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ON THE RANGE OF THE X-RAY TRANSFORM OF SYMMETRIC TENSORS
COMPACTLY SUPPORTED IN THE PLANE

KAMRAN SADIQ AND ALEXANDRU TAMASAN

ABSTRACT. We find the necessary and sufficient conditions for the Fourier coefficients of a function
g on the torus to be in the range of the X -ray transform of a symmetric tensor of compact support in
the plane.

1. INTRODUCTION

We revisit the range characterization of the X -ray transform of a real valued symmetric m- ten-
sor of compact support in the Euclidean plane. The most studied case m = 0 is the classical Radon
transform [34], for which the necessary and sufficient constraints have been long established inde-
pendently by Gelfand and Graev [11], Helgason [12], and Ludwig [21]; we refer to the result as
GGHL characterization. However, due to their practical use in computed tomography, the range
characterization problem in the O-tensor case continues to stimulate the interests of both mathe-
maticians and practitioners [6, 8, 15, 16, 35, 22, 20]. In particular, in [35] the authors introduced
the Bukhgeim-Hilbert transform, a Hilbert-like transform associated with A-analytic maps in the
sense of Bukhgeim [5], and gave a range characterization of the range of the X-ray transform in
terms of it. The latter result was extended to 1-and 2-tensors in [36, 38], and to an arbitrary order
in [29].

For tensors of order m > 1, the non-injectivity of the X -ray transform makes the range charac-
terization problem even more interesting. In the Euclidean plane, the GGHL-characterization was
extended to arbitrary symmetric m-tensors in [30]. A partial survey of results on tomography of
tensors in the Euclidean plane can be found in [9].

The systematic study of tensor tomography in non-Euclidean spaces originated in [39]. On sim-
ple Riemannian surfaces, the range characterization of the geodesic X -ray of compactly supported
0 and 1 has been established in terms of the scattering relation in [33]. The connection between
the Euclidean version of the characterization in [33] and the classical GGHL characterization was
established in [22]. The more general case of the system of the Momenta X -ray transform has
been recently studied in [18].

Models which account for the attenuation have also been considered. For O-tensors we mention
the homogeneous case in [19], and the non-homogeneous case in the breakthrough works [1, 27,
28], and subsequently [26, 4, 3]. For higher order tensors we refer to [23, 2]; see [32] for a survey.

In [37] the authors considered the lines parametrized by points on the torus and gave a new
range characterization for compactly supported functions in terms of the Fourier coefficients on the
Fourier lattice of the torus. This novel point of view allowed to establish the missing connection
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between the result in [35] and the classical GGHL characterization. Although X f is a function on
the torus, our problem differs from the one in [14], where f itself is on a torus.

In here we extend the result in [37] from 0-order to symmetric tensors of an arbitrary order.
While the method of proof uses the characterization in [37] of traces on the unit circle of A-
analytic maps in the unit disc, for tensors of higher order, new qualitative relations arise. Apart
from the symmetry constraints due to the double parameterization of the lines, of specific interest
are the moment conditions. The thrust of this work are the constraints (2.17) and (2.33) replacing
the generalized moment conditions in [30] and the sufficiency part in Theorems 2.1 and 2.2 for
tensors of finite smoothness.

Unlike the characterization results in [35, 36, 38, 29], the main results here now allow to generate
elements in the range of the X -ray without starting from an actual tensor f and computing the line
integrals, but by merely starting from a double indexed sequence satisfying (2.25) for even order
tensor (or (2.41) for odd order tensor). This simple and fast way of generating the X -ray data is
likely to be used in numerical studies.

This work concerns real valued tensors. For a complex valued tensor f, since Re(Xf) =
X (Re(f)) and Im(Xf) = X (Im(f)), Theorems 2.1 and 2.2 apply separately to Re(f) and to
Im(f). While the presented method also applies to the attenuated case, we do not consider it here.

All the details establishing notation and the statement of the main results are in Section 2. In
Section 3 we briefly recall existing results on A-analytic maps that are used in the proofs. In
Section 4 we present the proof of the Theorems 2.1 and 2.2. To improve the readability of the
work, some of the claims are proven in the appendix.

2. PRELIMINARIES AND STATEMENT OF MAIN RESULTS

Let f = (fi,i,.i,,), With iy, ... 4, € {1,2} be a real valued symmetric m-tensor, with integrable
components of compact support in R%. By scaling and translating, we may assume that all the
components have compact support inside the the unit disc Q2 = {z € C : |z| < 1}. The boundary
I of Q2 is the unit circle, but we keep this notation to differentiate from the set S' of directions. The
symmetry refers to the components f;,;, ;. being invariant under any transposition of indexes.

For0™" =020 --®60 c (S")™ and = € , let (£(z), ™) denote the pairing

.1) (£(2),0™) = fi,.i, (2)0 - 02 .. 0™

where the summation convention is understood over all repeated indexes (i1, io, - - - , ) € {1,2}™.
The X-ray transform of f (extended by zero outside 2) is given by

(2.2) Xf(z,0) = /OO (f(z +10),0™)dt, (z,0) QxS

—00

Following directly from its definition
(2.3) Xf(z,—0) = (—1)"Xf(x,0),

so that @ — Xf(x, 0) is an even function for f of an even order m, and an odd function for f of an

odd order m. ' ' - o
Lines L(g) := {e” + se : s € R} intersecting () are parametrized in coordinates {(e”, e :

8,0 € (—m,w]} on the torus I" x S!, and then

(2.4) Xf(e? ) = / (f(e” + se),0™)ds

—0o0
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is also understood as a function on the torus. _

Since Lgg) = L(gg,/g,ﬂjg) = Lgo+x) = L(20—p—r6+n), the set of lines intersecting €2 are
quadruply covered when (e’ ¢?) ranges over the entire torus I" x S'. Moreover, the following
symmetries are satisfied,

(2.5) Xf(e )
(2.6) Xf(e?, el

see Figure 1 below.

(=)™ Xf(e# e 0+™))  and
(—1)" X (=A™ 0+m) for (¢ e) € I' x S';

FIGURE 1. Fan-beam coordinates: ¢/’ € I, ¢? € S!, and @ = (cos 6§, sin §).
If £ = (fiyip.in,)s With iy, ..., 4, € {1,2} is merely integrable in €2, then Xf may not be inte-
grable on the torus. However, if either
2.7) supp fi, 4, C 8, or f;, € LP(Q) for some p > 2,

then Xf € L'(T" x S'); see Proposition A.1 in the appendix.
We consider the partition of the torus into three parts: the “outflux” part

2.8) r, = {(eiﬁ, ¢+ e P xSt B e (—m ], |a| < g} ,

the “influx” part
(2.9) roi={(e#, @) e rxst: B e (. S <lal < m}.

and the (Lebesgue negligible) variety [, := (I" x S')\ (I, U I'_) parameterizing the tangent lines
to the circle; see Figure 1.
Our result gives necessary and sufficient conditions for a function g € L'(I" x S!) to satisfy

| Xf, on /',
(2.10) g—{ —Xf, onIl_.
The characterization is in terms of the Fourier coefficients
1 d 7r . . . .
(2.11) Ok = —/ / g(e® e e *0dgap, n,k € Z

on the lattice Z x 7Z.
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The two indexes play a different role. Throughout, the first index is the Fourier mode in the
angular variable on S', and we call it an angular mode. The second index is the mode in the
boundary variable on I, and we call it a boundary mode.

