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Abstract. We define the algebraic rangeAR(X) of theX-ray transform of sym-
metric tensors via the algebraic constraints of the Fourier coefficients on the lat-
tice Z × Z, recently introduced by the authors. The algebraic range is the L2-
closure of the range of theX-ray transform of smooth tensors of compact support.
Orthogonal projection of the data onAR(X) reduces the noise by annihilating its
orthogonal component. In numerical experiments for 0-order tensors we illustrate
the effect of inverting the X-ray transform from such projections.
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1 Introduction

This work concerns theX-ray transform of symmetric real valued tensors f with square
integrable components supported in the unit disc. The X-ray transform of f in the
fan-beam coordinates is extended by anti-symmetry to a square integrable function

(eiβ , eiθ) 7→
∞∑

n=−∞

∞∑
k=−∞

gn,ke
inθeikβ on the entire torus.

In [16, 17] the authors use tools from the A-analytic theory [1, 15] and character-
ize the range of the X-ray transform in terms of the Fourier coefficients {gn,k}. In
here we give an alternate derivation of the necessary constraints without appeal to A-
analyticity. As a fringe, the new proof connects the characterization in [17] with the one
in [12], which, in turn, generalizes the classical characterization in [3, 5, 9] for (rapidly
decaying) 0-tensors; for brevity we call the latter the Gelfand-Graev, Helgason, and
Ludwig (GGHL)-characterization. A quite different characterization in [14] was given
for symmetric tensors of order 0 and 1 on simple Riemannian surfaces with boundary.
The connection between the GGHL-characterization and the Euclidean version of the
characterization result in [14] was established in [10].
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Use of the constraints in the range of the X-ray transform has been known to cor-
rect for motion artifacts [20, 21], completion of data [19, 4, 7, 8], or CT-hardware failure
diagnosis [13]. In the space of square integrable functions on the torus, our new char-
acterization in [17] naturally define the algebraic range AR(X), which we show to be
the closure (in L2) of the range of the X-ray transform of smooth tensors of compact
support. Orthogonal projection of the data on the algebraic range reduces the noise,
by annihilating its component orthogonal to AR(X). We use the projection method in
numerical experiments with 0-order tensors, and illustrate the effect it renders in the
reconstruction.

In Section 2 we establish notation and recall the necessity part of the characteriza-
tion in [17]. In Section 3 we present an alternate proof of the necessary constraints in
theX-ray data. In Section 4 we introduce the algebraic range and its approximation by
some specific band limited subspaces. In numerical experiments in Section 5 we illus-
trate the effect produced by our denoising by projection method to the reconstruction.

While the change of parity in the order of the tensor propagates to every level of
the proofs, it produces merely nominal changes. For the sake of clarity we present here
only the even order case, which includes the application in X-ray tomography.

While this work concerns problems in two dimensions, it should be mentioned that
in three dimensions, the characterization is of a different nature, where the X-ray trans-
form satisfy John equation [6] for 0-order tensor, and later extended to higher order
tensors in [11].

2 Preliminaries

Let f = (fi1i2...im), with i1, ..., im ∈ {1, 2} be a real valued symmetric m-tensor,
with components of compact support in the plane. By scaling and translating, we may
assume that all its components are supported inside the unit disc Ω,

supp fi1...im ⊂ Ω. (2.1)

When the components of f are also in Lp(Ω), we adapt the notation in [18]:

Lp0(S
m;Ω) = {f = (fi1···im) ∈ Sm(Ω) : fi1···im ∈ Lp(Ω), satisfying (2.1)} .

The boundary of the domain is the unit circle Γ , but we keep this notation to differ-
entiate from the set S1 of directions. The symmetry refers to the components fi1i2...im
being invariant under any transposition of indexes. For θ = 〈θ1, θ2〉 = 〈cos θ, sin θ〉,
let θm := θ ⊗ θ ⊗ · · · ⊗ θ︸ ︷︷ ︸

m

∈
(
S1
)m

. For any x ∈ Ω, let

〈f(x),θm〉 =
∑

i1,i2,··· ,im∈{1,2}

fi1···im(x)θ
i1 · θi2 · · · θim (2.2)

denote the action of the tensor f on θm.
The X-ray transform of f (assumed extended by 0 outside Ω) is given by

Xf(x,θ) :=

∫ ∞
−∞
〈f(x+ tθ),θm〉dt, (x,θ) ∈ Γ × S1. (2.3)



The algebraic range of X-ray data 3

If linesL(β,θ) := {eiβ+seiθ : s ∈ R} are parameterized in coordinates {(eiβ , eiθ) :
β, θ ∈ (−π, π]} on Γ × S1, then

Xf(eiβ , eiθ) =

∫ ∞
−∞
〈f(eiβ + seiθ),θm〉ds (2.4)

is understood as a function on the torus.
Since L(β,θ) = L(2θ−β−π,θ) = L(β,θ+π) = L(2θ−β−π,θ+π), the set of lines inter-

secting Ω are quadruply covered when (eiβ , eiθ) ranges over the entire torus Γ × S1.
Moreover, the following symmetries are satisfied,

Xf(eiβ , eiθ) = (−1)mXf(eiβ , ei(θ+π)), and (2.5)

Xf(eiβ , eiθ) = (−1)mXf(ei(2θ−β−π), ei(θ+π)), for (eiβ , eiθ) ∈ Γ × S1; (2.6)

see Figure 1 below.

0

Ω

eiβ

ν

ei(2θ−β−π)

θ

β θ

α

α

α

Fig. 1. Fan-beam coordinates: eiβ ∈ Γ , eiθ ∈ S1, and θ = (cos θ, sin θ).

