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Abstract

We present a novel algorithm for computing best uniform rational ap-
proximations to real scalar functions in the setting of zero defect. The
method, dubbed BRASIL (best rational approximation by successive in-
terval length adjustment), is based on the observation that the best ra-
tional approximation r to a function f must interpolate f at a certain
number of interpolation nodes (xj). Furthermore, the sequence of local
maximum errors per interval (xj−1, xj) must equioscillate. The proposed
algorithm iteratively rescales the lengths of the intervals with the goal
of equilibrating the local errors. The required rational interpolants are
computed in a stable way using the barycentric rational formula.

The BRASIL algorithm may be viewed as a fixed-point iteration for
the interpolation nodes and converges linearly. We demonstrate that a
suitably designed rescaled and restarted Anderson acceleration (RAA)
method significantly improves its convergence rate.

The new algorithm exhibits excellent numerical stability and computes
best rational approximations of high degree to many functions in a few
seconds, using only standard IEEE double-precision arithmetic. A free
and open-source implementation in Python is provided.

We validate the algorithm by comparing to results from the literature.
We also demonstrate that it converges quickly in some situations where the
current state-of-the-art method, the minimax function from the Chebfun

package which implements a barycentric variant of the Remez algorithm,
fails.

1 Introduction

1.1 Problem and prior work

Given a continuous function f ∈ C[a, b] in a finite interval, our goal is to deter-
mine a rational function

r ∈ Rn =

{
p

q
: p, q ∈ Pn, q 6= 0

}
,
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where Pn is the space of real algebraic polynomials with degree at most n, such
that r minimizes the maximum norm error

r = arg min
r̃∈Rn

‖f − r̃‖L∞[a,b]. (1)

This problem is of course classical, and best rational approximations play an
important role in many applications, such as filter design in signal processing
and the efficient evaluation of special functions. An application to the solution of
fractional diffusion problems is sketched in Section 1.2. Analytic expressions for
best rational approximations are rarely known. All this makes it quite surprising
that the fast and stable computation of best rational approximations is still a
challenging task in many situations.

The main workhorse for the numerical computation of best rational approxi-
mations is the rational Remez algorithm (see, e.g., [5]). It attempts to determine
the points at which the error of the best rational approximation equioscillates.
Starting with a suitable initial guess, it iteratively determines a rational ap-
proximation which passes through these points and shifts one or more points
towards a nearby local maximum. The Remez algorithm generally converges
quadratically in a neighborhood of the exact solution. While the basic idea
of the algorithm is simple, there are several subtleties involved in its imple-
mentation. Furthermore, the method has notoriously poor robustness; namely,
convergence is not guaranteed unless the initial guess is sufficiently close to the
solution, and numerical stability is often very poor. The latter problem usu-
ally makes it necessary to resort to multi-precision floating point arithmetic,
for which there is typically no hardware support, slowing down the method
dramatically. For some works describing implementations of rational Remez
algorithms, see [7, 27].

Big strides towards improving the stability of the rational Remez algorithm
have recently been made [12] by using the barycentric representation of ratio-
nal functions (see, e.g., [4]) with adaptively chosen support points. This ap-
proach made it possible to quickly compute best rational approximations using
only standard double-precision arithmetic in many interesting examples. This
method also has the advantage of having a high-quality implementation in the
freely available Chebfun software package for Matlab [10].

There exist also other approaches for solving the rational best approximation
problem, perhaps most prominently the differential correction (DC) algorithm
by Cheney and Loeb [8]. Again, a more stable version of this method based
on barycentric representations has been proposed recently [12]. Although this
method is quite robust, it is less attractive in practice since it converges only
linearly and involves the costly solution of a linear programming problem in
each iteration.

Before we outline the novel contribution of the present work, we sketch a
particular application which motivated the work on this problem. Although the
problem of best rational approximation is universal enough not to require any
further motivation, this application will provide a justification why the particu-
lar class of functions to which the novel algorithm is applicable are interesting.
As we will see in the numerical tests in Section 6, existing methods do not
perform well for these functions.
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1.2 Motivation: fractional diffusion equations

Recently there has been significant activity in the development of numerical
methods for solving elliptic fractional partial differential equations of the type

Lαu = f in Ω,

where α ∈ (0, 1), Ω is a bounded domain, L an elliptic diffusion operator aug-
mented with homogeneous Dirichlet boundary conditions on ∂Ω, f the right-
hand side and u the sought solution. After discretization, a discrete solution
u ∈ Rm can be found as Aαu = f , where A ∈ Rm×m is a (typically large and
sparse) matrix with real and positive spectrum arising from any number of pop-
ular discretization techniques [20]. Fractional matrix powers of sparse matrices
are however dense in general and cannot be directly realized for large prob-
lems. An attractive approach due to its simplicity and excellent convergence
properties is to compute

ũ = r̃(A)f

with a rational function r̃(x) which is a good approximation to the function
x 7→ x−α for x ∈ [λ1, λm], the spectral interval of A. The approximation ũ
can be efficiently evaluated using the partial fraction decomposition of r. The
author has recently shown [20] that many published methods for solving the
fractional diffusion problem can be interpreted as such rational approximation
methods.

The most recent method in this class is described in [15], where the choice

r̃(x) = λ−α1 r(λ1x
−1)

is made with r(x) being the best rational approximation with a chosen degree of
the function x 7→ xα in [0, 1]. The error converges asymptotically like ∼ e−

√
n,

where n is the degree of r (cf. [24]). However, until now a major obstacle
to the use of these methods in practice has been the computation of the best
approximations r(x) ≈ xα. In the recent report [14], the authors provide ex-
tensive tables with coefficients and errors of best rational approximations for
α ∈ {0.25, 0.5, 0.75} and degrees up to n = 8. These results were produced us-
ing a Remez algorithm using quadruple-precision floating point arithmetic and
in many cases required the use of computing time on the order of hours.

Enabling the computation of these approximations in a fast way was the main
driving force behind the present work. Therefore, we are here most interested
in approximation of functions of the type

f(x) = xα, f(x) =
xα

1 + qxα
, α ∈ (0, 1), q ≥ 0, x ∈ [0, 1],

both of which have applications in fractional diffusion-type problems [14]. Nev-
ertheless, the proposed method works equally well for other functions with sim-
ilar characteristics, as detailed later: best approximations with zero defect of
functions with no interior singularities, but possible boundary singularities.