The change of parity in the order of the tensor propagates to the statements of the results. For
the sake of clarity we separate the two cases.

2.1. The case of an even order m-tensor. If m is even, it is easy to check that g in (2.10) satisfy
the symmetry relation

(2.12) g(e ey = g(e'®0=F=m) 0+ forace. (¢, e?) € I x S

Motivated by this relation, let Liym(Q x S') denote the space of integrable functions g on the torus
satisfying the symmetry in (2.12). Since (', ¢") and (¢'**=#=™) ¢(®+™)) are either both in I, or
both in I"_, we can consider the spaces L., (I'y) of integrable functions on the half-tori satisfying

sym

(2.12). Clearly, g € L}, (I x S') if and only if its restrictions g|r, € L’ (I'v).

sym sym

Moreover, since g in (2.10) is odd with respect to the angular variable:
(2.13) g(e? &) = _g(ezﬂ’ ez’(0+7r)>7

let us consider the subspace Liym,odd(]j x S') of functions in leym(F x S'), which, in addition to

satisfying (2.12), they also satisfy (2.13).
In the statements below we adapt the notations in [39]:

LNS™ Q) = {f = (fir.in) € S™Q) ¢ firoa, € L' (Q))

for the space of real valued, symmetric tensor fields of order m with integrable components. Sim-
ilarly, C*(S™; ), 0 < u < 1, denotes the tensor fields of order m with locally Holder continuous
components, and we use the notation (n) = (1 + |n|?)!/2.

Theorem 2.1 (Range characterization for even order tensors). Let m = 2q, ¢ > 0 be an even
integer. (i) Let f € L'(S™;Q) be a real valued, integrable symmetric m-tensor field satisfying
(27 and g € L} (I' x SY), with

sym,odd

g=Xfonl'\(andg=—-Xfonl").
Then the Fourier coefficients { gy, i }n.xez of g satisfy the following conditions:

(2.14)  Oddness : Ini = 0, forallevenn € Z, and all k € Z;

ks foralln, k € Z;

)n+kgn+2k,fk’7 for all n, k € Z7

) ke foralloddn < —(2¢+ 1), and all k < 0.

(2.15)  Conjugacy : g—n—k = Gnik
(2.16)  Symmetry :  gnp = (—1
(2.17)  Moments :  gnp = (—1
(ii) Let { gy 1 } be given for all odd n < —1, and k € Z such that

oo [e.9]

(2.18) Z (n)? Z |gnk| < o0, and Z (kyltw Z |gn.i| < 00,
néid{i k=—o00 k=—00 néfdld

for some 1/2 < pu < 1.
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If {gn.1} satisfy (2.16) and (2.17), then there exists a real valued f € L'(S™; <)) such that the
mapping

(2.19) (L x8Y) 3 (¢7,e%) s 2Req Y S g e

n<-—1 k€Z
n=odd

defines a function in L, (1" x S'), which coincides with Xf on Iy (and with —Xf on I"_).

Moreover; if {g,} for odd n < —1 are defined on I" by

(2.20) gu(€%) = D gae™? e el

k=—o00
then, for q > 1, the even-order tensor field f is uniquely determined by an element in the class

(2.21)
Pt = {(w_l,w_g, . -Qﬂ,(zq,l)) € (Wl’l(Q; (C))q : ¢7(2j71)‘p =0-2j-1), 1 <J < Q} :

Moreover if _y,¥_3, ..., Y_s441 € CY¥(Q), then f € C*(S™; Q).
If ¢ = 0, the class is empty and f is uniquely determined by the data.

The traditional non-unique determination of the m-tensor by its X-ray transform (see [40, The-
orems 2.4.2 and 3.4.3]) is in terms of a (potential) real valued (m — 1)-symmetric tensor constant
at the boundary. The components of this tensor are m-many arbitrary functions. The class Wg'"

in (2.21) uses %-many complex valued, hence also m-many real valued arbitrary extensions from

the boundary.

The oddness and conjugacy constraints in (2.14) and (2.15) are not intrinsic to the X -ray trans-
form. The symmetry constraints (2.16) merely account for each line being doubly parametrized in
I',, and they are shared by any function on the torus satisfying the symmetry (2.12); see Lemma
A.2 in the appendix.

The following result is a direct consequence of the algebraic interaction of the range conditions
in (2.14), (2.15), (2.16), and (2.17). To illustrate the result of these interactions, let us consider the
partition of Z~ X Z as in Figure 2:

For an even integer m > 0, the white region W = W U W, where

1
Wt .= {(n,k) €Z xZ" :oddn<-m—1,and 0 <k < —w},
(2.22) 2
W= ={(nk) €Z xZ :oddn < —-m—1, and k < 0},
and the green region G = GG, U G'g, where
— 1
G = {(n,k) €Z xZ" :oddn < —1, and n <k< —n}.
(2.23)
Gr:={(nk)€Z” xXZ" :0oddn < -1, and k > —n}.
Moreover, for even integer m > 2, the red region R = R™ U R, where
-1 1
R* = {(n,k)GZ_xZ+ coddn< —1,and — 2FM T < T }
(2.24) 2 2

R :={(nk)€Z XZ :nodd,—m+1<n<-1,andk <0}.
If m = 0, then the corresponding red region R defined by (2.24) is empty.
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Remark 2.1. The modes in the region R are affected solely by the symmetry (2.16) due to the
double parametrization of the lines in I'.. The modes in the region G are affected both by the
symmetry and the reality of the tensor (2.15). The white region contains the modes affected by the
nature of the operator (integration) along the line (2.17) in combination with the symmetry. The
width of the region R defines the lowest order of the symmetric tensor possible. See Figure 2.

k

FIGURE 2. An even order m-tensor field f is determined by the odd negative an-
gular modes on or above the diagonal k = —n (green region), and the odd negative
angular modes (marked red) on the % red lines n + 2k = —(m + 1) for £ > 0. All
the odd non-positive angular modes on and below the line n + 2k = —(m + 1), and
left of the line n = —(m + 1) vanish.

Corollary 2.1. Let m = 2q, ¢ > 0 be an even integer. (i) If f € L'(S™;Q) is a real valued,
integrable symmetric m-tensor field and g € leym,odd(F x S') coincides with Xt on I\, then the
Fourier coefficients {g, x } of g for all odd n < —1 satisfy

0, if (n,k) € W,
(2.25) gk = (D" 50k, if (n k) € G,
(_1)1+kgn+2k:,—k7 lf(n’ k) € R,
see Figure 2.
(ii) Let { g1 } be given for (n, k) € RT U Gy, such that

(2.26) > m)Pgasl <o, and > (k)gu] < oo,

(n,k)€R+UGL (n,k)€R+UGL
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for some 1/2 < u < 1. Extend g,,’s from RT U G, to R U G via the relations (2.25). Then there
exists a real valued f € L'(S™;Q), such that the mapping

(2.27) ([x SN 3 (¢7,e%) —2Re{ D gupeeit
(n,k)ERUG

is precisely Xf on I’y and —Xf on I'_. For q > 1, f is uniquely determined by an element in the
class W™ in (2.21). If ¢ = 0, the zero order tensor is uniquely determined by the data.