We consider the partition of the torus into three parts: the “outflux” part

Γ+ :=
{
(eiβ , ei(β+α)) ∈ Γ × S1 : β ∈ (−π, π], |α| < π

2

}
, (2.7)

the “influx” part

Γ− :=
{
(eiβ , ei(β+α)) ∈ Γ × S1 : β ∈ (−π, π], π

2
< |α| ≤ π

}
, (2.8)

and the (Lebesgue negligible) variety Γ0 := (Γ × S1) \ (Γ+ ∪ Γ−) parameterizing the
tangent lines to the circle; see Figure 1.

If each component fi1...im ∈ Lp(Ω), p ≥ 1, then Xf may not be in Lp(Γ × S1).
However, if (2.1) is satisfied, then Xf ∈ Lp(Γ × S1); see Proposition 1 for the case
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of interest p = 2. (It can be shown that (2.1) can be relaxed by replacing the vanishing
near the boundary with f having an L2p regularity near the boundary.)

The characterization result in [17] and the proof in Section 3 hold for the larger class
L1
0(S

m;Ω) of tensors with integrable components satisfying (2.1). It gives necessary
and sufficient conditions for a function g ∈ L1(Γ × S1) to satisfy

g =

{
Xf , on Γ+,
−Xf , on Γ−,

(2.9)

for some tensor f .
The characterization is given in terms of the Fourier coefficients

gn,k :=
1

(2π)2

∫ π

−π

∫ π

−π
g(eiβ , eiθ)e−inθe−ikβdθdβ, n, k ∈ Z (2.10)

of g on the lattice Z × Z. where the two indexes play a different role. Throughout, the
first index is the Fourier mode in the angular variable on S1, and we call it an angular
mode. The second index is the mode in the boundary variable on Γ , and we call it a
boundary mode.

The change of parity in the order of the tensor propagates to the statements of the
results. For the sake of clarity, in this paper we only present the even order case.

If m is even, g in (2.9)satisfy the symmetry relation

g(eiβ , eiθ) = g(ei(2θ−β−π), ei(θ+π)), for a.e. (eiβ , eiθ) ∈ Γ × S1, (2.11)

and let Lpsym(Γ×S1) denote the space of p-integrable functions g on the torus satisfying
(2.11). Since

(
eiβ , eiθ

)
and

(
ei(2θ−β−π), ei(θ+π)

)
are either both in Γ+, or both in Γ−,

we can consider the spaces L1
sym(Γ±) of integrable functions on the half-tori satisfying

(2.11). Clearly, g ∈ Lpsym(Γ × S1) if and only if its restrictions g|Γ± ∈ Lpsym(Γ±).
Moreover, since g in (2.9) is odd with respect to the angular variable:

g(eiβ , eiθ) = −g(eiβ , ei(θ+π)). (2.12)

Let us consider the subspace Lpsym,odd(Γ × S1) of functions in Lpsym(Γ × S1), which, in
addition to satisfying (2.11), they also satisfy (2.12).

In [17, Theorem 2.1] the following range characterization is given for even order
tensors. The statement below leaves out the non-unique characterization of the inversion
for tensors of order m ≥ 2, which we do not use here.

Theorem 1. (i) Let m ≥ 0 be even and f ∈ L1
0(S

m;Ω) be a real valued, integrable
symmetric tensor field of order m satisfying (2.1). If g ∈ L1

sym,odd(Γ × S1) satisfies

g = Xf on Γ+( and g = −Xf on Γ−),

then its Fourier coefficients {gn,k}n,k∈Z satisfy the following conditions:

Oddness : gn,k = 0, for all even n ∈ Z, and all k ∈ Z; (2.13)
Conjugacy : g−n,−k = gn,k, for all n, k ∈ Z; (2.14)

Symmetry : gn,k = (−1)n+kgn+2k,−k, for all n, k ∈ Z; (2.15)

Moments : gn,k = (−1)kgn+2k,−k, for all odd n ≤ −(m+ 1), and all k ≤ 0.
(2.16)
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(ii) Let {gn,k} be given for all odd n ≤ −1, and k ∈ Z such that

∑
n≤−1
n: odd

〈n〉2
∞∑

k=−∞

|gn,k| <∞, and
∞∑

k=−∞

〈k〉1+µ
∑
n≤−1
n: odd

|gn,k| <∞, (2.17)

for some 1 ≥ µ > 1/2.
If {gn,k} satisfy (2.15) and (2.16), then there exists a real valued f ∈ Cµ(Sm;Ω)

(non-unique if m ≥ 2), such that the mapping

(Γ × S1) 3 (eiβ , eiθ) 7−→ 2Re


∑
n≤−1
n: odd

∑
k∈Z

gn,ke
inθeikβ

 (2.18)

defines a function in L1
sym,odd(Γ × S1), which coincides with Xf on Γ+ (and with −Xf

on Γ−).

The constraints (2.13) are due to the angularly-odd extension (2.9) to the entire
torus. The conjugacy constraints (2.14) are due to the reality of the tensor. The symme-
try constraints (2.15) merely account for each line being doubly parametrized in Γ+,
and they are shared by any function on the torus satisfying the symmetry (2.11); see
[17, Lemma A.2] for details. The moment constraints (2.16) are due to the nature of the
operator (integration) along the line in the definition of theX-ray transform. In the next
section we present a new proof of (2.16), which does not use the theory of A-analytic
maps.

3 An elementary proof of the moment conditions

In this section we present a new proof of (2.16), which does not use tools from the
theory of A-analytic maps.