1.3 A novel algorithm for best rational approximation

As noted earlier, the most popular approach for computing best rational ap-
proximations, the rational Remez algorithm, is based on the idea of finding the
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2n+2 equioscillation points at which the error assumes its local extrema. Here,
n is the degree of the rational approximation. For a simple example, these nodes
are shown as stars in the right plot of Figure 1. Between each consecutive pair
of such points there lies a point (shown as dots in Figure 1) where the rational
approximant interpolates the exact function.
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Figure 1: The function f(x) = x log x, x ∈ [0, 1], together with its best rational approxima-
tion r of degree 2 (left) and the resulting error f −r (right). Equioscillation nodes are marked
with stars, and interpolation nodes with dots.

The basic idea of the BRASIL algorithm is to determine the locations (xj)
2n
j=0

of these 2n+1 interpolation nodes and compute the best rational approximation
by rational interpolation in these nodes. The algorithm first determines suitable
initial guesses for the interpolation nodes (xj)

2n
j=0 and then in each iteration

1. computes the rational interpolant through these nodes in barycentric rep-
resentation,

2. determines the maximum error in each interval (xj , xj+1),

3. simultaneously rescales all intervals such that intervals where the error is
too large are shrunk and intervals where the error is too small are enlarged.

These steps are repeated until the maximum errors are equilibrated to a desired
tolerance. This idea results in a fast and robust method with excellent stability
properties. The method is also significantly easier to implement than the Remez
algorithm.

The remainder of this paper is structured as follows. Some important pre-
liminaries on best rational approximations as well as barycentric rational in-
terpolation are given in Section 2. The novel BRASIL algorithm is described
in Section 3, where we also discuss a method for initializing the interpolation
nodes and analyze the computational complexity. The convergence properties of
BRASIL are investigated in Section 4, and a rescaled and restarted Anderson ac-
celeration method is presented which can significantly improve the convergence
rates. An open-source software implementation of the proposed algorithm is
briefly discussed in Section 5, and numerical experiments demonstrating the
accuracy, performance and robustness of the method are given in Section 6. At
the end of that section, we also briefly discuss the excellent numerical stability
of the new method by way of an example.
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2 Preliminaries

2.1 Properties of best rational approximations

Consider again the best rational approximation problem (1). It is a classical
result that the minimizer exists and is unique (see, e.g., [1, 26]). For the repre-
sentation r = p/q with polynomials p and q of minimal degree, we will denote
by deg r := max{deg p,deg q} the degree of the rational function. If r ∈ Rn
is the best rational approximation to f of degree at most n, its defect is the
number

d := n− deg r ≥ 0.

The defect plays an important role in the following classical equioscillation char-
acterization of the best approximation (see [1] as well as [26] for historical ref-
erences).

Theorem 1. A unique best uniform rational approximation r ∈ Rn to f ∈
C[a, b] exists. A rational function r̃ ∈ Rn is equal to r if and only if the error
f−r̃ equioscillates between at least 2n+2−d extreme points, where d = n−deg r
is the defect of r.

Equioscillation at k extreme points means that there exist k distinct points,
a ≤ z1 < . . . < zk ≤ b, such that

(f − r̃)(zj) = (−1)j+δ‖f − r̃‖ ∀j = 1, . . . , k

with δ ∈ {0, 1}. Here we write ‖ · ‖ for the maximum norm in [a, b].
In the remainder of this paper, we will assume zero defect, d = 0. This will

generally hold true for the class of functions we are interested in. In particu-
lar, for the approximation of functions of the type xα, this has been proven by
Stahl [24]. Note, however, that some problems of practical interest, such as com-
puting best rational approximations to |x| in [−1, 1], result in nonzero defects,
and the proposed method cannot be directly applied to such problems. Some
problems can be reformulated in order to satisfy this condition. For instance,
in the particular case of the function |x|2α in [−1, 1], by a simple argument we
obtain that its rational best-approximation error of degree 2n is equal to that
of xα in [0, 1] of degree n [24].

2.2 Barycentric rational interpolation

Since the algorithm proposed in this work relies heavily on rational interpolation,
we require a robust way of computing rational interpolants. Our main tool
towards this end will be the so-called barycentric rational formula. This formula
has a long history, and a comprehensive list of the related literature is beyond
the scope of the present work; instead, we refer to [3, 4, 21] and the references
therein for an overview. The main advantage of the barycentric formula is its
well-documented superior numerical stability [23, 3, 18].

For nodes, values, and weights, respectively,

xi ∈ R, fi ∈ R, wi ∈ R, i = 0, . . . , n,

where the nodes (xi) are pairwise distinct, the barycentric formula is given by

r(x) =

∑n
i=0

wi

x−xi
fi∑n

i=0
wi

x−xi

. (2)
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It describes a rational function r of degree at most n with the interpolation
property r(xi) = fi for each i ∈ {0, . . . , n} where wi 6= 0. All rational functions
with this interpolation property are parameterized by varying the weights (wi).
Note also that rescaling the vector of weights by a nonzero scalar does not
change the function r.

The particular choice of the weights

wi =
1∏n

k=0,k 6=i(xi − xk)
, i = 0, . . . , n

leads to polynomial interpolants and is generally superior to the classical La-
grange interpolation formula in terms of numerical stability [18]. Different
choices of the weights lead to different, in general rational, interpolants through
the n + 1 nodes (xi). In our case, we will choose the weights in such a way
as to enforce interpolation conditions in n additional nodes, yielding rational
interpolation in 2n+ 1 nodes.

Assume the nodes (xi) are given in increasing order and introduce additional
nodes x̂i, i = 1, . . . , n with the interlacing property

x0 < x̂1 < x1 < · · · < xn−1 < x̂n < xn. (3)

It is clear that 2n + 1 arbitrary, pairwise distinct given nodes can always be
arranged in this way. Given nodal values (f̂i) at the nodes (x̂i), our aim is to
enforce the additional interpolation conditions

r(x̂i) = f̂i, i = 1, . . . , n. (4)

Following [21], we observe that inserting (2) into (4) leads to the conditions

f̂j

n∑
i=0

wi
x̂j − xi

−
n∑
i=0

wi
x̂j − xi

fi = 0, j = 1, . . . , n.

