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Abstract

In this note we define the notion of a line Sidon set, expanding the idea of Sidon
sets in R to sets of lines in the real plane, where the operation under consideration is
composition. We prove that any set of n lines in the plane contains a line Sidon subset
of size n

1
3+

1
24 , where n

1
3 represents the trivial lower bound given by a probabilistic

argument.

1 Introduction

A finite set1 A ⊆ R is called an additive Sidon set if it contains no solutions a, b, c, d ∈ A
to the equation

a+ b = c+ d

with {a, b} ≠ {c, d}. Analogously, a set which contains no solutions to the equation

ab = cd,

with {a, b} ≠ {c, d} is called a multiplicative Sidon set. Sidon sets are highly studied objects
in combinatorial number theory, with much research being focused on finding the size of the
largest additive Sidon subsets of [n], which is known to be2 Θ(n

1
2 ). See [3] for a thorough

review of additive Sidon sets.

The case of the first n integers turns out to be a minimiser (up to multiplicative
constants) for finding large additive Sidon subsets, which is shown in the following theorem
of Komlós, Sulyok, and Szemerédi [2].

Theorem 1.1 (Komlós, Sulyok, Szemerédi). For all finite sets A ⊆ Z there is a subset
B ⊆ A which is additive Sidon. The size of B satisfies

|B| ≫ |A|
1
2 .

1Throughout this note, all sets are finite.
2We will write X ≪ Y to mean that there exists an absolute constant c such that X ≤ cY . The expression

Y ≫ X means that X ≪ Y , and X = Θ(Y ) means that we have both X ≪ Y and Y ≪ X.
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Theorem 1.1 has since been extended to apply to sets of real numbers [5], and fur-
thermore can be altered to apply in the multiplicative Sidon case, by considering the set
logA.

In this note, we extend the notion of Sidon sets to lines in R2. Let L be a set of
non-vertical and non-horizontal lines3 in R2. We consider two lines l1 : y = ax + b and
l2 : y = cx+ d in L. We can compose them as linear functions, as

(l1 ◦ l2)(x) = a(cx+ d) + b = acx+ ad+ b.

For each line y = mx+ c, we can find the inverse line y = 1
mx− c

m .

A set of lines L is called line Sidon if it contains no non-trivial solutions l1, l2, l3, l4 ∈ L
to the equation

l−1
1 ◦ l2 = l−1

3 ◦ l4 (1)

where a solution is called trivial if {l1, l4} = {l2, l3}. Our main result is an analogue of
Theorem 1.1 for sets of lines.

Theorem 1.2. Let L be a set of non-vertical and non-horizontal lines in R2. Then there
exists a subset S ⊆ L which is line Sidon, and such that

|S| ≫ |L|
1
3
+ 1

24 .

Equation (1) defines the energy EL of a set of lines, in analogy to the commonly
used additive and multiplicative energy of sets of real numbers. This notion originated
with Elekes, see for instance [1]. Formally, we define EL as the number of quadruples
(l1, l2, l3, l4) ∈ L4 which solve equation (1). We have the trivial bounds

|L|2 ≤ EL ≤ |L|3.

A simple application of the probabilistic method yields the following lemma, see [7] for a
sketch of the proof.

Lemma 1.3. For every set of lines L in R2, there exists a subset S ⊆ L which is line Sidon,
and with

|S| ≫ |L|
4
3

E
1
3
L

.

Thus, if the energy is small, we find a large line Sidon subset. Lemma 1.3 gives the
trivial lower bound of |L|

1
3 for the size of S in Theorem 1.2, when the energy EL is as large

as possible; the main feature of Theorem 1.2 is that the exponent is greater than 1
3 .

In order to prove Theorem 1.2, we make use of a simple corollary of the following
theorem of Petridis et al. [4].

3From here on we assume all lines are non-vertical and non-horizontal.
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Theorem 1.4 (Petridis, Roche-Newton, Rudnev, Warren). If L is a set of lines in R2 with
no more than m parallel lines, and no more than M concurrent lines, then we must have

EL ≪ m
1
2 |L|

5
2 +M |L|2.

Corollary 1.5. Suppose L is a set of lines in R2 with

EL ≫ |L|3−δ

Then, one of the following two cases must occur:

1. There exists a subset S ⊆ L, with all lines in S being parallel, and

|S| ≫ |L|1−2δ.