The starting point is Pantyukhina’s result in [12], which extends the original GGHL
characterization from 0 order tensors to arbitrary order tensors. The set of lines in [12]
are parametrized by points on the tangent bundle TS1 = {(x,θ)|θ ∈ S1, x · θ = 0} of
the unit circle. To distinguish from the parametrization of lines by points on a torus we
use the notation

If(x,θ) :=

∫ ∞
−∞
〈f(x+ tθ),θm〉dt, (x,θ) ∈ TS1, (3.1)

where f is extended by 0 outside Ω. In two dimensions, Pantyukhina’s result states:

Theorem 2 ([12]). Let ϕ ∈ S(TS1) be a rapidly decaying function on TS1. Then
ϕ = If for some symmetric m-tensor field f ∈ S(R2), if and only if

1. ϕ(x,−θ) = (−1)mϕ(x,θ) and
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2. for every integer k ≥ 0, there exist homogeneous polynomials P ki of degree k, such
that ∫ ∞

−∞
skϕ(sθ⊥,θ)ds =

m∑
i=0

P ki (cos θ, sin θ) cos
i θ sinm−i θ. (3.2)

Below, we revisit the necessity part of Theorem 2 adapted to functions on the torus.
For a tensor f supported in the unit disc, the X-ray of f with lines parameterized on
Γ × S1 is connected to the X-ray of f with lines parameterized on TS1 by

Xf(eiβ , ei(α+β)) = If(sinα ei(α+β−
π
2 ), ei(α+β)) for |α| ≤ π

2
and β ∈ (−π, π].

(3.3)

0

Ω

eiβ

ν

θ

−θ⊥

ν

s

β

α

α

Fig. 2. eiβ ∈ Γ, θ = (cos θ, sin θ), eiθ = ei(α+β), −θ⊥ = ei(α+β−
π
2
).

To bring Pantyukhina’s moment conditions (3.2) closer to our needs, we also recast
them as orthogonality conditions.

Theorem 3. Let f ∈ L1
0(S

m;Ω) be a real valued, integrable symmetric m-tensor field
satisfying (2.1), and h ∈ L1(Γ × S1) be defined by

h := Xf +

{
Xf on Γ+,
−Xf on Γ−

=

{
2 [Xf ] on Γ+,
0 on Γ−.

(3.4)

Then, for each p ∈ Z, p ≥ 0,∫ π

−π

∫ π

−π
ein(β+α)(sinα)p (cosα)h(eiβ , ei(α+β)) dα dβ = 0, for all (3.5)

(i) n ∈ Z with m+ p− n odd, or
(ii) n ∈ Z with |n| > m+ p and m+ p− n even.



The algebraic range of X-ray data 7

Proof. Since f is supported in the unit disc, the integration over the line reduces to the
integration over the interval [−1, 1] regardless of the orientation of the line.

∫ 1

−1
spIf(s ei(θ−

π
2 ), eiθ) ds =

∫ 1

−1
sp
∫ 1

−1

m∑
j=0

fj(se
i(θ−π2 ) + teiθ)(cos θ)m−j(sin θ)jdtds

=

m∑
j=0

∫ 1

−1

∫ 1

−1
(x2 cos θ − x1 sin θ)pfj(x1, x2)(cos θ)m−j(sin θ)jdx1dx2

=

m∑
j=0

p∑
k=0

cj,p,k(cos θ)
m+p−(j+k)(sin θ)j+k

=
m∑
j=0

p∑
k=0

cj,p,k

(
eiθ + e−iθ

2

)m+p−(j+k)(
eiθ − e−iθ

2i

)j+k

= 2−m−pe−iθ(m+p)
m∑
j=0

p∑
k=0

(−i)j+kcj,p,kQm+p,j+k(e
2iθ),

where cj,p,k =

(
p

k

)∫ 1

−1

∫ 1

−1
fj(x1, x2)(−1)kxk1x

p−k
2 dx1 dx2, and

Qr.k(t) = (t+ 1)
r−k

(t− 1)
k
, for 0 ≤ k ≤ r. (3.6)

Since {Qr,k(t)}rk=0 form a basis for the space of polynomials of degree r (e.g., see

[17, Lemma A.I]), the map ζ 7→ ζm+p

∫
R
spIf(sζe−i

π
2 , ζ)ds is a polynomial of degree

2(m + p) in ζ ∈ C with even powers only. In particular, we get the orthogonality (in
L2(S1)) conditions:∫ π

−π
eiθ(m+p−q)

∫ 1

−1
spIf(s ei(θ−

π
2 ), eiθ) ds dθ = 0,{

for q < 0, or q > 2(m+ p),

or for 1 ≤ q ≤ 2(m+ p)− 1, and q odd.

By setting n = m+ p− q,

∫ π

−π
einθ

∫ 1

−1
spIf(s ei(θ−

π
2 ), eiθ) ds dθ = 0,{

for |n| > m+ p,

or for |n| ≤ m+ p, and m+ p− n is odd.

Thus, ∫ π

−π
einθ

∫ 1

−1
spIf(s ei(θ−

π
2 ), eiθ) ds dθ = 0, for all (3.7)
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(i) n ∈ Z with m+ p− n odd, or
(ii) n ∈ Z with |n| > m+ p and m+ p− n even.

For each eiβ ∈ Γ , let α ∈
(
−π2 ,

π
2

)
be the angle measured counter-clockwise from

the outer unit normal at eiβ ∈ Γ ; see Figure 2. By the change of variables s = sinα in
(3.7), and using the relation (3.3), the moment conditions become

0 =

∫ π

−π
ein(β+α)

∫ π
2

−π2
(sinα)pIf(sinα ei(α+β−

π
2 ), ei(α+β)) cosαdα dβ

=

∫ π

−π
ein(β+α)

∫ π
2

−π2
(sinα)p cosαXf(eiβ , ei(α+β)) dα dβ.

Since g in (3.4) vanishes on Γ−, i.e., g(eiβ , ei(α+β)) = 0, for all β ∈ (−π, π] and
π
2 < |α| ≤ π, one obtains (3.5). This ends the proof of Theorem 2.

The moment conditions (2.16) in Theorem 1 follow as a corollary to Theorem 2.
Since the odd angular modes are preserved upon addition with the modes of the angu-
larly even function Xf , suffices to prove (2.16) for the function h in (3.4).