It is easy to see that they are satisfied by choosing the weight vector (wi) to lie
in the nullspace of the Löwner matrix

B ∈ Rn×(n+1), Bk` =
f̂k − f`
x̂k − x`

, k = 1, . . . , n, ` = 0, . . . , n. (5)

A nonzero weight vector with this property always exists due to the rectangular
shape of B. However, this does not necessarily mean that the interpolation
property is satisfied in all 2n+ 1 nodes: for instance, individual weights wi may
still be zero. This is related to the issue of unattainable points, a general fact
of rational interpolation; see [23] for more details. Nevertheless, unattainable
points are the exceptional case, and we can usually hope to attain interpolation
in all 2n+ 1 nodes.

The resulting rational interpolation routine is summarized in Algorithm 1.

3 The BRASIL algorithm

3.1 The algorithmic idea

Theorem 1 states that the best rational approximation r of degree n with zero
defect d to a function f has an error which equioscillates in 2n+2 points (zj)

2n+1
j=0 .
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Algorithm 1 Barycentric rational interpolation with degree n in 2n+ 1 nodes.

function Interpolate(f ∈ C[a, b], (z0, . . . , z2n))
arrange the nodes (zk) into the vectors (xi)

n
i=0 and (x̂i)

n
i=1 as in (3)

evaluate fi = f(xi), f̂i = f(x̂i)
compute the Löwner matrix B ∈ Rn×(n+1) as in (5)
compute (wi)

n
i=0 as a nonzero vector in the nullspace of B

return r from (2) with nodes (xi), values (fi), and weights (wi)
end function

Due to continuity, the error must attain zero between each pair of neighboring
points (zj , zj+1). This means that there must exist at least 2n+1 points (xj)

2n
j=0

in the interior of (a, b) where the best rational approximation interpolates the
function itself,

r(xj) = f(xj), j = 0, . . . , 2n. (6)

This observation has also been exploited theoretically; see Stahl [24] for an
application of this idea to the case where f(x) = xα in [0, 1]. Note also that
this implies that for the particular choice of interpolation nodes (x0, . . . , x2n),
the above rational interpolation problem does not have any unattainable points
as described in Section 2.2, and thus Algorithm 1 will successfully compute an
interpolant through all nodes in this case.

Refer again to Figure 1 for an example, where n = 2 and there exist 6 nodes
of equioscillation (orange stars) and 5 nodes of interpolation (green dots).

To take another point of view, assume that we take 2n + 1 arbitrary nodes
x0 < . . . < x2n in (a, b) and succeed in computing a rational interpolant r of
degree n, r(xj) = f(xj), through these nodes. The above considerations make
it clear that r is the best rational approximation of degree n if and only if the
interval-wise errors,

δi := max
x∈(xi−1,xi)

|f(x)− r(x)|, i = 0, . . . , 2n+ 1

where we set x−1 = a, x2n+1 = b, are all equal. The BRASIL algorithm is
based on the simple idea of equilibrating these errors. Starting with a suitable
guess for the interpolation nodes (xj), it performs an iteration by simultaneously
rescaling the interval lengths such that intervals where the error δi is small are
enlarged and intervals where the error δi is large are shrunk.

Implicitly, this idea makes the assumption that the error of the rational in-
terpolant varies smoothly with the interpolation nodes. Therefore, the proposed
method is not well suited to functions which have singularities within the inter-
val (a, b). On the other hand, singularities at the boundary of the interval pose
no problem.

Note the distinction to the Remez algorithm: there, the quantities of interest
are the nodes where the error is maximal, whereas in BRASIL, we work with
the nodes where the error is zero.

3.2 Description of the algorithm

A complete description of BRASIL is given in Algorithm 2. An explanation of
the various quantities used in this algorithm is in order.
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Algorithm 2 BRASIL algorithm for best rational approximation

function BRASIL(f ∈ C[a, b], n ∈ N, ε > 0, σmax ∈ (0, 1), τ > 0)
initialize interpolation nodes x0 < . . . < x2n ∈ (a, b)
loop

r ← Interpolate(f, (xi)
2n
i=0)

compute interval-wise errors (x−1 = a, x2n+1 = b)

δi = max
x∈(xi−1,xi)

|f(x)− r(x)|, i = 0, . . . , 2n+ 1

if maxi δi
mini δi

− 1 < ε then
return r

end if
compute (i ranges over {0, . . . , 2n+ 1})

δ =
1

2n+ 2

2n+1∑
i=0

δi (mean error)

γ = max
i=0,...,2n+1

|δi − δ| (max. deviation from mean error)

γi =
δi − δ
γ

(signed normalized deviation)

σ = min{σmax, τγ/δ} (step size)

ci = (1− σ)γi (interval length correction factor)

`i = ci(xi − xi−1) (rescaled interval lengths)

ω =

2n+1∑
i=0

`i (normalization factor)

update the interpolation nodes:

xj ← a+
b− a
ω

j∑
k=0

`k (j = 0, . . . , 2n)

end loop
end function

We first initialize the interpolation nodes (xj) in a way which will be dis-
cussed in Section 3.3. Then, in each iteration we compute the interpolant r by
Algorithm 1, as well as the interval-wise errors (δi). Due to the interpolation
property, (f − r)(xi) = 0 for i = 0, . . . , 2n, and therefore we we know that
the local maximum is bracketed between the two endpoints of the interval (ex-
cept in the first and last intervals). This makes it convenient to use a standard
golden-section search (cf. [22]) to find it. Brent’s method (described in the same
reference) may require fewer iterations to achieve the same accuracy. If only a
few correct digits of the best approximation error are required, computing the
maximum error by sampling the error function |f − r| over an equispaced mesh
of, say, 100 points in (xi−1, xi) is a quite competitive approach that is also very
easy to implement.
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If the errors (δi) are equilibrated to the desired tolerance ε, we can conclude
from Theorem 1 that we have found a rational function that is sufficiently close
to the best rational approximation, and the program terminates successfully.

Otherwise, we compute factors ci = (1−σ)γi by which the length of the i-th
interval will be scaled. Here σ ∈ (0, 1) is an adaptively chosen step size and
γi ∈ [−1, 1] is a normalized deviation which is negative if the error δi is smaller
than the mean error δ and positive if δi is larger. Thus, we have that ci < 1 for
intervals with large errors and ci > 1 for intervals with small errors. Then the
old interval lengths are scaled by these factors, normalized such that they add
up to b− a again, and the interpolation nodes updated accordingly.

