Xq ∼
N(2, 0.5), (b) Xq ∼ N(3, 0.5), and (c) Xq ∼ N(4, 0.5).
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