We formulate next the odd-order tensor case.

2.2. The case of odd order m-tensors. If m is odd, it is easy to check that g in (2.10) obeys the
skew-symmetry relation

(2.28) g(e?,e?) = —g(e!P0=F=m) 1O+ forae. (e, e?) € I' x S

This motivates to work in the space L, (2 x S') of integrable functions ¢ on the torus satisfying

the skew-symmetry in (2.28). Since (e'%, ) and (e'**=#=™) e(®+™)) are either both in I}, or both
in I"_, we can consider the spaces L, ., (I":) of integrable functions on the half-tori Iy satisfying

(2.28). Clearly, g € L}, ., (I" x S') if and only if its restrictions g|r, € L& (I':).

skew skew
Moreover, since g in (2.10) is even with respect to the angular variable:
(2.29) g(e”,e”) = g(e”?, ),
we further consider the subspace LY, cen (1" X S') of functions in L, (I" x S'), which, in addition
to satisfying (2.28), satisfy (2.29).
Our result gives necessary and sufficient conditions for a function g € L yeven(I” X S') to

coincide with Xf on /7, (and implicitly with —Xf on I"), for some symmetric tensor f of odd
order m.

Theorem 2.2 (Range characterization for odd order tensors). Let m = 2q + 1, ¢ > 0 be an odd
integer. (i) Let £ € L'(S™;Q) be a real valued, integrable symmetric m-tensor field satisfying
(2.7), and g € L} (I' x SY), with

skew,even
g=Xfonl'(andg=—-XfonT").

Then the Fourier coefficients { gy, x }n.kez of g satisfy the following conditions:

(2.30) Evenness:  gni =0, foralloddn € Z, and all k € Z;

(2.31) Conjugacy :  g—n.—k = Gn.ks foralln, k € 7,

(2.32)  Symmetry:  gnp = —(—1)""Fg,0n x, forallnk€Z;

(2.33) Moments: g, = (—1)kgn+2k,_k, forallevenn < —(2q +2), and all k < 0.

(ii) Let { g, 1 } be given for all even n < —2, and k € Z such that

(2.34) ST gl <00, and YT (k)N gasl < oo,
n<—2 k=—o00 k=—o00 n<—2
n=even n=—even

for some 1/2 < pu < 1.
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If {gn.1} satisfy (2.32) and (2.33), then there exists a real valued f € L'(S™; <)) such that the
mapping

(2.35) (T' x S') = (e, €e”) — 2Re Z Zgnvkemeeikﬂ

n<—2 kezZ
n=even

defines a function in L} (I" x SY), which coincides with Xt on Iy (and with —Xf on I"_).

skew,even

Moreover, if {g,} for even n < —2 are defined on I" by

(2.36) gu(e?) =Y gure™, P €T,

k=—00
then, for q > 0, the odd-order tensor field f is uniquely determined by an element in the class
(2.37)
U= {0, Yz ay) € WHQR) x (W) 2oy | = gy, 0 <G < g}
Moreover if‘¢07¢—27 [ERE) w—Qq S Cl’ﬂ(ﬁ), then t € OM<Sm’ Q)

Similar to the even order tensor case, the non-uniqueness class \I/gdd in (2.37) uses -many

complex valued and one real valued arbitrary functions with specified traces at the boundary. The
same count of extensions holds in the traditional non-uniqueness description by a (potential) real
valued (m — 1)-symmetric tensor.

The following result is a direct consequence of the algebraic interaction of the range conditions
in (2.30), (2.31), (2.32), and (2.33). To illustrate the result of these interactions, let us consider the
partition of Z~ x Z as in Figure 3:

For an odd integer m > 1, the white region W = W U W, where

Wt .= {(n,k:)EZ_XZ+ cevenn < —m — 3, and0§k§—n+—m+3},

(2.38) 2

W= i={(nk)€Z xZ :evenn<-m—3, and k <0},
the green region G = G, U G g, where

G = {(n,k) €Z xZ' :evenn < —2, and _r <k< —n}.
(2.39) 2
Gpr:= {(n,kz) €7~ xZ" :evenn <0, and k > —n}.

and the red region R = RT U R~, where

1
R' = {(n,k) €7 xXZ' :evenn < —2, and — namE L <k< —E},
(2.40) 2 2

R = {(n,k) €Z xZ  :neven,—m —1<n <0, andkrg()}.
Note that the slanted line {(n, k) : n + 2k = 0} belongs to G, N R*.

Remark 2.2. Similar to the even order case: The modes in the region R are affected solely by the
symmetry (2.32) due to the double parametrization of the lines in I'\. The modes in the region G
are affected both by the symmetry and the reality of the tensor (2.31). The white region contains
the modes affected by the nature of the operator (integration) along the line (2.33) in combination
with the symmetry. The lowest possible order of the tensor can be read off the width of the red
region R. See Figure 3.
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—N --

FIGURE 3. An odd order m-tensor field f is determined by the even negative angu-
lar modes on or above the diagonal k£ = —n (green region), and the even negative
angular modes (marked red) on the mT“ red lines n + 2k = —(m + 1) for k > 0.
All the even non-positive angular modes on and below the line n+ 2k = —(m + 3),

and left of the line n = —(m + 3) vanish.

Similarly to the even tensor case, the constraints in the range interact to yield the following
result.

Corollary 2.2. Let m = 2q + 1, ¢ > 0 be an odd integer. (i) If f € L*(S™;Q) is a real valued,
integrable symmetric m-tensor field and g € L (I" x SY) coincides with Xf on Iy, then the

skew,even

Fourier coefficients {g, x} of g for all even n < 0 satisfy

0’ lf(n’ k) € I/V,
(24D Gk =8 (=)0 amr  if(n,k) € G,
(=D*gnrok—1, if(n, k) € R,

see Figure 3.
(ii) Let { g1 } be given for (n,k) € RT U Gy, such that

(2.42) > m)Pgasl <o, and > (k)gu] < oo,
(n,k)€R+UGL (n,k)€R+UGL
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for some 1/2 < u < 1. Extend g,,;’s from R™ U G, to R U G via the relations (2.41). Then there
exists a real valued f € L'(S™;Q), such that the mapping

(2.43) (F'x 83 (¢7,e”) —2Req Y gose™e™

(n,k)eRUG

is precisely Xf on I\, and —Xft on I'_. Moreover, f is uniquely determined by an element in the
class \I/gdd in (2.37).

3. L?-ANALYTIC MAPS AND THEIR TRACE CHARACTERIZATION

The method of proof of Theorems 2.1 and 2.2 is based on the characterization in [35] of traces of
A-analytic maps in the sense of Bukhgeim [5]. In this section we summarize those existing results
used in the proof.