The choice of the step size σ ∈ (0, 1) is a delicate issue. It may be viewed as
the maximum percentage by which an interval may be scaled in a single itera-
tion. Choosing it too large can make the algorithm stagnate without reaching
the desired tolerance, whereas choosing it too small slows down convergence
significantly. Experimentally, it turns out that a good choice is to set it in
dependence of the current error via the formula σ = min{σmax, τγ/δ}, where
σmax > 0 is a maximum step size (usually set to 0.1), τ is a scaling factor (usu-
ally set to 0.1), and γ/δ is the maximum relative deviation from the interval-wise
errors to the mean error. Note that γ/δ tends to 0 as the algorithm converges,
and thus so does the step size σ.

Remark 1. It is a simple matter to derive a variant of BRASIL which computes
best polynomial approximations of degree n instead. Indeed, only two changes to
Algorithm 2 are necessary: the number of interpolation nodes has to be reduced
from 2n+ 1 to n+ 1, and the rational interpolation routine Interpolate has
to be replaced by a polynomial barycentric interpolation routine (cf. [3]). The
software implementation described in Section 5 offers this variant as an option.

3.3 The initialization method

An issue not yet discussed is the initialization of the interpolation nodes before
the algorithm starts. A good choice of these initial nodes has significant benefits
both with respect to robustness of the algorithm (i.e., ensuring convergence to
the best rational approximation) and convergence speed.

Good initial nodes are obtained by performing a fixed number of iterations
(say, K = 100) of the following algorithm. The basic structure is similar to the
BRASIL algorithm itself, but instead of rescaling the intervals, we simply move,
in each iteration, one node from an area of small error to the point where the
error is largest, thus forcing the error to zero at that point in the next step.

This procedure is described in Algorithm 3. We first choose the nodes in an
arbitrary way, e.g., as the Chebyshev nodes in [a, b] or equispaced (the concrete
choice does not appear to matter much). As in the main BRASIL algorithm, we
then interpolate through these nodes in each iteration and compute the interval-
wise errors (δi). In addition, we determine the abscissa xmax where the error is
maximal (but shifting it slightly inwards if it happens to lie on the boundary of
the interval [a, b]; recall that the interpolation nodes always lie in the interior of
the interval). We then choose the node xk which borders on the interval with
the smallest error and is farther away from xmax and relocate it to xmax. The
nodes are then re-sorted and the process repeated.
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Algorithm 3 The initialization algorithm for obtaining an initial guess for the
interpolation nodes (xj).

function Initialize(f ∈ C[a, b], n ∈ N, K ∈ N)
choose initial nodes x0, . . . , x2n ∈ (a, b) (e.g., Chebyshev nodes)
for K times do

determine rational interpolant r with r(xj) = f(xj), j = 0, . . . , 2n
compute interval-wise errors (x−1 = a, x2n+1 = b)

δi = max
x∈(xi−1,xi)

|f(x)− r(x)|, i = 0, . . . , 2n+ 1

find xmax = arg maxx∈[a,b] |f(x)− r(x)|
if xmax = a then

xmax ← 3a+x0

4
else if xmax = b then

xmax ← x2n+3b
4

end if
find i∗ = arg mini∈{0,...,2n+1} δi (interval with smallest error)

choose the node xk ∈ {xi∗−1, xi∗}∩ {x2nj=0} which is farther from xmax

update xk ← xmax and re-sort the nodes (xj)
end for
return (x0, . . . , x2n)

end function

This process does not converge to the best rational approximation and usu-
ally stagnates rapidly, but tends to be successful in establishing a distribution
of the interpolation nodes that asymptotically resembles the correct one. For
instance, for a function f with a singularity at the left side a of the interval, it
will cluster the nodes toward that end of the interval.

3.4 Computational complexity

The main computational effort during one iteration of BRASIL is spent in com-
puting the new interpolant r as well as the error maxima (δi); the remaining
steps have negligible cost.

In computing the interpolant r via Algorithm 1, the main effort is in finding
the weight vector in the nullspace of B ∈ Rn×(n+1). We use the singular value
decomposition (SVD) to do this, which has computational complexity O(n3)
[13].

Referring to the barycentric formula (2), it is easy to see that evaluating r
at a given point x requires O(n) operations. Using golden-section search with
kGS iterations for one interval (xi−1, xi) to determine the maximum error δi
requires O(kGS) evaluations of r. Since there are O(n) intervals, we arrive at
the total cost of O(kGSn

2) operations for computing the error maxima (δi)
2n+1
i=0 .

If we used sampling with kS points per interval instead of golden-section search
to estimate the maxima, we would instead obtain O(kSn

2). Golden-section
search has significantly better convergence rate than equispaced sampling for
determining the maxima and should be preferred unless the required accuracy
is low. Usually, a choice in the range 10 ≤ kGS ≤ 30 is more than sufficient.
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Thus, assuming that the evaluation of the given function f is O(1), we can
conclude that a single iteration of BRASIL has computational complexity

O(n3 + kGSn
2).

Note however that dense linear algebra routines are exceedingly well optimized
on modern hardware, and thus the implicit constant in front of the cubic term
may be much smaller than the one in front of the quadratic term. In the
software implementation described in Section 5, finding the maxima is usually
the dominant cost.

A crucial factor in determining the overall computational cost is of course the
total number of iterations required to bring the deviation below the tolerance
ε. We discuss the convergence rate, as well as ways to improve it, in Section 4.
Although the BRASIL algorithm as given converges only with linear rate in
practice, the low computational costs per iteration make it competitive with the
rational Remez algorithm [12], which exhibits local quadratic convergence but
requires more costly computations per iteration. In particular, BRASIL seems
much more attractive than the differential correction algorithm [8, 12], which
too converges only linearly but requires the solution of a linear programming
problem at each step.

4 Accelerating convergence of BRASIL

4.1 Formulation as a fixed-point iteration

The structure of the BRASIL algorithm can be viewed as a fixed-point iter-
ation. Indeed, denoting the vector of interpolation nodes at iteration k as
xk = (xk0 , . . . , x

k
2n), we obtain a new set of nodes by the nonlinear map

xk+1 = Φ(xk), (7)

where the operator Φ : R2n+1 → R2n+1 denotes the action of one pass through
the main loop in Algorithm 2. In particular, Φ does not depend on k. Here and
in the following we implicitly assume that no unattainable points occur in the
rational interpolation problems (cf. Section 2.2).

Let
X := {x ∈ R2n+1 : a < x0 < . . . < x2n < b}

denote the set of admissible nodes. The following result shows that the inter-
polation nodes x∗ associated with the best rational approximation are a fixed
point of Φ in X , and any fixed point yields the best rational approximation.

Theorem 2. 1. The operator Φ has the mapping properties

Φ : X → X .