Corollary 1 Let f ∈ L1
0(S

m;Ω) be a real valued, integrable symmetric tensor field of
even order m ≥ 0 satisfying (2.1), and h ∈ L1

sym(Γ × S1) be defined by (3.4). Then its
Fourier coefficients {hn,k}n,k∈Z satisfy

hn,k = (−1)khn+2k,−k, for all odd n ≤ −m− 1, and all k ≤ 0.

Proof. We use (3.5) in Theorem 3 part (ii) with |n| > m+p. Sincem is even,m+(p−n)
and p−n have the same parity. We consider two separate cases: p and n both even, and
p and n both odd.

Case 1: |n| > m+ p, and p and n both even.
Since span

{
cosα (sinα)2j , 0 ≤ j ≤ k

}
= span {cos[(2j + 1)α], 0 ≤ j ≤ k} for

all k ≥ 0, the orthogonality in (3.5) for this case becomes

0 =

∫ π

−π

∫ π

−π
ein(β+α) cos[(p+ 1)α] h(eiβ , ei(α+β)) dα dβ

=
1

2

∫ π

−π

∫ π

−π
ein(β+α)ei(p+1)αh(eiβ , ei(α+β)) dα dβ

+
1

2

∫ π

−π

∫ π

−π
ein(β+α)e−i(p+1)αh(eiβ , ei(α+β)) dα dβ.

(3.8)

In the last equality of (3.8) let us consider the first term,∫ π

−π

∫ π

−π
ein(β+α)ei(p+1)αh(eiβ , ei(α+β)) dα dβ

α=θ−β
======

∫ π

−π

∫ π

−π
eiθ(n+p+1)e−i(p+1)βh(eiβ , eiθ) dθ dβ = (2π)2h−n−p−1,p+1.

(3.9)
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Similarly, the last term in (3.8) rewrites∫ π

−π

∫ π

−π
ein(β+α)e−i(p+1)αh(eiβ , ei(α+β)) dα dβ

α=θ−β
======

∫ π

−π

∫ π

−π
eiθ(n−p−1)ei(p+1)βh(eiβ , eiθ) dθ dβ = (2π)2h−n+p+1,−p−1.

(3.10)
Using (3.9), and (3.10), the expression in (3.8) yields

h−n−p−1,p+1 = −h−n+p+1,−p−1, for n, p even, |n| > m+ p, and p ≥ 0. (3.11)

By setting k = −p − 1 (odd) and |n| ≥ m + p + 2 = m − k + 1, and r = −n − k
(odd), we obtain,

hr,k = (−1)khr+2k,−k, for all odd k ≤ −1, and all odd r ≤ −m− 1. (3.12)

Case 2: We consider (3.5) for all p ≥ 0, |n| > m+ p, and p and n both odd.
Since span

{
cosα (sinα)2j+1, 0 ≤ j ≤ k

}
= span {sin[(2j + 2)α], 0 ≤ j ≤ k}

for all k ≥ 0, the orthogonality in (3.5) for this case becomes

0 =

∫ π

−π

∫ π

−π
ein(β+α) sin[(p+ 1)α] h(eiβ , ei(α+β)) dα dβ

=
1

2i

∫ π

−π

∫ π

−π
ein(β+α)ei(p+1)αh(eiβ , ei(α+β)) dα dβ

− 1

2i

∫ π

−π

∫ π

−π
ein(β+α)e−i(p+1)αh(eiβ , ei(α+β)) dα dβ.

(3.13)

Using (3.9) and (3.10), the expression in (3.13) yields

h−n−p−1,p+1 = h−n+p+1,−p−1, for n, p odd, |n| > m+ p, and p ≥ 0.

By setting k = −p− 1 (even), |n| ≥ m+ p+ 2 = m− k + 1, and r = −n− k (odd),
we obtain

hr,k = (−1)khr+2k,−k, for all even k ≤ −2, and all odd r ≤ −m− 1. (3.14)

In summary (3.12) and (3.14), yields

hr,k = (−1)khr+2k,−k, for all k ≤ −1, and all odd r ≤ −m− 1.

Since the relation above trivially holds for k = 0, we showed that the moment condi-
tions (2.16) hold.

4 The algebraic range of the X-ray transform of even order
tensors

In this section the square integrability of Xf is needed. The following result gives a
sufficient condition on f to ensure square integrability of Xf .
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Proposition 1 Let the components of f ∈ L2
0(S

m;Ω) satisfy

supp fi1...im ⊂ {z ∈ Ω : |z| ≤
√
1− δ2}, 0 < δ < 1. (4.1)

Then Xf ∈ L2(Γ × S1) and, thus, the extension (2.9) is square integrable on Γ × S1.

Proof. Since f is symmetric, for anym-tuple (i1, · · · , im) ∈ {1, 2}m such that 2 occurs
exactly k times (and 1 occurs m− k times), the component fi1...im satisfies

fi1...im = f1 · · · 1︸ ︷︷ ︸
m−k

2 · · · 2︸ ︷︷ ︸
k

=: f̃k. (4.2)

Since there are
(
m
k

)
many m-tuples (i1, i2, · · · , im) that contain exactly k many 2′s,

〈f(z),θm〉 (4.2)
====

m∑
k=0

(
m

k

)
f̃k(z) (cos θ)

(m−k)(sin θ)k

= e−imθ2−m
m∑
k=0

(−i)k
(
m

k

)
f̃k(z) Qm,k(e

2iθ),

where Qm,k are the polynomials in (3.6).
Since the order of the tensor is even, say m = 2l, for some l ≥ 0, we obtained

〈f ,θm〉 =
l∑

k=0

f2ke
−i(2k)θ +

l∑
k=1

f−2ke
i(2k)θ, (4.3)

where fk’s are in a one-to-one correspondence with f̃k, and thus with fi1···im ; see [17,
Lemma A.1]. Since all the components fi1...im ∈ L2

0(Ω) satisfy the support condition
(4.1), f2k ∈ L2

0(Ω) also satisfies the same support condition (4.1), for all −l ≤ k ≤ l.
Using the identity (4.3), the X-ray transform of f (with components extended by 0

outside Ω) writes as Xf =

l∑
k=−l

Xk(f2k), where Xk is the weighted ray transform

Xk(f)(e
iβ , eiθ) :=

∫ ∞
−∞

f(ei(β−θ) + t)e−i2kθdt.