Bukhgeim’s original theory in [5] considers the sequence valued maps

3.1) Q3 z—=u(z) = (u(2),u_1(2),u_2(2),...),
and solution of the Beltrami-like equation
(3.2) ou(z) + Lou(z) =0, z€Q,
where Lu(z) = L(ug(z),u_1(2),u_2(2),...) := (u_1(2),u_2(2),...) denotes the left translation.
These solutions are called L-analytic.
Similar to classical analytic maps, the solution of (3.2) satisfy a Cauchy-like integral formula,

(3.3) u(z) = Blul|r](z), z€Q,

where B is the Bukhgeim-Cauchy operator acting on u|, defined component-wise [10] for n > 0

B o) m g [ Qe L [T S o (S52) sea

j=1

The traces of L-analytic maps on the boundary must satisfy some constraints, which can be
expressed in terms of a corresponding Hilbert-like transform introduced in [35]. More precisely,
the Bukhgeim-Hilbert transform ‘H acting on g,

(3.5) I's z = (Heg)(2) = (Hg)o(2), (Hg)-1(2), (Hg)-2(2), ...)

is defined component-wise for n > 0 by

(3.6) (Hg)n(z):%/Fgc _@ ¢ + = /F{CdC - dz }i <_—j)j,zeﬂ
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The theorems below comprise some results in [35, 36, 37]. For0 < p© < 1,p = 1, 2, we consider
the Banach spaces:

lcl),op([’) = {g = <90ag—17.g—27 > : ||g||léf(]“) = 22?Z<]>p|g—](§)| < OO},
=0

I8(€) — gl
a7 ML) = g=<go,g_1,g_2,--->:ilelgllg(ﬁ)lnﬁsyer; €y : )

£#n
Yu(I) = qg:gelP(I) and sup > (j) 19-4(§) — 9#1(77)| ool
Egéenp j=0 €=l

where, for brevity, we use the notation (j) = (1 + |j|?)'/?. Similarly, we consider C*(£; ), and
CH( Q5 loe) = Uperer C*(2r: 1), where for 0 < r < 1,Q, = {z € C: |2] <r}.

Theorem 3.1. Let 0 < p < 1. Let g = (9o, 9—1, 92, -..) be a sequence valued map defined on the
boundary I' and B be the Bukhgeim-Cauchy operator acting on g as in (3.4).

(i) Ifg € ILN(T) N CH(T;1y), then u := Bg € CY*(Q; 1) N C(Q; 1o is L-analytic in .

(ii) Moreover, if g € Y,,(I') for u > 1/2, then Bg € CH*(Q;1;) N CH(; ).

For the proof of Theorem 3.1 (i) we refer to [35, Theorem 3.1], and for part (ii) we refer to [36,
Proposition 2.3].
The following result characterize the traces of L-analytic maps.

Theorem 3.2. Let 0 < p < 1, and let H be the Bukhgeim-Hilbert transform in (3.6).
(i) If g € IL1(I") N CH(I';1y) is the boundary value of an L-analytic function, then Hg €
CM(I'; 1) and satisfies

(3.8) (I +iH)g=0.

(i) If g € Y, (I') for p > 1/2, satisfies (3.8), then L-analytic function u := Bg € CLr(Q; 1) N
CH(; 1y), satisfy

(3.9) u|r=g.

For the proof of Theorem 3.2 we refer to [35, Proposition 3.1, Theorem 3.2, Corollary 4.1, and
Proposition 4.2].

The results above need € be a strictly convex domain, but not necessarily a unit disk. However,
the following result [37, Theorem 4.1] uses €2 be the unit disk, and I be its unit circle boundary.
Given g = (go,9-1,9-2,--) € l(N; L'(I")), we consider the Fourier coefficients of its compo-
nents
(3.10) U % g—n (¢P) e7™dp, foralln > 0, and k € Z.

Theorem 3.3. [37, Theorem 4.1] Let g = (g0, g—1,9—2-..) € (LN T)NCH(I;1), 0 < p < 1, and
G—n.i; be the Fourier coefficients of its components as in (3.10). Let Hg = ((Hg)o, (Hg)-1, (HE)-o, ...
be the Bukhgeim-Hilbert transform acting on g as defined in (3.6). Then Hg € C*(I';l), and
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1 & . .

the Fourier coefficients (Hg)—nx = 2—/ (Hg)—n (") e ™ dp, forn > 0,k € Z, of its com-
™ —T

ponents satisfy

if k =0,

. 9—nk
3.11 — —nk = 7 j
(.11 (=0)(H8)-ns { ~Gnp +2(=1) g nyop Ik <1

4. PROOF OF THEOREMS 2.1 AND 2.2

Since f is symmetric, for any m-tuple (iq, - ,7,,) € {1,2}™ such that 2 occurs exactly k times
(and 1 occurs m — k times), the component f;, , = satisfies
4.1) fn...z‘m:fl...12...221 ~k~
m—k k

m

many m-tuples (i, %, - - - ,,,) that contain exactly £ many 2's, we get
& y p y 12, ) y y g

Since there are (

(£(2),0™) = fiyi, ()07 - 072 - i EL N (7:) Fu(2) (cos 0)F) (sin )
k=0

_( —if\m S (=D)F (m\ ; 2i6
= (> om (k)fk(z) Qmi(e™),
k=0
where Q. x(t) = (t +1)" " (t = 1)".
Since any polynomial of degree m is uniquely represented as a linear combination of {Q,, x (%) } e,

q q
Z fore R0 4 Z froope' @R if m = 2q,
4.2) (£,0m) = ¢ *0 k=1
Z f21<;+1€_i(2k+1)‘9 + f7(2k+1)€i(2k+1)67 ifm=2q+1,
k=0

where f;’s are in a one -to-one correspondence to fk, and thus with f;, .., . We refer to the Lemma
A.1 in the appendix for details on this one-to-one correspondence in (4.2).

We approach the range characterization via the well-known connection with the transport model,
where the unique solution u(z, ) to the boundary value problem

(4.3a) 0-Vu(z,0)=2(f(z),0™)
(4.3b) ulr = —Xf
has the trace u|rys1= g, with g in (2.10), i.e.

| Xt onl[,
*4) ulrxs= { —Xf, onIl_.

Proposition 4.1. (a) If m = 2q, ¢ > 0, then the solution u to the boundary value problem (4.3) is
an odd function of 0,
u(z,0) = —u(z,—0).
(b) If m = 2q + 1, ¢ > 0, then the solution u to the boundary value problem (4.3) is an even
function of 0,
u(z,0) =u(z,—0).
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Proof. (a) We note that for even m > 0, (—6)™ = ™.
If u*¥(z,0) := 1 [u(z,0) — u(z, —0)] denotes the angularly odd part of u, then

0 -Vu(z,0) = 5 [0 -Vu(z,0) + (—0) - Vu(z,—0)] = 2(f(z),0™),

and u®®" := u — u°% solves

(4.5a) 0 -Vu"(2,0)=0, (2,0)cQxS"
(4.5b) u™ " = 0.

Since (4.5) has the unique solution u®"*" = 0, © = u°% in  x S,

(b) We note that for oddm > 1, (—0)™ = —0™.
If u*"(2,0) := 3 [u(z,0) + u(z —0)] denotes the angularly even part of u, then

0-Vut"(z,0) = 5 0 -Vu(z,0)—(—0) - Vu(z,—0)] = 2(f(2),0™),

and 1% := u — u®"" solves

(4.6a) 0 -Vu(2,0)=0, (z,60)cQxS,

(4.6b) u* . =0.