2. Assume zero defect. The interpolation nodes x∗ ∈ X associated with the
best rational approximation according to (6) are a fixed point of Φ.

3. If the defect is zero and some x ∈ X satisfies

Φ(x) = x,

11



then r[x] = r[x∗] = r∗, where r[x] denotes the rational interpolant with
r(xi) = f(xi) for i = 0, . . . , 2n, and r∗ is the unique best rational approx-
imation to f .

Proof. 1. Let x ∈ X and x̂ := Φ(x). In the notation of Algorithm 2, we have
for all i = 0, . . . , 2n + 1 that ci ≥ (1 − σmax)γi > 0. Hence `i > 0 and
ω > 0, and it follows x̂i− x̂i−1 = b−a

ω `i > 0. That all nodes are contained
in (a, b) is a consequence of the normalization by ω.

2. Consider the application Φ(x∗). Since the interval-wise error equioscillates
according to Theorem 1, we have δ = δi for all i, the step size σ = 0, and
the correction factors ci = 1. Hence, `i = xi − xi−1 and Φ(x∗) = x∗.

3. Let x̂ = Φ(x). From the update formula, we have

x̂i−1 − x̂i =
b− a
ω

ci(xi − xi−1) ∀i = 0, . . . , 2n+ 1,

where x̂−1 = x−1 = a and x̂2n+1 = x2n+1 = b. If x̂ = x, it follows that

ω

b− a
= ci = (1− σ)γi ∀i = 0, . . . , 2n+ 1,

and hence γi and then also δi must be constant. But this means that
the error |f − r[x]| equioscillates in at least 2n + 2 extreme points, and
therefore r[x], the rational interpolant through x, must be the unique best
rational approximation by Theorem 1.

Remark 2. To conclude uniqueness of the fixed point, i.e., Φ(x) = x =⇒
x = x∗, we would need to establish that the interpolation nodes x∗ resulting in
r∗ are unique. In other words, we would need to exclude the case that f − r∗
has additional zeros, either because it equioscillates in more than 2n+ 2 nodes
or because there exist additional zeros between two consecutive equioscillation
nodes. Results on the exact number of extreme points for best rational approx-
imations to the function xα are given by Stahl [24]. Also in practice we observe
in all tested cases that the error function has exactly 2n+ 1 zeros and thus x∗

is unique.
In any case, the third statement of the above theorem makes it clear that

any fixed point x will yield the unique best rational approximation r[x] = r∗,
and therefore uniqueness of the fixed point itself is a lesser concern.

The BRASIL fixed point iteration converges in practice with a linear rate,
that is, we observe convergence of the form

|xk − Φ(xk)| ≤ Cρk, k = 0, 1, 2, . . .

The observed rate ρ ∈ (0, 1) depends essentially on the function f to be approx-
imated, the degree n, and the step factor parameter τ . In Table 1 we compare
estimated convergence rates ρ for varying functions f and degrees n. We observe
that ρ depends only very weakly on n, but strongly on the function f . Whereas
the approximations for x0.5 and x0.75 converge rather quickly, the method re-
quires roughly 1200 iterations to reduce the residual from 10−2 to 10−11 in the
case f(x) = x0.1. The deviation from equioscillation maxi δi

mini δi
− 1, which we use

for the stopping criterion, converges at a similar rate as the fixed-point residual
in all examples.
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n α ρ α ρ α ρ

10 0.1 0.980 0.5 0.920 0.75 0.904
20 0.980 0.925 0.891
30 0.980 0.928 0.897
40 0.981 0.927 0.904

Table 1: Estimated convergence rates for the functions xα in [0, 1] with varying rational
degree n and exponent α. We used τ = 0.1 throughout.

4.2 Improving convergence via Anderson acceleration

Each iteration of BRASIL is quite fast and thus the overall computation times
are good even with the high iteration numbers reported in the previous subsec-
tion. The timings given in the numerical examples in Section 6 confirm this.
Nevertheless, accelerating the convergence could further reduce the computation
times. Increasing the step factor parameter τ (which was set at 0.1 for all ex-
amples) can achieve this, but it may also spoil the robustness of the method for
more difficult problems since choosing τ too large results in lack of convergence.
Instead, we consider here a general method for accelerating fixed point iterations
which is known as Anderson acceleration or Anderson mixing. Originating from
the work of D. G. Anderson [2] in 1965, it has only relatively recently attracted
wider attention in the numerical analysis community as a general-purpose ac-
celeration method [11, 29, 19, 6, 25]. It has been pointed out that in the linear
case, Anderson acceleration is essentially equivalent to GMRES [29], whereas in
the nonlinear case it can be viewed as a generalized Broyden method [11].

Let F (x) := x−Φ(x) denote the non-fixed point formulation of the nonlinear
problem such that F (x∗) = 0. The Anderson acceleration procedure of the fixed-
point iteration (7) proceeds as follows. We choose a (usually small) integer
parameter m ∈ N which describes the number of previous iterates to take into
account for acceleration. Having computed previous iterates x0, . . . ,xk, k ≥ m,
we find the real parameters (αj) which minimize

min∑m
j=0 αj=1

∣∣∣∣∣∣
m∑
j=0

αjF (xk−j)

∣∣∣∣∣∣
2

in the Euclidean norm and set

xk+1 =

m∑
j=0

αjΦ(xk−j) =

m∑
j=0

αj(x
k−j − F (xk−j)).

For the first few iterations where k < m, we simply perform the same procedure
with reduced order mk = min{m, k}. In particular, Anderson acceleration with
m = 0 is just fixed-point iteration, and therefore x1 = Φ(x0) is a standard
fixed-point step.

In practice, the minimization problem is reformulated as an unconstrained
least-squares problem and solved efficiently using a QR factorization of a (2n+
1)×m matrix (where 2n+ 1 is the length of each vector xk). The factorization
can be updated, rather than recomputed, in each iteration in order to further
save on computational costs; see, e.g., [19, 29] for details.
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In our particular application, we must take care that the nodes xk remain
in the feasible set X . We achieve this by damping the Anderson acceleration
by interpolating between a standard fixed-point step (which is guaranteed to
maintain the feasibility of the vector due to Theorem 2) and the accelerated
vector,

xk+1 = (1− µ)Φ(xk) + µ

m∑
j=0

αjΦ(xk−j)

with a damping parameter µ ∈ [0, 1]. For µ sufficiently small, we obtain
xk+1 ∈ X since X is an open set. Note that this damping is different from
the mixing parameter β usually described in the literature, which modifies An-
derson acceleration according to

xk+1 = (1− β)

m∑
j=0

αjx
k−j + β

m∑
j=0

αjΦ(xk−j) =

m∑
j=0

αj(x
k−j − βF (xk−j)).