For any f ∈ L2
0(Ω) satisfying the support condition (4.1), we show next that

Xk(f) ∈ L2(Γ × S1). In the estimate below (fourth equality) we denote by fθ the
function obtained from f by a rotation of the domain by an angle θ, fθ(z) := f(zeiθ).
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Note that ‖fθ‖2L2(Ω) = ‖f‖
2
L2(Ω).

‖Xkf‖2L2(Γ×S1) =
1

(2π)2

∫ π

−π

∫ π

−π
|Xkf(e

iβ , eiθ)|2dβdθ

=
1

(2π)2

∫ π

−π

∫ π

−π

∣∣∣∣∫ ∞
−∞

f(eiβ + teiθ)e−2ikθdt

∣∣∣∣2 dβdθ
=

1

(2π)2

∫ π

−π

∫ π

−π

∣∣∣∣∫ 2

−2
f(eiβ + teiθ)e−2ikθdt

∣∣∣∣2 dβdθ
≤ 4

1

(2π)2

∫ π

−π

∫ π

−π

∫ 2

−2
|f(eiβ + teiθ)|2dtdβdθ

=
1

π2

∫ π

−π

∫ π

−π

∫ 2

−2
|fθ(ei(β−θ) + t)|2dtdβdθ

α=β−θ
======

2

π2

∫ π

−π

∫ π/2

−π/2

∫ 2

−2
|fθ(eiα + t)|2dtdαdθ

s=sinα
======

2

π2

∫ π

−π

∫ 2

−2

∫ 1

−1

|fθ(
√
1− s2 + t+ is)|2√

1− s2
dsdtdθ

u=t+
√
1−s2

==========
2

π2

∫ π

−π

∫ 1

−1

∫ 1

−1

|fθ(u+ is)|2√
1− s2

dsdudθ,

(4.4)

where the third equality uses that Ω has diameter 2, and the last equality uses the fact
that the unit disc lies inside any rotated circumscribed square.

Since suppfθ ⊂ {z : |z| ≤
√
1− δ2}, regardless of the rotation angle θ,

‖Xkf‖2L2(Γ×S1) ≤
2

π2

∫ π

−π

∫ 1

−1

∫ √1−δ2

−
√
1−δ2

|fθ(u+ is)|2√
1− s2

dsdudθ

≤ 2

π2δ

∫ π

−π
‖fθ‖2L2(Ω) dθ =

4

πδ
‖f‖2L2(Ω) .

The constraints in Theorems 1 determine a closed subspace of L2(Γ × S1), which
contains the range of the X-ray transform of square integrable tensors.

Definition 1. Let m ≥ 0 be even. The algebraic range AR(X) of the X-ray transform
of symmetric m-tensors is defined by those g ∈ L2(Γ × S1) with Fourier coefficients
satisfying (2.13), (2.14), (2.15) and (2.16).

Since m is even, (2.13) yields that only the odd angular modes need be considered.
To further describe the algebraic interaction between (2.14), (2.15), and (2.16), let us
consider the three-set partition of Z−odd × Z = G ∪R ∪W (see Figure 3) introduced in
[17]:
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−n

k

-3 -1

-4

-3

-2

-1

0

1

2

3

4

5

6

· · · · · ·−m+ 1−m− 1−m− 3· · · · · ·

n+ 2k ≤ −(m+ 1)

n ≤ −(m+ 1)

Fig. 3. An even order m-tensor field f is determined by the odd negative angular modes on or
above the diagonal k = −n (green region), and the odd negative angular modes (marked red) on
the m

2
red lines n+ 2k = −(m+ 1) for k ≥ 0. All the odd non-positive angular modes on and

below the line n+2k = −(m+1), and on and left of the line n = −(m+1) vanish. For n ≥ 0
the picture is symmetric with respect to the origin.

– the region W :=W+ ∪W−, where

W+ :=

{
(n, k) ∈ Z−odd × Z+ : odd n ≤ −m− 1, and 0 ≤ k ≤ −n+m+ 1

2

}
,

W− :=
{
(n, k) ∈ Z−odd × Z− : odd n ≤ −m− 1, and k ≤ 0

}
.

(4.5)
– the region G := GL ∪GR ∪∆, where

GL :=
{
(n, k) ∈ Z−odd × Z+ : k ≥ 1 and − 2k + 1 ≤ n < −k, n odd

}
,

GR :=
{
(n, k) ∈ Z−odd × Z+ : k ≥ 1 and n > −k, n odd

}
,

∆ := {(−k, k) : odd k ≥ 1} .
(4.6)

– and, for m ≥ 2, the region R = R+ ∪R− with

R+ :=
{
(n, k) ∈ Z−odd × Z+ : k ≥ 1, and −m+ 1− 2k ≤ n ≤ −1− 2k, n odd

}
,

R− :=
{
(n, k) ∈ Z−odd × Z− : k ≤ 0, and −m+ 1 ≤ n ≤ −1, n odd

}
.

(4.7)
If m = 0 (case considered in the numerical experiments in Section 5), then R = ∅
and Z− × Z =W ∪G; see Fig. 4.
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Note the invariance of G under the transformation (n, k) 7→ (−n− 2k, k), and that
of R (for m ≥ 2) under the transformation (n, k) 7→ (n + 2k,−k). More precisely if
(n, k) ∈ GL, then (−n − 2k, k) ∈ GR, and conversely, if (n, k) ∈ GR, then (−n −
2k, k) ∈ GL. Similarly, if (n, k) ∈ R+, then (n + 2k,−k) ∈ R−, and conversely, if
(n, k) ∈ R−, then (n+ 2k,−k) ∈ R+.