Since (4.6) has the unique solution ©°% = 0, © = u®*" in  x S, O

We present in detail the proof for the even tensor m = 2¢q (Theorem 2.1). For the odd tensor
case (Theorem 2.2), the proof is essentially the same, where small changes occur due to the change
in parity.

(i) Proof of necessity in Theorem 2.1: Since g is angularly odd, (2.14) holds. Since g is real
valued, (2.15) holds. The identities (2.16) follow by direct calculation, see Lemma A.2.

We will first prove (2.17) for an even order m = 2q tensor f = (f;;,..;,.) wWith smooth com-
ponents fi,i,.i.. € C2(Q). The result for components f;;, ;. € L'(Q) follows by a density
argument.

By using the notations 0 = (0,, + i0,,)/2, 0 = (0p, — i0,,)/2, and 6 = arg@ € (—x, 7|, the
transport equation (4.3a) becomes

q
(4.7) 70 + €?0lu(z,0) = Y fon(2)e M (2,0) € QxS

n=-q

By Proposition 4.1 (a), the solution « to (4.7) is an odd function of 6, thus all of its Fourier
coefficients (in the angular variable) of even order vanish,

u(z,0) = Z U (2)e™.
%,

By identifying the Fourier modes of the same order, the equation (4.7) reduces to the system:
(4.8) Ou_(2n-1)(2) + Ou_(2n41)(2) = fan(2), 0<n<g,
(49) gu_(gn_l)( ) + Ou_ (2n+1) ( ) 0 n > q -+ 1.

Since f is real valued, the solution u(z, @) of (4.7) is also real valued, and its Fourier modes in
the angular variable occur in conjugates, u_,, = u,,. Thus, it suffices to consider the non-positive
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odd Fourier modes of u(z, -): Let u be the sequence valued map
(4.10) Q3 z—u(z) = (u_1(2),u_3(2),u_s(z2),...).

Since all the components f;,;, ;. € CZ(Q), Xf € C*(I'_), and, thus, the solution u to the
transport problem (4.7) is in C2(Q x S'). Moreover, its trace u|pxs1 € C2(I" x St).

For z = ¢! € I', we use the negative odd Fourier modes of the trace g(e¢?,-) = u|pysi (e, )
to define the sequence valued map

1

(411) g(eiﬁ) = <g—1<€iﬁ)79—3(€w)7 >7 with g—?n—l(eiﬁ) - 2_/ g(€i’8€ie)€i(2n+l)9d9.
™ —T

Since u € C?(Q2 x S*), u € C*(Q; 1), and, thus,
(4.12) g=ulre CYT L) cliL(D)ynCH(; 1Y), u>1/2.

By (4.9), L7u = (u_(2g+1), U—(2¢+3), - - - ) is L-analytic in 2 and its trace £9g = L% is the
boundary value of an L-analytic map.

Recall that H is the Bukhgeim-Hilbert operator in (3.6). By the necessity part in Theorem 3.2,
we have H(Lg) € C*(I';1y) and (I +iH)(Lg) = 0.

Since H commutes with the left translation £, we obtained

(4.13) LYI+iH)(g) = 0.
In particular, for all odd n < —2¢ — 1, and k € Z, we obtained
(4.14) ([ + iH]|g)ni = 0.

By Theorem 3.3, the Fourier coefficients (#g),x, for odd n < —2¢g — 1 and k € Z, satisfy
(3.11), and thus

. 0 if £ >0,
([I + ZH]g)n,k - { 2gn,k . 2(_1>kgn+2k,—k if k S —1.
In conjunction with (4.14), the Fourier coefficients of g must satisfy (2.17), i.e.,
Gnk = (=1)*gnyop 1, foralloddn < —2¢ — 1, and k < —1.

Equation (2.17) for £ = 0 is trivially satisfied.
The proof for f € L*(S™:; Q) follows from the density of CZ(£2) in L'(Q).

(i1) Proof of sufficiency in Theorem 2.1: Recall m = 2¢, ¢ > 0. Given the double sequence
{gni} forallodd n < —2¢ — 1, and k € Z, we construct a real valued symmetric m- tensor f in 2
Xfonll,
—Xfonl_
Recall the construction in (2.20),

such that the map on the torus has the Fourier coefficients matching the {g,,x}’s.

(4.15) 9-n(€?) =" gupe™, foroddn < —2q—1, 7€l
k=—o00

and define the sequence valued map on I’
(4.16) g(e”) = (9-(20+1)(€7)s 9-204) (€7), 92415 (€7), - - -).

By the decay assumption (2.18) and [37, Lemma A.4.], g* € [L2(I")NCY#(I;11). In particular,
g e Y, () for u > 1/2,
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We use the Bukhgeim-Cauchy integral formula (3.4) to construct the sequence valued map
u®¥(2) inside :

(4.17) u(2) = (u_(2g41)(2), U_(2g13)(2), -+ ) == B [g°] (2), z€Q.
By Theorem 3.1 (ii), the constructed u® € C#(Q; 1Y) N C*(2; 1) is L-analytic in €,
(4.18) Oy, + Ou,y_o =0, foralloddn < —2¢ — 1.

While u®¥ constructed in (4.17) is L-analytic, in general, its trace u®¥|, need not be equal to
g Tt is at this point that the constraints (2.17) come into play. By using the hypothesis (2.17),

ok = (=1)*gnyon 1, forodd n < —2¢—1, and k < —1,
and Theorem 3.3, we obtain
([ +iH]g*) . =0, foralloddn < —2¢ — 1, and k € Z.
Thus, [I + iH]g* = 0, and the sufficiency part of Theorem 3.2 applies to yield

(4.19) ul| = g,

All of the positive Fourier modes u,,, g, for odd n > 2¢g + 1 are constructed by conjugation,
(4.20) Up i=TU_p, In§2,
(4.21) Jn :=0_n, onl.

Also, by conjugating (4.18) we note that the positive Fourier modes satisfy
Olpio + Ou, =0, forall oddn > 2¢ + 1.
Moreover, using (4.19) they extend continuously to /" and
Un|lr =T 0|lr =00 = gn, oddn >2q+ 1.

In summary, we have shown that
(4.22) Ouy, + Ou,_y = 0, for all odd integers |n| > 2q + 3,
(4.23) Un|r= Gn, for all odd integers |n| > 2q + 1.

In the case of the O-tensor, f = f,, which is defined directly from u_; by fy = du_1 + Ju_;.

We consider next the case ¢ > 1 of tensors of order 2 or higher.
Recall the construction (2.20),

(4.24) J—2n+1 = Z 9—2n+1k e for1 <n <y,

k=—00
and define g1, g3, ..., g2g—1 by conjugation
(4.25) Gon—1 = J-2n41, 1 SN < q.