A further improvement is obtained as follows. We first perform a number of
steps of the standard fixed-point iteration to obtain a good estimate x̃ for the
location of the correct interpolation nodes. We then define the rescaled fixed
point iteration

Φ̃(y) := Φ(y ∗ x̃)/x̃, y0 = (1, . . . , 1), (8)

where the vector multiplication and division are to be understood elementwise.
This ensures that the components of the new fixed point y∗ have roughly equal
order of magnitude, whereas the components of the original fixed point x∗ often
vary by many orders of magnitude (cf. Figure 3 for an example). Whereas the
results of the standard fixed-point iteration are not changed by passing to the
rescaled formulation as one easily sees, the results using Anderson acceleration
are significantly more robust using this transformation.

The robustness is further increased by periodically (say, after every 50 iter-
ations) updating the scaling vector x̃ by multiplying it with the current iterate
yk and resetting the iterate to a constant vector of ones. At this point, the
Anderson acceleration should also be restarted as the old iterates are no longer
accurate for the rescaled problem. We can consider this procedure as a gen-
eral form of rescaled and restarted Anderson acceleration (RAA). It turns out
that the successive rescaling and restarting significantly improves the robustness
and convergence speed of Anderson acceleration for our use case of accelerating
BRASIL. The same may be true for other applications of Anderson acceleration
where the components of the solution vary significantly in order of magnitude.

4.3 Results

We consider best rational approximation of the function f(x) = x0.1 since the
results of Subsection 4.1 have shown that this is the most difficult of the three
tested examples, and we wish to compute the best rational approximation of
degree n = 40 to a deviation tolerance of ε = 10−10.

As discussed above, we initialize the problem by performing 100 steps of
the initialization method, Algorithm 3, and then another 100 steps of standard
BRASIL fixed-point iteration, yielding an initial guess x̃ for the location of the
interpolation nodes, which we use to define the rescaled problem (8).
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We then perform 50 steps of Anderson-accelerated fixed-point iteration for
Φ̃ with a given order m. Unless the desired tolerance has been reached, we use
the result to update the scaling, x̃ ← x̃ ∗ y50, and restart the iteration with a
new starting vector y0 = (1, . . . , 1), again iterating for 50 steps, and so on.

0 200 400 600 800 1000 1200
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10 1

de
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n

BRASIL
BRASIL-RAA(5)
BRASIL-RAA(10)
BRASIL-RAA(15)

m µ iter time

0 n/a 1181 8.6 s
5 0.3 560 4.4 s

10 0.3 393 3.1 s
15 0.25 357 2.7 s

Figure 2: BRASIL with rescaled and restarted Anderson acceleration (BRASIL-RAA). We
compare AA order m = 0 (fixed point iteration) and m = 5, 10, 15. Left: deviation plotted
over number of iterations. Right: table displaying the order m, the chosen damping parameter
µ, the number of iterations to reduce the deviation below 10−10, and the computation time.

The results of this BRASIL-RAA(m) (BRASIL with rescaled and restarted
Anderson acceleration of order m) method are shown in Figure 2. We observe
that increasing the order m of Anderson acceleration significantly reduces the
number of iterations, but with diminishing returns past a certain point. The
computation times show that the added overhead of performing Anderson ac-
celeration is essentially negligible, and the reduction in iterations translates
directly into a corresponding reduction in the time. The used implementation
did not update the QR factorization, but recomputed it from scratch in each
iteration.

Overall, we achieve a reduction of the computation time by a factor of about
3.2x by using RAA(15).

5 Software implementation

A software implementation of the BRASIL algorithm is contained in the baryrat
open-source Python package for barycentric rational approximation and interpo-
lation, which is developed by the author1. It is available on the Python Package
Index and therefore can be easily installed on any existing Python 3 distribution
using the command pip install baryrat. The package relies on the numpy

and scipy packages for fast linear algebra routines, as well as optionally the
mpmath package for extended-precision arithmetic. Some simple examples of
how to use the package can be found on the author’s software homepage2. A
one-line example of how to compute a best rational approximation of degree 12

1https://github.com/c-f-h/baryrat
2https://people.ricam.oeaw.ac.at/c.hofreither/software/ – see https://orcid.org/

0000-0002-6616-5081 if link is out of date.
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to the function x0.5 in the interval [0, 1] is given as follows:

from baryrat import brasil

r = brasil(lambda x: x**0.5, [0,1], 12)

The barycentric rational function object r returned by the brasil function
can be evaluated at arbitrary points and also allows computation of the poles,
residues, and zeros, optionally with extended precision by using the mpmath

arbitrary-precision package.
The implementation of BRASIL in baryrat supports both sampling and

golden-section search for determining the local maxima δi. This is controlled
by the npi=<n> keyword argument, which selects sampling in n nodes if n is
positive and golden-section search using -n iterations if negative.

The interested reader is referred to the package documentation3 for further
details and additional options.

At the time of writing, baryrat v1.2.0 does not include the Anderson ac-
celeration method described in Section 4. The used Python implementation of
Anderson acceleration can be found on the author’s software homepage listed
above.

6 Numerical results

In this section, we discuss several numerical experiments with the goal of validat-
ing the correctness of the BRASIL algorithm, demonstrating its performance,
and highlighting its robustness in comparison to other methods. All tests were
performed in a Linux environment using the Python implementation of BRASIL
described in Section 5. The used hardware was a laptop with an AMD Ryzen 5
3500U CPU as well as a workstation with an Intel Xeon W3680 CPU.

Throughout all examples, we have left the parameters σmax = 0.1, τ = 0.1
at their standard settings, demonstrating the robustness of the method with
respect to these parameters.

6.1 Comparison with the results of Varga et al.

In order to confirm the correctness of the results computed with the BRASIL
algorithm, we compare them to the published best-approximation errors from
[28, 27]. In these works, best rational approximation errors for the functions√
x and xα, respectively, in the interval [0, 1] were computed using an extended-

precision implementation of the rational Remez algorithm to at least 200 signif-
icant digits.

To achieve high accuracy, we run the BRASIL algorithm with a very small
tolerance of ε = 10−11 and perform 30 steps of golden-section search to de-
termine the local error maxima. Note that the desired tolerance could not be
achieved for some cases with higher degree due to numerical error, in which case
the algorithm was terminated after 1500 iterations. Anderson acceleration was
not used for this test.