For a given integerN ≥ 1, we also consider the finite sub-lattice IN of points inside
the rectangle [−m+ 1− 2N,m− 1 + 2N ]× [−N,N ],

IN = {(n, k) ∈ Zodd × Z : n odd , |n| ≤ m− 1 + 2N, and |k| ≤ N}. (4.8)

In the case of even order tensors we only work with functions that are angularly-odd.
For brevity, let denote

L2
odd(Γ × S1) :=

{
g ∈ L2(Γ × S1) : g(eiβ , eiθ) = −g(eiβ ,−eiθ)

}
.

Following directly from (2.14), (2.15), and (2.16), g ∈ L2
odd(Γ × S1) ∩ AR(X) if and

only if for all odd n ≤ −1,

gn,k =


0, if (n, k) ∈W,
(−1)1+kg−n−2k,k, if (n, k) ∈ G,
(−1)1+kgn+2k,−k, if (n, k) ∈ R.

(4.9)

Note also that (2.13) already implies L2
odd(Γ ×S1)∩AR(X) = L2(Γ ×S1)∩AR(X).

The following result provides the theoretical support of the denoising method pro-
posed in Section 5.

Theorem 4. Let g ∈ L2
odd(Γ × S1) be an angularly odd real valued function with

Fourier coefficients {gn,k}. For some fixed even m ≥ 0, consider the partition G∪R∪
W of Z− × Z with W in (4.5), G in (4.6), and R in (4.7) and define the new function

g∗(eiβ , eiθ) := 2Re

 ∑
odd n≤−1

∞∑
k=−∞

g∗n,ke
inθeikβ

 , (4.10)

where

g∗n,k =


0, if (n, k) ∈W,
1
2

(
gn,k + (−1)1+kg−n−2k,k

)
, if (n, k) ∈ G,

1
2

(
gn,k + (−1)1+kgn+2k,−k

)
, if (n, k) ∈ R.

(4.11)

Then

g∗ = argmin
{
‖g − h‖2L2(Γ×S1) : h ∈ L2

odd(Γ × S1) ∩AR(X)
}
. (4.12)

Moreover, for any N ≥ 1 arbitrarily fixed, the band limited approximation

g∗N (eiβ , eiθ) := 2Re

( −1∑
n=−m+1−2N

N∑
k=−N

g∗n,ke
inθeikβ

)
, (4.13)

is the X-ray transform of some symmetric m-tensor in C1(Sm;Ω).
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Proof. Following directly from its definition in (4.10), it is easy to see that g∗ ∈
AR(X) ∩ L2

odd(Γ × S1). Also following directly from the definition (4.10) on the
antidiagonal ∆, the Fourier coefficients of g and g∗ coincide:

g−k,k = g∗−k,k, for odd k ≥ 0. (4.14)

Moreover, since g is angularly odd, for all n ∈ Z, g2n,k = 0.
Now let h ∈ L2

odd(Γ × S1) ∩ AR(X) be arbitrary. The Fourier coefficients hn,k of
h, then satisfy (4.9). In particular, they vanish in W . Moreover, the third condition in
(4.9) also yields hn,0 = 0 for all n ≤ −1 odd. Since g is real valued, (2.14) holds and
the Fourier modes {gn,k} for n ≤ 0 and k ∈ Z determines half the norm. We estimate:

1

2
‖g − h‖2L2(Γ×S1) −

∑
(n,k)∈W

|gn,k|2 −
−1∑

n=−m+1

|gn,0|2

=
∑

(n,k)∈G

|gn,k − hn,k|2 +
∑

(n,k)∈R

|gn,k − hn,k|2

=
∑

(n,k)∈GL∪GR

|gn,k − hn,k|2 +
∑

(−k,k)∈∆

|g−k,k − h−k,k|2

+
∑

(n,k)∈R+

|gn,k − hn,k|2 +
∑

(n,k)∈R−

|gn,k − hn,k|2

≥
∑

(n,k)∈GL

(
|gn,k − hn,k|2 + |g−n−2k,k − h−n−2k,k|2

)
+

∑
(n,k)∈R+

(
|gn,k − hn,k|2 + |gn+2k,−k − hn+2k,−k|2

)
=

∑
(n,k)∈GL

(
|gn,k − hn,k|2 + |g−n−2k,k − (−1)1+khn,k|2

)
+

∑
(n,k)∈R+

(
|gn,k − hn,k|2 + |gn+2k,−k − (−1)1+khn,k|2

)
=

∑
(n,k)∈GL

(
|gn,k − hn,k|2 + |(−1)1+kg−n−2k,k − hn,k|2

)
+

∑
(n,k)∈R+

(
|gn,k − hn,k|2 + |(−1)1+kgn+2k,−k − hn,k|2

)
. (4.15)

To show that g∗ is a minimizer of the functional defined by the right hand side above,
we use the simple geometric fact: If z0, z1 ∈ C, then their midpoint

z0 + z1
2

= argmin
{
|z − z0|2 + |z − z1|2 : z ∈ C

}
(4.16)

and the minimum value is
1

2
|z0 − z1|2.
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By applying (4.16) to each term (n, k) ∈ GL ∪R+ in (4.15), we further estimate

1

2
‖g − h‖2L2(Γ×S1) −

∑
(n,k)∈W

|gn,k|2 −
−1∑

n=−m+1

|gn,0|2

≥
∑

(n,k)∈GL

(
|gn,k − g∗n,k|2 + |(−1)1+kg−n−2k,k − g∗n,k|2

)
+

∑
(n,k)∈R+

(
|gn,k − g∗n,k|2 + |(−1)1+kgn+2k,−k − g∗n,k|2

)
=

∑
(n,k)∈G

|gn,k − g∗n,k|2 +
∑

(n,k)∈R

|gn,k − g∗n,k|2

=
1

2
‖g − g∗‖2L2(Γ×S1) −

∑
(n,k)∈W

|gn,k|2 −
−1∑

n=−m+1

|gn,0|2.