Also recall the non-uniqueness class ‘Ilegve“ in (2.21).
For (1/)_1, W_g,-- -@b_(gq_l)) € Wevh arbitrary, define the modes w1, us, ..., Ut (24-1) IN Q by

(4.26) U_(2n—1) = V_(2n—1) and U, := E—(Qn—lﬁ 1<n<gq.
By the definition of the class (2.21) and (4.25),
u—(2n—1)‘F = g—(2n—1), I<n<gq, q=>1, and

4.27) _
Usn—1|r = G_(2p-1) = gan-1, 1<n<gq, ¢>1
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The components of the m-tensor f are defined via the one-to-one correspondence between { fgn :
—q < n < q}in (4.1) and the functions { fo, : —q < n < ¢} as follows.

We define f5, by using 1)_(2,—1) from the non-uniqueness class, and u_ (544 1) from the Bukhgeim-
Cauchy formula (4.17),

(4.28) 2 faq = OU_(2g-1) + OU_(2g41).-
Then, define { f2, : 0 < n < g — 1} solely from the information in the non-uniqueness class via
(4.29) 2 fon = OU_(2n—1) + O_(2n41), 0<n<q—1,
Note that f; is real valued. Finally, define { o, : 1 <n < ¢} by conjugation
(4.30) foom = fom, 1<n<q
By construction, fs, € L'(Q), —¢ < n < g. Moreover, if ¢_1, -+ ,9_9,41 € CH*(Q), then
fon € CH(Q2).

In the remaining of the proof we check that, for the tensor f defined above, the Fourier coeffi-
cients of the map )—(ﬁ((f)norl}];, match the given g, ;,’s for all odd n € Z and k € Z.

With u,, defined in (4.17) for odd n < —2¢ — 1 (and by conjugation for odd n > 2¢q + 1), and
with ¢_5,, 11 given by the non-uniqueness class (and 19,1 given by conjugation) for 0 < n < ¢,
we define the following two functions:

q
(431) uOdd ZUQn i(2n+1)6 +Zw (2n— 1 i(2n—1)6 ZE (2n— 1)6 i(2n—1)0
[n|>gq n=1
and
(4.32) g(z,e?) = Z gn(2)e™ (2,0) € I' x S
= odd

Since u* e C#(Q;1') N C*(Q;1'), we employ [35, Corollary 4.1] and [35, Proposition 4.1
(iii)] to infer the regularity u®¥ € C*#(Q x S') N C*(Q x S').
In particular, for each € € S!, the trace of u°¥(-, e?) on I satisfies

0 0

dd i0 ind 0 _ 0

433)  wC e r= DY we™ || =D (ualr)e” Z gne™ = g(-, €"),
n=—00 n=-—00 n=—00
n=odd r n=odd n=odd

where the third equality above uses (4.23) and (4.27). Note that, since u°% € C* (ﬁ x S1), we can
conclude now that g defined in (4.32) lies in C*(I" x S').
Since the term by term differentiation in (4.31) is now justified,

q—1 —1

6 Vul = Z@w—@n—l) + 8w_<2n+1>)e*i(2")

n=0
n 6_1(2q)9<5¢_ (2g-1) T OU_(2g41)) + €

-9 Z f% —1 (2k)0 <f 02q>

k=—q

B~}

M

(0 E—(Zn—i—l) + a@_(%_n)ei(zn)e

1

3

AII

(&D (2¢—1) +0u_ (2q+1))
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where the cancellation uses (4.22), and the second equality uses the definition of f5;’s in (4.28),
(4.29), and (4.30).

We remark next two properties of the function g defined in (4.32) which are needed later: Since
only the odd modes in the angular variable are used, ¢(z,-) is an odd function, and thus the odd
condition (2.13) is satisfied. In addition, we claim that g also satisfies the symmetry condition
(2.12). Indeed,

g(ei(Zéfﬁ z(9+71' Z ngpe m(6+m) zp(29 B—m)

m=—o00 pEZ
m= oddp
z : § : m+p (2p+m)9efip,3
m=—o00 pEZ
m= oddp
%)
m=n+2k, p=—k z : n+k inb ik
_— E (—1) gn+2k7,k€ e B
n=—00 kEZ
n=odd
[eS)
(2.16) ind ik i i0
(4.34) — E E Gure™e = g(eP ).
n=—00 kEZ
n=odd

We have all the ingredients needed to show that g coincides with Xf on /’;. In the following
calculation we let [(3,0) = |e"® — €'?9=F=™)| denote the length of the chord in Figure 1, and use
the geometric equality e — [(3, 0)e®® = €28~ For each (e#, e?) € 'y,

20(e, ) = g(e, &) — g(c, 04
_ g(em, ei&) . g(ez’(%ﬁ@fﬂ-)’ ei&)
_ uodd(ezﬂ’ 62’6) _ uodd(ei(%—ﬁ—w)’ 61‘0)

0
= / 0 - Vu*l(e? +te e)dt
(B,0)

0
(4.35) = / 2(f (e + te'?), 0™V dt = 2[XF](e” e?),
(B,6)

where the first equality uses g(e'”,-) is angularly odd, the second equality uses the symmetry
relation (4.34) with 6 replaced by 6 + m, the third equality uses (4.33), the fourth equality is the
fundamental theorem of calculus, the fifth equality uses (4.7), and the last equality uses the support
of f in €.

Therefore g = Xf on I, and, since g is angularly odd, g = —Xfon I".

The equation (4.35) also shows that z — (f(2),0™) is integrable in ) , for every 8 € S'.
An application of the identity (4.2) yields that all of the constructed f5,’s and, by the one-to-one
correspondence, all the components of f are integrable in (2.

This finishes the proof of the even order tensor case.

O

The analytical reasoning in the proof of Theorem 2.2 (the odd order tensor case) is the same as
above. The change in parity of the order of the tensor merely modifies the algebraic statements.
We sketch them below for the sake of completeness.
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(i) Sketch of proof of necessity in Theorem 2.2: Since g is angularly even, (2.30) holds. Since
g is real valued, (2.31) holds. The identities (2.32) follow by direct calculation, see Lemma A.2.

As in the even case, it suffices to prove (2.33) for odd m = (2¢g + 1)-tensor with components in
CE(9).

The transport equation (4.3a) has the right hand side modified as

q
(4.36) [e’ieg—l— eioa}u(z, 0) = Z (f2n+1€*i(2"+1)9 + f_(2n+1)ei(2"+1)9) , (2,0) € QxS
n=0

By Proposition 4.1 (b), the solution u to (4.36) is an even function of 8, thus all of its Fourier

coefficients (in the angular variable) of odd order vanish,

u(z,0) = Z U (2)e™.

nez
n=even

By identifying the Fourier modes of the same order, the equation (4.7) reduces to the system:
(4.37) Qg (2) + Ou_(2ny2)(2) = fant1(2), 0<n<gq, q¢=0,
(4.38) Ou_9,(2) 4+ Ou_(an49)(2) = 0, n>q+1, ¢>0,

Since f is real valued, the solution u(z, @) of (4.7) is also real valued, and its Fourier modes in

the angular variable occur in conjugates, u_,, = u,. Thus, it suffices to consider the non-positive
even Fourier coefficients of u(z, -): Let u be the sequence valued map

(4.39) O3z u(z) = (u_s(2),u_g(2),...).