The results for approximation of
√
x are shown in Table 2, and for xα with

varying choices of α in Table 3. Correct significant digits according to Varga

3https://baryrat.readthedocs.io/en/latest/
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n time BRASIL error error from Varga et al. [28]

1 0.947 s 4.36890126922871e-02 4.3689012692076361570855971e-02
2 1.01 s 8.50148470411732e-03 8.5014847040738294902974113e-03
3 1.10 s 2.28210600973698e-03 2.2821060097252594879063105e-03
4 1.00 s 7.36563614034811e-04 7.3656361403070305616249126e-04
5 1.12 s 2.68957060086703e-04 2.6895706008518350996178760e-04
6 1.21 s 1.07471162295158e-04 1.0747116229451284948608235e-04
7 1.28 s 4.60365926628982e-05 4.6036592662634959571292708e-05
8 1.18 s 2.08515864064118e-05 2.0851586406330327171110359e-05
9 1.57 s 9.88933464529662e-06 9.8893346452814243884404320e-06

10 2.31 s 4.87595751266778e-06 4.8759575126319132435883035e-06
11 3.42 s 2.48559026849726e-06 2.4855902684782111169206258e-06
12 3.61 s 1.30437759138236e-06 1.3043775913430736526687704e-06
13 3.98 s 7.02231997995462e-07 7.0223199787397756951998002e-07
14 3.73 s 3.86755771630831e-07 3.8675577147259020291010816e-07
15 3.70 s 2.17398782198508e-07 2.1739878201697943205320496e-07
16 3.78 s 1.24477088414565e-07 1.2447708820895071928214596e-07
17 3.93 s 7.24786339834083e-08 7.2478633767555369698557389e-08
18 3.97 s 4.28546457209578e-08 4.2854645582735082156977870e-08
19 4.03 s 2.56989678426578e-08 2.5698967632180816149049674e-08
20 4.12 s 1.56132887729754e-08 1.5613288569948668163944414e-08
21 4.29 s 9.60112267467395e-09 9.6011226128422364808987184e-09
22 4.37 s 5.97082361331047e-09 5.9708233987055580552986137e-09
23 4.50 s 3.75238151661961e-09 3.7523813816413163690864502e-09
24 4.51 s 2.38149977516144e-09 2.3814996907217830892279694e-09
25 4.57 s 1.52547341425446e-09 1.5254732895109793748147207e-09
26 4.79 s 9.85676429365867e-10 9.8567633494963529958137413e-10
27 4.86 s 6.42136011030914e-10 6.4213580507266246923653248e-10
28 4.89 s 4.21588763899194e-10 4.2158848429927145758285061e-10
29 4.95 s 2.78832512634608e-10 2.7883241651339275411060214e-10
30 5.09 s 1.85707338395957e-10 1.8570720011628217953125707e-10
31 5.15 s 1.24507959498033e-10 1.2450783250744235910902360e-10
32 5.22 s 8.40062464035896e-11 8.4005997557762786343216049e-11
33 6.71 s 5.70223868123776e-11 5.7022115757288620263774447e-11
34 6.48 s 3.89297483138762e-11 3.8929505815993459443909823e-11
35 6.65 s 2.67245114926595e-11 2.6724435566456537363975894e-11
36 6.71 s 1.84431359073756e-11 1.8442995092525441602503777e-11
37 6.89 s 1.27926558235458e-11 1.2792448409247089881993010e-11
38 7.01 s 8.91653417767202e-12 8.9163582949186860871201939e-12
39 7.16 s 6.24394980164311e-12 6.2438281549962812624730424e-12
40 7.25 s 4.39215330771958e-12 4.3920484091817861898391037e-12

Table 2: Results for the BRASIL algorithm for the best rational approximation of x1/2 in
[0, 1]. Columns: degree of the rational approximation, computation time, obtained error of
the approximation computed with BRASIL, high-precision error reported in Varga et al. [28].
Matching significant digits are displayed in bold.
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α n time BRASIL error error from Varga et al. [27]

1/8 5 3.34 s 1.13217759654848e-02 1.13217759654301431474e-02
10 3.96 s 1.49835131984965e-03 1.49835131984212814870e-03
15 4.47 s 3.13680880238988e-04 3.13680880237474018841e-04
20 4.97 s 8.36130293638017e-05 8.36130293633923681498e-05
25 5.93 s 2.60369628069693e-05 2.60369628068729899861e-05
30 7.88 s 9.05876319928778e-06 9.05888497658656444007e-06

1/4 5 1.84 s 2.73477892547939e-03 2.73477892546592632673e-03
10 2.18 s 1.61000182085681e-04 1.61000182084826634400e-04
15 2.35 s 1.78681122950487e-05 1.78681122949941574509e-05
20 6.28 s 2.77649653213086e-06 2.77649653194622424338e-06
25 6.90 s 5.36229110892350e-07 5.36229110816195252824e-07
30 7.63 s 1.20976855311206e-07 1.20976855182212349779e-07

3/8 5 1.49 s 8.17554102624347e-04 8.17554102620063791819e-04
10 1.49 s 2.55069505017713e-05 2.55069505016840959874e-05
15 5.60 s 1.72903782380551e-06 1.72903782372985456924e-06
20 6.32 s 1.76939691565181e-07 1.76939690978831627329e-07
25 6.90 s 2.36276879173047e-08 2.36276876897326311568e-08
30 7.80 s 3.81621367839813e-09 3.81621345151530366382e-09

5/8 5 1.03 s 9.04758436096580e-05 9.04758436081231726004e-05
10 5.46 s 1.01091577409118e-06 1.01091577400034953766e-06
15 5.70 s 3.10847401152614e-08 3.10847399216645831784e-08
20 6.20 s 1.63183161427938e-09 1.63183149718337342321e-09
25 6.98 s 1.20955134796930e-10 1.20955031570929120091e-10
30 7.61 s 1.14701581566123e-11 1.14699901451277581199e-11

3/4 5 1.05 s 2.86755208260766e-05 2.86755208259350891777e-05
10 5.40 s 2.05844565615010e-07 2.05844565554256321726e-07
15 5.77 s 4.51438564308404e-09 4.51438552412578873109e-09
20 6.38 s 1.78304149223152e-10 1.78303904874895610620e-10
25 6.88 s 1.02877706353866e-11 1.02875517502182814096e-11
30 7.82 s 7.78044295657310e-13 7.77898317234545956241e-13