The next to the last equality above uses the fact in (4.14) that the anti-diagonal Fourier
coefficients of g and g∗ coincide.

Since the functional in (4.12) is strictly convex, g∗ is the unique minimizer. More-
over, g∗ is the orthogonal projection of g onto AR(X).

The band limited approximation g∗N lies in AR(X) and trivially satisfies the decay
condition (2.17) in the sufficiency part of Theorem 1 with µ = 1. Thus, g∗N is theX-ray
transform of some symmetric tensor in C1(Sm;Ω).

Since lim
N→∞

‖g∗−g∗N‖L2(Γ×S1) = 0,we have also shown thatAR(X) is the closure

in L2(Γ × S1) of the range of X-ray transform of symmetric tensor in C1(Sm;Ω).

5 Numerical experiments for the 0-order case

We present three numerical examples to illustrate the effect of using the projection
method in the inversion of the X-ray transform of functions of compact support in the
unit disc.

In the 0-order case, recall that the region R in the partition of the lattice Z− × Z is
empty and, thus, Z− × Z =W ∪G; see Fig 4 below.

For K and N positive even integers let ∆β = 2π/K, ∆θ = 2π/N and

β` = −π + `∆β, 0 ≤ ` < K,

θm = −π +m∆θ, 0 ≤ m < N,

which are equi-spaced points in the interval [−π, π). In practice one is given some
(noisy) dataXf+ = g+ ∈ L2(Γ+) in the fan-beam coordinates, passing through eiβ` ∈
∂Ω and going in θm-directions.

More precisely, our numerical experiment is processed in the following procedure.

1. We construct the discretized angularly-odd extension g ∈ L2
odd(Γ ×S1) in (2.9) via

g(eiβ` , eiθm) =

{
g+(eiβ` , eiθm), if (eiβ` , eiθm) ∈ Γ+,

−g+(eiβ` ,−eiθm), if (eiβ` , eiθm) ∈ Γ−.
(5.1)
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2. Compute the Fourier coefficients (see (2.10)) by

gn,k =
∆θ∆β

(2π)2

K−1∑
`=0

N−1∑
m=0

g(eiβ` , eiθm)e−inθme−ikβ` , |n| < N, |k| < K. (5.2)

3. DenoiseXf+ by the algebraic range condition. See (2.13), (2.14), (4.9), and Fig. 4.
(a) g∗n,k = 0 for non-positive even n > −N (including n = 0) and all |k| < K.

(b) Im g∗−n,n = 0, for positive n < min{K,N}.
(c) g∗n,k = 0 for (n, k) ∈W ∩ {−N < n < 0, |k| < K}.
(d) For (n, k) ∈ GL ∩ {−N < n < 0},

g∗n,k =
1

2

(
gn,k + (−1)k+1g−n−2k,k

)
and

g∗−n−2k,k = (−1)k+1g∗n,k

4. Modify {g∗n,k} as an image of Fourier coefficients of a real sequence.
(a) g∗−N−n,K−k = 0 for negative odd n > −N , and k with 0 < k < −(n+ 1)/2.

(b) Take the average of g∗n,k and g∗−N−n,K−k, i.e. they are set as

1
2

(
g∗n,k + g∗−N−n,K−k

)
for 1 ≤ k < K, −N/2 < n ≤ −1, odd n, with −1 < n+ 2k < 2K −N .

−n

k

-9 -7 -5 -3 -1

-3

-2

-1

0

1

2

3

4

5

6

n+ 2k ≤ −1

Fig. 4. The 0- tensor f is determined by the odd negative angular modes on or above the diagonal
k = −n. The diagonal modes gn,−n are real valued. All the odd non-positive angular modes on
and below the line n+ 2k = −1 vanish.
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5. Compute the denoised X-ray transform image Xf∗`m by

Xf∗`m =

−1∑
n=−N+1

K−1∑
k=0

g∗n,ke
inθmeikβ` , (5.3)

for 0 ≤ ` < K and 0 ≤ m < N with (eiβ` , eiθm) ∈ Γ+.

6. Reconstruct the function f from {Xf∗`m}.

Fig. 5 illustrates the denoised coefficients by the above procedure in n ≤ 0 and
k ≥ 0 for the case K = N = 8. For even n including n = 0, g∗n,k is zero by (3a). The
diagonals g∗−1,1, g

∗
−3,3, g

∗
−5,5, and g∗−7,7 are real by (3b). The Greek characters recall

the relation in (3d), which is numerically satisfied.

n

k

0

1

2

3

4

5

6

7

0−1−2−3−4−5−6−7

0000

0000

0000

0000

0000

0000

0000

0000

00

031

0

051

052

0

071

072

073

(3c)

073

072

071

052

051031

(4a)

R

R

R

R

↓↓↓↓
(3a)(3a)(3a)(3a)

R

R

R

R

g∗−1,1

g∗−1,2

α

g∗−1,3

β

g∗−1,4

γ

g∗−3,2

−α

g∗−3,3

g∗−3,4

δ

g∗−3,5

ε

g∗−3,5

β

g∗−3,4

−δ

g∗−3,3

g∗−3,2

ζ

g∗−1,4

−γ

g∗−1,3

ε

g∗−1,2

−ζ

g∗−1,1

Fig. 5. Example of denoised data for N = K = 8. For each element, below expresses the
algebraic range condition, while above should be satisfied as an image of the discrete Fourier
transform. It also leads that the entries in the blue region should be zero, since those in the red
region are zero from the algebraic range condition. Zero entries 0ab in the blue region corresponds
to same one in the red region. The discrete Fourier transform also requires α = −ζ and β = ε,
etc.
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Since {g∗n,k} is supposed to be an image of discrete Fourier transform (5.2), they
should satisfy g∗n,k = g∗N−n,K−k for all n and k, which is indicated by the above line in
Fig. 5. This is realized in the step (4a) and (4b). Note that the process (4b) is consistent
to the algebraic range condition. For instance, in the step (4b) we modify g∗−1,2, g∗−3,2,
g∗−5,6, and g∗−7,6 which keep to enjoy g∗−1,2 = −g∗−3,2 and g∗−5,6 = −g∗−7,6.