Since all the components f;,;, ;. € CZ(Q), Xf € C*(I'_), and, thus, the solution u to the
transport problem (4.36) is in C?(Q x S'). Moreover, its trace u| g1 € C2(I" x SY).

For z = ¢ € I', we use the negative even Fourier modes of the trace g(e, ) = u|pysi (e, )
to define the sequence valued map

(4.40) g(elﬁ) = <g,2(625),g,4(ew), ...), with g,gn(elﬁ) = 2—/ g(elﬁew)e@”)ed&
7T —TT

Since u € C?(Q x SY), u € C*(Q;11), and, thus,
(4.41) g=ulre CYT L) ci(D)ynCH(; 1Y), u>1/2.

By (4.38), LT = (u_(2g+2), U—(2g+4), - - - ) is L-analytic in 2 and its trace L%g = L%u|r is the
boundary value of an L-analytic map.

By the necessity part in Theorem 3.2, we have H(Lg) € C*(I;l) and (I + iH)(L%g) = 0.
Since ‘H commutes with the left translation £, we obtained

4.42) LY +iH)(g) = 0.
In particular, for all even n < —2¢g — 2, and k € Z, we obtained
(4.43) ([ +iH|g)nr =0,

By Theorem 3.3, the Fourier coefficients (Hg),, x, for even n < —2¢, and k € Z, satisfy (3.11),
and thus

_ 0 if k >0,
(- iHlg ) = { 200,k = 2(=1)"gnyor—r ifk < 1.

In conjunction with (4.43), the Fourier coefficients of g must satisfy (2.33).
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The proof for f € L*(S™; Q) follows from the density of CZ(£2) in L'(Q).

(i1) Sketch of proof of sufficiency in Theorem 2.2: Recall m = 2¢+1, ¢ > 0. Given the double
sequence {g, x } for all even n < —2¢, and k € Z, we construct below a real valued symmetric m-

tensor f in €2 such that the map on the torus { )_(;?.HOE? has the Fourier coefficients matching
the {gn.x}’s.

Recall the construction in (2.36),
(4.44) g,n(ew) = Z J—nk e*P forevenn < —2q, P €T,

k=—o0

and define the sequence valued map on I’
(4.45) gOdd(‘?w) = (97(2q)(6i5), g—(2q+2)(6i5)a ).

By the decay assumption (2.18) and [37, Lemma A.4.], g € [L2(I") N CY#(I7;1Y). In partic-
ular, g®*" € Y, (I) for pn > 1/2.

We use the Bukhgeim-Cauchy integral formula (3.4) to construct the sequence valued map
u®*"(2) inside €2:

(4.46) u™M(2) = (u_gq(2), u_(2g42)(2), -+ ) = B[g™"] (2), z€ .
By Theorem 3.1 (ii), the constructed u®*" € C1#(Q; ') N C*(2; 1) is L-analytic in €,
(4.47) Ou,, + Ou,_o =0, forallevenn < —2gq.

By using the hypothesis (2.33), and Theorem 3.3, we obtain [ + iH]g™" = 0. The sufficiency
part of Theorem 3.2 now applies to yield

(4.48) ueven|F: geven‘

All of the positive Fourier modes u,,, g, for even n > 2q, ¢ > 0, are constructed by conjugation,

(4.49) Up :=U_p,, InQ, and g, :=g_,, on I
As in the even order tensor case, it is easy to check that
(4.50) Ouy, + Ou,_y = 0, for all even integers |n| > 2¢,q > 0
(4.51) Un|r= Gn, for all even integers [n| > 2¢,q > 0.
Recall the construction (2.36),
(4.52) Gom = Z goonk €™, for0 <n <q,
k=—o00

and define g, g4, ..., g24 by conjugation
(4.53) Gon *=g—2n, 1<n<gq.

Also recall the non-uniqueness class W9 in (2.37).
For (1o, 1_3, - - - _oq) € U9 arbitrary, define the modes g, U, ..., U2q in 2 by

(4.54) U_op = P _g, and uy, 1= E—zm 0<n<gq.
By the definition of the class (2.37) and (4.53),
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(455) u—2n|[‘: 9—2n, —q S n S q.
‘The components of the m-tensor f are defined via the one-to-one correspondence between
{fi@n+1) : 0 <n < g¢}in(4.1) and the functions { f1 (2,11) : 0 < n < ¢} as follows.

Define the function fy,1; by using ¥_,, from the non-uniqueness class, and u._(32) from the
Bukhgeim-Cauchy formula (4.46), via

(4.56) 2f2q+1 = 5¢—2q + 67U72(q+1)-

Then define { f5,41 : 0 < n < ¢ — 1} solely from the information in the non-uniqueness class via
(4.57) 2fons1 = O_on + OU_(2p12), 0<n < g—1.

Finally, define { f_2,_1 : 0 < n < ¢} by conjugation

(4.58) J-@ni1) = fanr1, 0<n<gq.

By construction, fi(2,11) € L), 0 < n < q. Moreover, if ¥, -+ ,1_o, € C#(), then
Fetonsn) € CH(Q).

In the remaining of the proof we check that, for the tensor f defined above, the Fourier coeffi-
Xfonll,
—Xfonl_
As in the even order tensor case, we define

cients of the map match the given g, ;,’s foralleven n € Z and k € Z.

q q
(4.59) u"(z, €)= Z Usp (2)l 2P 4 Zw_%(z)efi(%)@ TS50, ()@
In|>g+1 n=0 n=0

and

o0

(4.60) g(z,e”) = Z gn(2)e™ ) (2,0) € I' x S,

n=—oo
n=even

and the corresponding trace identity u™"(-, ")| p= g(-, ¢"’) holds.

Since u®*" € CH#(Q; 1Y) N CH(Q; 1Y), we employ [35, Corollary 4.1] and [35, Proposition 4.1
(iii)] to infer the regularity u®*" € C1#(Q2 x ST N CH(Q x Sh).

Term by term differentiation in (4.59), and an application of (4.50), (4.54), (4.56), (4.57), and
(4.58) yields

0 - Vus — 2(f, 92+,

Since only even modes in the angular variable are used, g(z, -) is an even function, and thus the
even condition (2.29) is satisfied. In addition, we claim that g also satisfies the symmetry condition
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(2.28). Indeed,

oo

g(ei(Qﬁfﬁfﬂ)’ei(GJrﬂ*)) _ Z ng peim(9+7r)eip(29757ﬂ')

m=—00 pEZ
m=even

_ i Z ( . 1)m+pgm7pei(2p+m)9€—ip,8

m=—00 pEZ
m=even

o0
m=n+2k, p=—Fk . .
§ § (_1)n+kgn+2k’_kezn962k,8

n=—00 kEZ
n=even

232 = inf i iB i
(4.61) CE TS e = —g(e? "),

n=—00 keZ
n=even

For each (e, ) € Iy,
Zg(ei’g, ez’O) _ g(em, ei&) _'_g(eiﬁ7ei(9+7r))
_ g(ew, eiG) _ g(ei(29—ﬁ—7r)’ 62‘9)
_ ueven(ezﬂ’ ez’&) . ueven(ez‘(%—ﬂ—w), ez’@)
_ /0 0. Vueven(ew + tew, ew)dt
—1(B.9)

0
(4.62) = / 2(f (e + te'?), 0™ dt = 2[Xf)(e” ),
—1(B.9)

where the first equality uses g(e'’, ) is angularly even, the second equality uses the symmetry
relation (4.61) with 0 replaced by 6 + 7, the fifth equality uses (4.36), and the last equality uses the
support of f in (2.