7/8 5 1.1 s 7.08939667066425e-06 7.08939067065246124013e-06
10 5.16 s 3.37283316831360e-08 3.37283314949851048359e-08
15 5.62 s 5.41117151087178e-10 5.41116988976654311353e-10
20 6.21 s 1.64351865450385e-11 1.64350070140677763822e-11
25 6.93 s 7.52731210695856e-13 7.52610355198006348346e-13
30 9.48 s 4.62963001268690e-14 3.61891911270669288013e-14

Table 3: Results for best rational approximation of xα in [0, 1]. Columns: exponent α, degree
of the rational approximation, computation time, obtained error of the approximation com-
puted with BRASIL, high-precision error reported in Varga et al. [27]. Matching significant
digits are displayed in bold.
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et al. [28, 27] are shown in bold. We see that, despite working only with stan-
dard double precision, BRASIL can often match the high-precision results to
several significant digits. Accuracy usually begins to suffer once the absolute
maximum error is smaller than 10−12, which is not surprising given that ma-
chine epsilon is roughly 10−16 in the IEEE double precision system. For many
practical applications, rational approximations with an error of this magnitude
are sufficient.

6.2 Results with lower accuracy

In practice, many applications do not require computing the best rational ap-
proximation to many significant digits; instead, it is often sufficient to have an
approximation which has an error within a few percent of the best approxima-
tion. For example, in the application to fractional diffusion problems sketched
in Section 1.2, it suffices that the rational approximation error lies below the
discretization error of the spatial discretization of the diffusion problem (cf. [20]).

Therefore, we perform a few tests with lower tolerance ε = 10−4 and using
sampling with kS = 100 nodes per interval to determine the local maxima. The
results are shown in Table 4. The computation times are lower using these
settings, and the results are still in good agreement with the high-precision
computations from the previous subsection.

n iter error time

5 335 2.735e-03 0.259 s
10 337 1.610e-04 0.425 s
20 327 2.777e-06 0.794 s
40 331 8.568e-09 1.83 s
60 301 1.002e-10 2.96 s
80 479 2.347e-12 7.30 s

n iter error time

5 209 2.868e-05 0.152 s
10 202 2.059e-07 0.242 s
15 204 4.515e-09 0.354 s
20 201 1.783e-10 0.476 s
24 201 1.776e-11 0.572 s
28 254 2.126e-12 0.881 s

Table 4: Results for best rational approximation of x0.25 (left) and x0.75 (right) in [0, 1] with
tolerance ε = 10−4. Columns: degree, number of iterations, error ‖f − r‖, computation time.

6.3 Comparison to Chebfun’s minimax and Remez

The current state-of-the-art implementation of a rational Remez algorithm is
the minimax routine contained in the Chebfun package for Matlab [10]. It is
based on a barycentric formulation of the Remez algorithm with adaptively
chosen support points [12]. Like the tested implementation of BRASIL, it uses
only IEEE double-precision arithmetic.

Recent results for best-approximation using a modified Remez algorithm in
quadruple-precision arithmetic were given in [14]. The used software is however
not available, and therefore we have to rely on the published numbers.

We compare these approaches in terms of the highest achievable degree n
such that the method still converges to a desired tolerance ε. For BRASIL and
minimax, the deviation tolerance ε = 10−4 was used. The used tolerance for
the results from [14] was not specified, but the results produced using BRASIL
match them to all significant digits given therein. We use the function f(x) =
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x1/4

1+qx1/4 with varying q ≥ 0 and x ∈ [0, 1] as a test case since it proved the most

challenging for the Remez algorithm in [14].

BRASIL minimax [12] Remez [14]

q = 0 80 11 at least 8
q = 1 82 5 at least 8
q = 100 97 2 7
q = 200 97 1 6
q = 400 93 1 6

Table 5: Highest achievable degrees n for best rational approximation of f(x) = x1/4

1+qx1/4
in

[0, 1] with varying q using three different algorithms.

The results are shown in Table 5. BRASIL far outperforms previously pub-
lished algorithms in terms of the highest achievable degree n of the best rational
approximation. Note that “at least 8” for some of the results from [14] means
that the authors provided results up to n = 8, but did not specify if higher de-
grees n were still successfully computed. BRASIL again converged again within
a few seconds for each of the tested problems.

In the interest of fairness, it should be noted that for other examples,
minimax is superior to BRASIL. In particular, many of the examples given
in [12] are quite challenging and have nonzero defect or interior singularities.
At present, BRASIL cannot be used for these functions.
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Figure 3: Error f − r of the best rational approximation of degree n = 35 for the function
f(x) = x1/4/(1 + x1/4) in [0, 1] computed using BRASIL. The computed interpolation nodes
(x0, . . . , x70) are marked as dots.

Nevertheless, Table 5 confirms the exceptional numerical stability of the
BRASIL algorithm. Consider Figure 3, which shows the equioscillation property
of the error f(x)− r(x) for f(x) = x1/4/(1 +x1/4) in [0, 1] with a degree n = 35
best rational approximation. The 71 computed interpolation nodes (xj), shown
as dots, range in order of magnitude from around 10−31 to 1. It seems surprising
that this computation could be completed in IEEE double-precision arithmetic,
where machine epsilon is roughly 10−16. In essence, this is due to a combination
of several factors:

20



• the backwards stability of the barycentric rational formula [18, 12];

• the fact that the computation of the SVD, which is used to determine the
weight vector for the barycentric rational interpolant in Algorithm 1, can
be performed in an accurate way [9, 16];

• the fact that the main computations in the BRASIL algorithm, in partic-
ular the computation of the error maxima (δi), are completely local and
thus do not suffer from loss of significant digits since all involved quantities
have similar order of magnitude;

• in this particular example, the fact that the singularity lies at x = 0. Were
it instead at x = 1, the interpolation nodes could not be represented to
sufficient accuracy since the smallest non-zero difference between 1 and
a neighboring double-precision floating point number is on the order of
10−16, whereas the nodes in our example range in magnitude down to the
order of 10−31. This poses no problem since IEEE double precision can
represent numbers of magnitude down to roughly 2−1023 ≈ 10−308 without
loss of significant digits (see, e.g., Higham [17]). It may be possible to
exploit this observation in different examples by shifting the function such
that the singularity lies at x = 0, but care must be taken that the shifted
function f can be accurately evaluated at these nodes.
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