2. There exists a subset S ⊆ L, with all lines in S being concurrent, and

|S| ≫ |L|1−δ.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2.

2.1 Case 1 - small energy

Proof. When the energy EL is relatively small, we use Lemma 1.3 to find the subset S.
That is, suppose that EL ≪ |L|3−δ, for some parameter δ > 0 to be chosen later. Upon
applying Lemma 1.3, we find a subset S ⊆ L which is line Sidon, with

|S| ≫ |L|
1
3
+ δ

3 .

Therefore, we instead suppose that EL ≫ |L|3−δ. We will apply Corollary 1.5 to L, and
split into two cases depending on whether the subset S ⊆ L contains parallel or concurrent
lines.

2.2 Case 2a - parallel lines

We begin with the case of parallel lines, in which we find a set S ⊆ L of size |S| ≫ |L|1−2δ,
and each line in S has the form y = mx+c, for some fixed non-zero m ∈ R, and c from some
set C ⊆ R. There is a clear bijection between S and C, mapping each line to its intercept.
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We take two lines l1, l2 ∈ S, corresponding to c1, c2 ∈ C respectively. Then l−1
1 ◦ l2 is

the line

y = x+
c2 − c1

m
.

Therefore if the two lines l−1
1 ◦ l2 and l−1

3 ◦ l4 are equal, we must have

x+
c2 − c1

m
= x+

c4 − c3
m

for c1, c2, c3, c4 ∈ C. This implies a solution to the additive equation

c2 + c3 = c4 + c1.

Now we can apply Theorem 1.1 to the set C, in order to find C ′ ⊆ C which is additive
Sidon, and |C ′| ≫ |C|

1
2 . We claim that since there are no non-trivial additive solutions

in C ′, there cannot exist any non-trivial line energy solutions in the subset S′ ⊆ L given
by the lines y = mx + c for c ∈ C ′. Indeed, suppose we have a non-trivial line energy
solution. Then, as above, we must find c1, c2, c3, c4 ∈ C ′ with c2 + c3 = c4 + c1. As C

′ is an
additive Sidon set, this must imply {c2, c3} = {c1, c4}. But then we have {l2, l3} = {l1, l4},
contradicting the non-triviality of the line energy solution. We have therefore found a line
Sidon set S′ ⊆ L, which is of size

|S′| = |C ′| ≫ |C|
1
2 ≫ |L|

1
2
−δ.

2.3 Case 2b - concurrent lines

Something similar to the above happens in the concurrent lines case. In this case, Corollary
1.5 yields a set of lines S ⊆ L of size |S| ≫ |L|1−δ, such that each line in S has the form
y = c(x− t)+s, for some fixed centre of concurrency (t, s) and c ∈ C for some subset C ⊂ R
corresponding to the slopes of the lines in S. Again, there is a clear bijection between S
and C.

Let l1 be the line y = c1x+ s− c1t, and l2 be y = c2x+ s− c2t. Then l−1
1 ◦ l2 is the

line

y =
c2
c1
x+

c1t− c2t

c1
.

Therefore, if we were to have a solution l−1
1 ◦ l2 = l−1

3 ◦ l4, then we must have equality of
the corresponding slopes, implying that

c2c3 = c1c4.

We apply Theorem 1.1 to C to find a subset C ′ ⊆ C, which is multiplicatively Sidon,
and |C ′| ≫ |C|

1
2 . In the same way as above, since there are no non-trivial solutions to

c2c3 = c1c4 in C ′, there cannot exist any non-trivial solutions to (1) in the set of lines
S′ ⊆ L, corresponding to the slopes from C ′. Therefore, we have found a line Sidon set S′,
which has size

|S′| = |C ′| ≫ |C|
1
2 ≫ |L|

1
2
− δ

2 .
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2.4 Choosing δ

Now we have three lower bounds for the size of a line Sidon subset S ⊆ L, corresponding
to the three cases above:

• Case 1:

|S| ≫ |L|
1
3
+ δ

3

• Case 2a:

|S| ≫ |L|
1
2
−δ

• Case 2b:

|S| ≫ |L|
1
2
− δ

2

Since case 2b is always better than case 2a, we will choose a δ which optimises between case
1 and 2a. Therefore,

|L|
1
2
−δ = |L|

1
3
+ δ

3

and hence we make the choice

δ =
1

8
.

We then conclude that
|S| ≫ |L|

1
3
+ 1

24

as needed.
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