We present three numerical experiments with different type of noisy data. We gen-
erate the data for a function f modeled on a modified Shepp-Logan phantom in E =
{(x1/0.69)2 + (x2/0.92)

2 < 1} inscribed in the unit disc Ω. Outside E we set f ≡ 0.
In the reconstructions below we use the numerical algorithm in [2], based on the A-
analytic theory [1]. This avoids the interpolation error that would occur due to the
translation of the data from the torus to the tangent bundle of the circle, the latter be-
ing needed in a standard filtered back projection algorithm. For discretization we use
K = N = 256.

0 π/4 π/2 3π/4 π
-1

-0.5

 0

 0.5

 1
uniform noise

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

0 π/4 π/2 3π/4 π
-1

-0.5

 0

 0.5

 1
denoise : uniform noise

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Fig. 6. Sinogram generated by specifying uniform random noise of 20% magnitude, which has
11.5% relative error in the L2 sense (left) and denoised one by the projection to AR(X) with
5.9% relative L2 error (right)

In the first experiment the exact data Xf exact is corrupted by some additive uni-
formly distributed noise δ of 20% magnitude, which is approximately 11.5% in the
relative L2 sense and is given in the left figure of Fig. 6 as sinogram. The reconstruc-
tion is performed from this noisy data Xf+ := Xf exact + δ in two different ways and
shown in Fig. 7: On the left the reconstruction is obtained from the “raw” data Xf+.
This reconstruction (restricted to the elliptical region E) has a 53.1% relative error in
the L2 sense. The reconstruction in Fig. 7 on the right is obtained from inverting the
projection of Xf+ on the range AR(X). This reconstruction has an error of 34.5% in
the relative L2-sense.

Next we show the results in the two extreme case scenarios: the worst case, when
the entire noise lies in the algebraic range and in the best case, when the entire noise is
orthogonal to the algebraic range.

In order to simulate some noise which lies entirely in the algebraic rangeAR(X), or
lies entirely in AR(X)⊥, we use the knowledge of Xf exact and decompose the existing
noise δ into its component δAR ∈ AR(X), respectively δ⊥ ∈ AR(X)⊥ as follows.
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-1 -0.5  0  0.5  1
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Fig. 7. Reconstruction results; (left) Reconstruction from noisy data Xf+ in the left figure of
Fig. 6, (right) Reconstruction from denoised data Xf∗ by the projection onto AR(X) depicted
in the right one in Fig. 6. Xf+ contains uniform random noise of 20% magnitude.

For δ := Xf+−Xf exact compute its Fourier coefficients δn,k as in (5.2). Then find
δARn,k by projecting δn,k on AR(X) via Step 3 of the algorithm. The component δAR is
found by Step 4 in the algorithm, and the discrete inverse Fourier transform of {δARn,k}
via (5.3). We also set δ⊥ := δ − δAR.

Fig. 8 on the left shows the data corrupted by some noise lying entirely in the alge-
braic range Xf exact + δAR, and Fig. 9 on the left displays the reconstructions from this
data. The reconstruction in Fig. 9 on the right first performs a projection onAR(X) and
then performs the inversion from it. Both reconstructions (restricted to the ellipsoid E)
in Fig 9 contain approximately 34.5% relative L2 error, confirming that, in this worst
case scenario, the projection method does not bring any improvement. Indeed, this was
expected, since the noise in the data was artificially created to lie in AR(X).

0 π/4 π/2 3π/4 π
-1

-0.5
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 0.5

 1
noise in AR(X)
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 0.2
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 0.5
 0.6

0 π/4 π/2 3π/4 π
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-0.5

 0

 0.5
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denoise : noise in AR(X)
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 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

Fig. 8. Sinogram of Xf exact + δAR with 5.8% relative L2 error (left) and denoised one by the
projection with 5.9% relative L2 error (right)

The best case scenario is when the entire noise happens to be orthogonal to the
algebraic range. Fig. 10 on the left depicts such noisy data Xf exact + δ⊥, while Fig. 11
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Fig. 9. Worst case scenario: The data Xf exact + δAR has 5.8% relative L2-error. Left: the re-
construction from this data has 34.5% error in E. Right: the reconstruction from denoised data
also has 34.5% error in E. Since the noise was entirely in the algebraic range, the projection is
redundant.

on the left depicts the reconstruction from this “raw” data. In contrast, Fig. 10 on the
right shows the projection of the noisy data on the algebraic range, while Fig. 11 on the
right shows the inversion from this projection.

Reconstruction from the noisy data in Fig. 11 on the left has 45.2% error in the
relative L2 sense, whereas the reconstruction in Fig. 11 on the right has a 19.4% relative
L2- error. In this best case scenario, one can observe that the reconstruction result shown
in right figure is dramatically improved by our “denoising” algorithm. We also note that
in this best case scenario example the raw data Xf exact + δ⊥ had a larger error than
Xf exact + δAR, but because it was orthogonal to the range, the reconstruction from its
projection on AR(X) gave an accurate reconstruction image; see Fig. 11 on the right.
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Fig. 10. Sinogram of Xf exact + δ⊥ with 10.0% relative L2 error (left) and denoised one by the
projection with 1.2% relative L2 error (right)
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Fig. 11. Best case scenario: The data Xf exact + δ⊥ has 10.0% relative L2- error. Left: the recon-
struction from this data has 45.2% relative L2-error. Right: the reconstruction via the proposed
denoising method has 19.4% relative L2- error. Since the noise was entirely orthogonal to the
algebraic range, the projection method is most effective.
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