Therefore g = Xf on [, and, since g is angularly even, g = —X on /.

The equation (4.62) also shows that z — (f(2),0™) is integrable in  , for every 8 € S'.
An application of the identity (4.2) yields that all of the constructed fs,.1’s and, thus, all the

components of f are integrable in (2.
O
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APPENDIX A. ELEMENTARY RESULTS

To improve the readability, we moved the proof of the more elementary claims to this section.
The presentation follows the order of their occurrence.

Lemma A.1. Let m, k > 0 be integers with 0 < k < m and Q. 1(t) = (t +1)"7" (t — 1)*. Any
polynomial of degree m is uniquely represented as a linear combination of {Qm k(1) }iLo-
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Proof. Given hg, hy,-- - , h,,, we show that there are unique g, g1, - - - , g, Such that
(A1) > gt — D+ 1" thtk
k=0

We argue by induction in m. For m = 1, gy = (hy + ho)/2 and g1 = (h1 — ho)/2.
Assume next that a polynomial of degree m — 1 is represented as a linear combination of
{Qm-1x(t)}7. To simplify notation, let a; = (7)) = k,(%k),, for 0 < k < m. Note that

Zak_z( )_2m.

The left hand side of (A.1) rewrites

m m—1
Dt =DM+ = (1) Y gt = DM+ )T gt )"
k=0 k=0
induction hypothesis Z - tk + Z m akgm k
SDRTEED RTED S e
k=0 =
m—1

= (o + (=1)"aogm) + Y  (v—1 + 7+ (=1)" Fargm) t* + (Y1 + @mgm) ™
1

i

The identity (A.1) yields that vo,v1, - , Ym—1, gm Solve the (m + 1) x (m + 1) linear system:

1 0 0 0 0 0 (—1)ma0 17T Yo T i h() T

1 10 0 0 0 (—1)’"*1(11 71 hy

011 0 00 (—1) " ho

(A2) 001 1 00 (1) o || b
00 0 -+ 11 —0m-1 Tm—1 hm—l
000 0 --- 01 am 1 Lgm 1 L |

The determinant of the matrix above is calculated by expanding it along the last column: Since

all the m x m- cofactor matrices have determinant 1, the (m + 1) x (m + 1) determinant is
m

Zak:2m>0.

k=0
In addition to g,,, being determined, the determination of vy, ..., v,,—1 together with the induction

hypothesis uniquely determine g, ...g,,—1. In fact this argument can be construed in a recursive
computation as follows. Since g,, = 27™ >, (—1)¥hy, the unknowns 7,,,_; can be determined
recursively for ¢ = 1, ..., m, and thus the problem is reduced to the m x m case.

0J

Recall 2 = {z € C : |z| < 1} is the complex unit disc, " = {z € C : |z| = 1} is its boundary,
and S! is the set of unit directions.
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Proposition A.1. Let f € L'(S™;Q) be a symmetric m-tensor with integrable components. As-
sume that each of its components satisfies one of the conditions:

(A.3) supp fi, i, C{lz:]2| <V1—=62}, 0<d<1, or fi .. €LP(Q), p>2
then Xf € L'(T" x St).

Proof. To fix ideas, we consider the even tensor case, when m = 2[. The odd tensor case follows
similarly.

From the one-to-one linear combination correspondence between the components f;, ; of f,
and the functions fo’s, —I < k < [ in the identity 4.2),

f Om Z f 6—1(2k)9

k=—1
we have that each of the fo;’s also satisfies fo, € L*(€2) and
(A4) supp for C{z:|z| <V1—=0%2}, 0<d <1, or fo€LP(),p>2.

For €® € I" and € € S', the X-ray transform of f (with components extended by 0 outside (2)
is given by

Z / f2k i8 + tez@) —z2k0dt
k=—1

We will show that each term in the sum above is integrable on the torus. To simplify notation,
we drop the index notation from the function and show that if f satisfies (A.4), then

(A.5) Xef(e? ) = / f(e® +te)e M dt lies in L'(I" x S*).

Rewrite X}, f(e", e") .= / Fo(e'P=9 1 1)e™ 2% qt where fy(z) := f(ze) is obtained from f

by a rotation of the domain%y angle 6. Note that fy preserves the L”-norm of f for any p > 1.
We estimate

1 ™ ™ ' '
15Xl ety = / / X (e, )| dBdo

(27)?

/ / | ("B~ 4 t)|dtdde

27)?

G0 1 ™ /2 00 ‘
2 / / / folei + 1| dtdadd
27T — —7/2

_s=sino sin « ! ]-_ 2 t
W/ / / SoVI= SIS g g

1—5

ut+m22// /Ier+zsddd0
L N
(A.6) /// ‘f9u+zsddd0

where the last equality uses supp fp C €2 for any 0 € (—7r, 7.
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On the one hand, if suppf C {z : |z| < V1 — 62}, then

VIS fo(u + is)|
X < ol +8)] 4 g
|| kaLl(FxSl) — 271'2/ / /\/ﬁ /1 — 52 u
<5 25/ 1 foll 11y 46 = _||f||L1

On the other hand, if f € LP(Q2), p > 2,1let T := (—1,1) x (—1,1) denote the unit square. Since
QCT,forevery 0 € (—m, 7|, fo € LP(T), and

(A7) 1 follo(ry= || fll £r ()

Let ¢ = -5 be the conjugate index of p. If p > 2, then ¢ < 2 and the map

1
T> (u,s) — lies in LY(T").
sl g e in D)
) - . ) 1 1
Moreover, since it is constant in one coordinate, T 2 T
1-() La(T) 1-() L9(—1,1)
An application of the Holder’s inequality in (A.6) and (A.7) yield
1 [T 1 2 1
[ Xk fllprrxsty < F/_,, T()? [ foll Loy 46 = - T()? 11l 2o (g
La(T) La(—1,1)

O

Lemma A.2. Let m > 0 be an integer. Let g be an integrable function on the torus satisfying the
symmetry relation

(A-8) g(e”,e) = (=1)"g(e"* 707, ), for (¢, ) € I' x S,
and g, 1’s be its Fourier coefficients. Then
(A.9) Gnge = (=)™ (=1)""* g, 1on 1, foralln,k € Z.

Proof. Indeed,

Gk = zﬂ in@e—ikﬂdgdﬁ
1(26’ B— 7r) (9+7r)) —inf _Zkﬁdgdﬁ
y=0+m (_1) B 27T / / 2'y B— 37r) )e—in’ye—ikﬁd,ydﬁ
a=2y—f—n m n e z —ik(2y—a—m) —zn’y
— (—1)"(-1) (2? T)e (—da)dy
1
= (—=1Y"(=1 n+k_/ / l 7z(n+2k zkad d
e [ ) ady

= (_1)m(_1)n+k9n+2k,—k-
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